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| hope you had a wonderful weekend!
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Topics m

IMRT Concept
Compensators

Step & Shoot (Static) IMRT
Dynamic IMRT (sometimes called sliding window)
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3D Radiation Therapy
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FIG. 9. An optimized dose distribution for a c-shaped target with a centrally
located sensitive structure. In this case seven beams angles were used with
seven apertures per beam direction. The target 1s outlined in white.
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Intensity Modulated Radiation Therapy
(IMRT)

Fig. 1. Advanced form of 3D-CRT—IMRT—which is based on the use of optimized non-uniform radiation beam
intensities incident on the patient. Shown is a 3D view of the patient, the PTV, spinal cord, and parotid glands, and the
9 intensity modulated beams (with gray levels reflecting the intensity value) used to generate the IMRT dose
distribution.
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Forward Planning vs. Inverse Planning

Forward (conventional)

Planning

* For all beams, the user
defines:

— geometry (gantry,
collimator, couch settings)

— collimation (jaw settings,
MLC/block shape)

— fluence (wedge vs open
field, MU per beam)

— IMRT can also be forward
planned!

» fluence defined manually
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Inverse Planning

User still (typically) defines:
— geometry (gantry, collimator,
couch settings)
User defines dosimetric
criteria & desired weighting
for treatment plan

Optimization algorithm
defines collimation & beam
fluence based on dosimetric
criteria



Forward Planned IMRT

* Method 1: define fluence
manually
— fluence is defined by user
— MLC leaf sequence is
calculated to create the
fluence
 Method 2: create multiple
subfields (same beam
geometry)

— manually define MLC
positions & relative
weighting for each subfield
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Inverse Planned IMRT: Optimization

« Beam fluence is divided into “beamlets”

« Beamlet dimensions:
— 0.2-1.0cm along leaf motion direction
— |eaf width in cross-leaf direction

* Only optimize beamlets that traverse the target (plus
small margin)
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Inverse Planning: Optimization

* Dose in voxel i 1s given by

o

J
voxel i

! yJ
j=1

where w; 1s the intensity of the jth beamlet, /=1, ...1 1s the
number of dose voxels and where the sum 1s carried out

from j = 1,..J, the total number of beamlets. We want to find
w; values

* The quantity g, 1s the dose deposited in the ith voxel by
the jth beamlet for unit fluence
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Inverse Planning: Optimization m

* Dose in any voxel can be written as a linear
combination of beamlet intensities.

* First step is to calculate the contribution to dose per
unit fluence in each voxel due to each beamlet

* Dose calculation is done “up front” rather than
during optimization

* (The same process is carried out regardless of dose
calculation algorithm)
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Inverse Planning: Optimization m

* Dose criteria typically defined using DVH

« Use cost function that quantifies how close the dose
from the current beamlet weighting is to the

objective
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\ / target
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Optimization Algorithm

 (Gradient descent

— Always moves in direction
of steepest descent

— Fast, but can potentially
get stuck in local minima
« Simulated Annealing

— Stochastic: adds an
element of randomness

— Takes a random step &
accepts it if cost function
decreases

— Random aspect
decreases over time

— Slower, but potentially
more robust

« Others may also be used
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most modern planning
systems typically use a
fast optimization
algorithm such as
gradient descent

Cost Funetion

/

local minimum

AN

global minimum local minimum

Beam weight

exception: direct machine
parameter optimization
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How to deliver the fluence?

* Physical Compensators
 MLC motion

— leaf sequence to match ideal fluence
— Direct Machine Parameter Optimization (Direct Aperture
Optimization)
« skip fluence step! Or in other words: the leaf sequence is

optimized and comes first; the fluence can be calculated from
the leaf sequence.
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IMRT Methods: Physical Compensator

Primary Fluence
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IMRT Methods: Physical Compensators

reusable tin granules & disposable styrofoam
compensator box mold

FIG 4. Compensator box with a tin granule-filled compensator enclosed (left) and a Styrofoam compensator mold
(right). The three reference holes on the mold and the matching set on the box are used for easy verification of the
compensator orientation in the box. The compensator 1s designed to be inserted in the wedge slot of an accelerator.
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IMRT Methods: Physics Compensators m

Advantage: simple Disadvantage: lack of
iImplementation automation
* no need for MLCs « each field requires a
« static delivery custom
. no interplay compensator
between intensity ~ * Nneed to enter room
modulation and per field
organ motion * Limited modulation
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IMRT Methods: Physical Compensators m

 Max compensator
thickness ~5cm

e tin: actual fluence vs ideal fluence
— 100% - 38% 6X
— 100% - 45% 15X

« tungsten powder:
— 100% - 18% 6X
— 100% - 20% 15X
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IMRT Methods: Physical Compensators

|deal Compensator
Criteria:

large range of
intensity modulation
magnitude

intensity modulation
of high spatial
resolution

not hazardous
during fabrication

easy to form to &
retain shape

low material cost

environmentally
friendly
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wax (mixture

can produce smooth IM

¢ need a milling machine

Material Pro Con
Cerrobend e readily available
(with and | e inexpensive e need a milling machine
without mold) | o recyclable

¢ high density
brass/steel/ ¢ no milling required e poor IM resolution due to discreteness
lead (cube or | e recyclable e can be labor-intensive for assembly.
sheet) e inexpensive e can be hazardous (lead)
Lucite e casy to machine e low density thus low IM magnitude
(solid) ¢ nonhazardous ¢ need a milling machine

e not recyclable thus can be expensive

brass/steel ¢ readily available ¢ not recyclable thus can be expensive
(solid) e can produce smooth IM | ¢ need a milling machine

¢ nonhazardous
tin  granule- | e recyclable ¢ low density thus low IM magnitude

L]

L

in mold) nonhazardous o difficult to keep consistent packing
density

tin/steel e  high IM resolution e medium  density -medium < IM
(granule In | & consistent packing magnitude
mold) ¢ nonhazardous ¢ need a milling machine

e recyclable
tungsten e  high IM resolution e slightly hazardous to handle in coarse
(powder in | e consistent packing powder form (less than Cerrobend and
mold) e high density lead)

L

recyclable

e need a milling machine

Table 2. Pros and cons of selected materials for the IMRT compensator application




MLC Based IMRT:

« Leaf Sequencing Algorithm:
— “Inverse optimization” derives “fluence” per field

— “Leaf sequencing algorithm” determines an MLC motion to
deliver the fluence

— There will likely be some difference between the “optimal”

and “actual” fluence
 Alternative Strategy: Direct Machine Parameter

Optimization (DMPO) or Direct Aperture

Optimization (DAQO)

— Actual machine parameters (leaf positions, etc.) optimized
directly

— Advantage: what you see (at optimization) is what you get

— Disadvantage: potentially slower optimization
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Leaf Sequencing Algorithm:

There are many solutions to create a desired fluence
— some idealized intensity patterns may not be deliverable
— leaf transmission sets a lower bound on intensity

* Must account for limitations in leaf position & leaf speed

« Algorithms may attempt to minimize:
— # segments
- MU
— leaf travel or delivery time
— tongue & groove effect
« The difference between actual & desired intensity may be
greater for complicated intensities; these also lead to more
complicated leaf sequences, increased MU, and / or #
segments

— because of this often the inverse optimization may smooth the fluence
or include a penalty for complex fluences
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Leaf Sequencing Algorithm:

« The final dose calculation from the treatment
planning system may be based on either the ideal
fluence OR the final fluence from the leaf sequence

— important to know which is being reported, since a dose
degradation may be expected between these two

— greater degradation may be expected for more complicated
fluence patterns

* Dose calculation during optimization may be
simplified to increase speed
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IMRT Methods: Step & Shoot (static MLC) m
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IMRT leaf sequencing

A
leaves may “close in” __ | | Field
with each segment I e
Field l}
| . Fleld |
R Positio *
A
or “sweep across’ the Fleld
field (this is the method T ]
always used for T ,
dynamic MLC IMRT) el R
o " Positio

Figure 10.11: The close-in decomposition and the leaf-sweep decomposition illustrated using a simple pyramidal
intensity profile
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IMRT Methods:
Sweeping Leaves for dynamic MLC .
create a single

[} ‘ L] L]
of desired fluence 2 direction of travel
reas of decreasing

fluence are offset

remove Position Position

Incontinuities
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DMLC-IMRT SMLC-IMRT
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Fig. 6. (A) Intensity profile delivered by the leaves’ paths of Fig. 5 (replotted here as dotted lines). In practice. a
“leaf-sequencing” algorithm is used to translate the desired intensity profiles mto a computer data file of the leaf
positions as a function of MUs. (B) SMLC technique of delivering IMRT (also referred to as the step-and-shoot
method). In the “step™ phase. the leaves travel to discrete positions. then the radiation beam turns on in the “shoot™ phase
(i.e.. alternate MLC movement and radiation delivery). The result is discrete intensity levels. the number of 2vhich
depends on the “step™ number. Int. J. Radiation Oncology Biol. Phys.. Vol. 51, No. 4. pp. 880-914. 2001




Direct Machine Parameter Optimization

« user specifies beam
geometry & number of
segments

 |eaf positions (per
segment) initially set to
beams eye view

e optimization to meet dose
criteria using simulated
anealing

e can disallow invalid MLC
positions, MLC motion
constraints, & very low MU
segments
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FIG. 7. The three aperture shapes and
corresponding intensity map for one
beam direction. The open area of each
aperture 1s shown 1n black.
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IMRT Methods: Step & Shoot (static MLC) m

fluence from

sum of all

subfields (or

segments)

Segments (subfields) may
be defined by forward
planning, or inverse
planning. Segments from
Inverse plans may be
derived via a leaf sequence
algorithm, or directly from
optimization (DMPO)!
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IMRT ‘step and shoot’ and sliding window
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A-Leaves B-Leaves

-+
Il

Figure 10.8: The basic idea of the step and shoot approach is to deliver an intensity modulated beam as a superposition
of a set of irregularly shaped, partially overlapping field components
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Figure 10.9: Principle of dynamic multi leaf collimation
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IMRT Treatment Planning Process m

Simulation

Contouring
(MD & Dosimetrist)

Prescription &
Dosimetric Constraints

Set Beam Geometry

Select Optimization
Criteria: target & organ
constraints & weights

Optimize Fluence

Calculate MLC motion
(leaf sequence)

Calculate Dose




IMRT: Beam Setup

* Typically 7-12 equi-
spaced beams

* |socenter placed
near center of PTV
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IMRT Beam Setup

 |Lateral beams: still
avoid going through
shoulders
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Inverse Planning: Optimization (Eclipse)

normal tissue
optimization constraint
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3D vs IMRT




PTV DVH: 3D vs IMRT
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Ratio of Total

Spinal Cord DVH: 3D vs IMRT
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Fig. 1. The dose-response function for the myelopathy of the cervi-
cal spinal cord and data points ([]) derived from Table 1. The prob-
ability of myelopathy was calculated from the data in Table 1,
adjusted for estimated overall survival per (18).
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Larynx DVH: 3D vs IMRT
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Parotid DVH: 3D vs IMRT
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Intensity Map for an IMRT beam superimposed on patient
DRR (left) and reflected in hair loss on patient scalp (right)
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What can IMRT achieve in prostate Tx ?

4F conformal - OF IMRT

IMART Comp
Absolute

ART Composite Trial

Absolute

Axial views



What can IMRT achieve in prostate Tx ?

4F conformal plan SF IMRT plan

=B IMART Comp segSZ
Absolute

ART Composite Trial
Absolute
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IMRT vs conformal DVH

CI-PTV no rect

In IMRT plans typically ..: - Dose Volume Histogram
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Some comments on IMRT

Better conformity -> may be easier to miss the target ?!
— Potentially a significant problem
— First get the margins correct, then implement IMRT

Beam selection can be non-intuitive
Tendency to use more beams not less !
Typical MUs for an IMRT plan are 3-5 times higher

— Tendency to use lower energy (reduce neutron)

Tendency to ‘over-stress’ IMRT planning
— Give the optimization a consistent set of objectives
— Avoid extreme weighting etc
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Summary of IMRT

Advantages

 Ability to produce
remarkably conformal
dose distributions

* Dose escalation
(improvement in local
control)

* Decreased dose to
surrounding tissues
(reduction in
complications)
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Disadvantages

Planning is labor intensive
Extended delivery time
(typically)

Danger of being too
conformal

Generally more
Inhomogeneous dose
distribution

Increased MU— increased
whole body dose &
iIncreased room shielding
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Thank You!
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