Patient Dose Verification for IMRT/VMAT Treatments

Samuel Tung, M.S. Sr. Medical Physicist UT M.D. Anderson Cancer Center

THE UNIVERSITY OF TEXAS MDAnderson Cancer Center

Making Cancer History®

Milestones for H&N IMRT

Case Number	As of Date
1	12/28/1998
20	9/1/2000
100	7/1/2001
1000	1/24/2005

Trend of H&N IMRT Treatments

Milestones for H&N IMRT

Case Number	As of Date
1000	1/24/2005
2000	7/6/2007
3000	6/24/2009
~600 per year	Currently

Multi Leaf Collimators (MLC)

- 3D-CRT→ From cerrobend blocks to multiple leaves
- Dynamic MLC → Intensity Modulation

Software Systems for IMRT Planning

- The NOMOS CORVUS V3 was used to treat the first H&N case on 12/28/98.
- It was soon upgraded to V4.
- On December 2003, the system was about to upgrade to V5.
- However, we decided to switch to Philips Pinnalce³ V6 TPS instead.

Software Systems for IMRT Planning

- On December 2003, Philips Pinnalce³
 V6 was used to optimize fluence maps and for step-and-shoot IMRT
- Since April 2005, started Pinnalce³ V7 with DMPO technique
- Wide-Field Technique V8
- Currently, Pinnalce³ V9.8 SmartArc used for VMAT planning

Why QA DMLC procedures?

- Complex dose distributions
- Steep dose gradients
 - Moving MLCs
 - Precision of MLC motion
- Dose calculations are less intuitive Inverse planning
- MLC modeling From TPS to the LINAC
 - Leaf leakage, position, transmission, synchronization, speed
- VMAT → Gantry and MLC moving at the same time

IMRT/VMAT Plan QA Protocol

• Purpose:

- Verify each patient plan
- Deliver on phantom of known reproducible geometry
- Compare measurements to approved plan

Traditional IMRT/VMAT QA protocol

MDACC Arc Phantom

- Absolute dose measurements
 - Water prove ion chamber
 - Dose differences verified at several points
 - Need use solid water phantom to do film measurements

Arc Phantom

Traditional IMRT/VMAT QA protocol

Hybrid Plan in Arc Phantom

MU/Dose Delivered Analysis

Traditional IMRT/VMAT QA protocol

Traditional IMRT/VMAT QA protocol

IBA I'mRT Phantom

- Ion Chamber:
 - Absolute dose measurements
 - Dose difference of a single point
- Film:
 - Relative dose measurements
 - Dose distribution in a coronal plane through the phantom
 - Gamma analysis

IBA I'mRT Phantom

Traditional QA Analysis

		6MV		_
Readings @ 90:	1.268	1.268	1.269	nC
Readings @ 270:	1.277	1.278	1.277	nC
Average Reading:	1.273		nC (Ravg)	

Dose Factor =
$$\frac{113.2 \text{ cGy}}{R_{avg}} = 88.94 \text{ cGy/nC}$$

or 5%?

T:-14	Energy	Court	C-11	Carter	MU	Ion Chamb	per
leid	(MV)	Couch	Coll	Gantry	MU	Readings (nC)	Dose (cGy)
A	6	0	0	225	109	0.292	26.0
В	6	0	0	280	75	0.285	25.3
C	6	0	0	330	63	0.352	31.3
D	6	0	0	30	100	0.397	35.3
E	6	0	0	60	106	0.237	21.1
F	6	0	0	90	71	0.222	19.7
		1	Î				· · · · · ·
					1		
		1					
- 1						~	
Q.							a
2	5						
					-		-
27							-
						5	
2	3	25					
							_
						Total Measured	158.7
						Calculated Dose	155.4
						% diff*	2.2%

Absolute Point Dose

Traditional QA Analysis

Relative Dose

$$\Gamma(\vec{r}_e, \vec{r}_r) = \sqrt{\frac{r^2(\vec{r}_e, \vec{r}_r)}{\Delta d^2} + \frac{\delta^2(\vec{r}_e, \vec{r}_r)}{\Delta D^2}} > 90\%$$

3mm 5%

Why change QA procedure?

1. Issues with Relative Dose

- Depend on film processor
 - Not reproducible
 - Time delay between exposure and processing
- Film : Spatial and Energy dependence
 - Needs calibration curve
 - Relative measurements

Why change QA procedure? 2. Increased treatment complexity

- IMRT Gantry moves to specified angle → Beam delivered → MLCs move
- VMAT Gantry Angle, Dose Rate, and MLCs move at the same time

Additional variables

- Cumulative dose measurement
- Greater measurement area

Detector Array Devices

- 2D Dosimetry Systems

 IBA MatriXX
 Map Check
 - EPID

Detector Array Devices
3D Dosimetry Systems

Scandidos Delta4
ArcCheck
Gel

Patient Specific QA for Proton Tx

- Exclusively using 2D ionization chamber MatriXX (IBA dosimetry):
 - 2D dose measurements at treatment gantry angles through EMR (QA-mode) and ACS (Treatment-mode)
 - 2D dose measurements at gantry 270° or 90° in the physics model of ACS at multiple depths:
 - Simple target volumes 3 depths
 - Complex target volumes 5 to 7 depths

MapCheck With MapPhan for QA

MapPHAN

Rotational Dosimetry Delivered

A homogenous water equivalent phantom that holds MapCHECK™ or MapCHECK2™ at isocenter for Rotational Dosimetry

EPIDs For IMRT QA

Advantages

- Many centers have installed EPIDs and being primarily used for patient-specific pretreatment field verification and MLC QA
 - Logical extension to investigate dosimetric applications
- Mounted to linear accelerator known geometry with respect to the beam
 - Detector sag must be accounted for at different gantry angles
 - Positioning reproducibility important
- Real time digital evaluation
 - No processor, data acquisition takes less time

EPIDs For IMRT QA

Challenges

- EPIDs were primarily designed for patient localization
 - High resolution, good contrast images
 - Additional dose to the patient should be minimized
- The conversion of imager response to dose is complex
 - Imaging system dependent
- Other problems
 - Ghosting
 - Lag

EPIDs For IMRT QA Factors for EPID Response

- Water-equivalent depth of the detector
- Field size dependence and scatter properties within the imager
- Short- and long-term reproducibility
- Dose rate
- Energy dependence
- Spatial integrity

ArcCheck For Rotational Beams

- Water equivalent material
- Weighs 16 Kg
- 1386 (0.8x0.8 mm²) diode detectors
- Detector spacing: 10 mm
- Helical grid
- Measure entrance and exit doses

ArcCheck Physical Dimensions

Build up: 2.85 cm
Detector array length: 21 cm
Plug diameter: 15 cm

Array diameter: 21
 cm

ArcCheck Advantages

- 3D dose distribution
- Beam is always normal to the detector surface
- Allows for Ion Chamber measurement
- Real-time measurements (50ms frame rate)
- Easy set up with virtual inclinometer
- Composite and per control point analysis

Spatial Integrity and Uniformity

Test	Measurement (cm)	Specifications (cm)
AC diameter	26.56	26.59
Detector array diameter	20.79	20.8
Detector array length	20.91	21
Detector depth	2.89	2.85

- CT scan full phantom
- Verify physical integrity
- Spatial measurements compared with specs
- HU uniformity (compare between devices)

ArcCheck Response Characteristics

Linearity

 Dose response over a range of delivered MUs

 Dose rate dependence
 Dose response for different dose rates

Patient QA Comparison

- Old and new system delivery for 31 patients
- 26 IMRT and 5 VMAT cases
- No statistically significant difference

Arc Check = 99.0 ± 1.1 % IMRT Phantom = 98.9 ± 1.4 % Arc Check = $-0.10 \pm 1.7 \%$ IMRT Phantom = $-0.45 \pm 1.3 \%$

Error Test Analysis

- Simple field deliveries with various induced errors
 - 5 -10% difference in MUs
 - 5 -10mm shifts in all directions
 - Jaw closed (2.5-5mm) on each side
 - Evaluated at 3%/
 3mm

MU	Shift	Rotation	Jaws	Г(3%/3mm)
200	0	0	10x10	100.0
190	0	0	10x10	100.0
210	0	0	10x10	72.5
180	0	0	10x10	77.0
220	0	0	10x10	63.9
200	5mmLeft	0	10x10	88.5
200	5mmOut	0	10x10	84.8
200	5mmUp	0	10x10	99.6
200	10mmDown	0	10x10	99.6
200	10mmLeft	0	10x10	85.2
200	10mmOut	0	10x10	77.9
200	0	5	10x10	95.1
200	0	10	10x10	88.9
200	0	0	9x10	84.4
200	0	0	10x9	90.6
200	0	0	10x9.5	98.0

Result Analysis Control Point (CP) real-time analysis

Arc 1 CW

Arc 2 CCW

Composite Distribution Analysis

Result summary – HN IMRT

Set1 File: S:\SHARED\Radiation physics\IMRT\ArcCheck_IMRTQA\10-02-2013\ 3-0_meas.txt Set2 File: S:\SHARED\Radiation physics\IMRT\ArcCheck_IMRTQA\10-02-2013\augeer34529-0_DOSE_AC_EXTRACTED.snc

Result summary – GYN IMRT

Set2 File: S:\SHARED\Radiation physics\IMRT\ArcCheck_IMRTQA\10-03-2013

ArcCheck For IMRT/VMAT QA

- Currently 2 ArcChecks commissioned
- Required comprehensive analysis of reproducibility and sensitivity
- Developed a device QA program to monitor its performance
- Issues
 - Diode Drifting
 - Measurement of peripheral dose
 - Small/Large Fields

Multiplug Insert

Patient Dose Verification for IMRT/VMAT Treatments

QA tools for patient "pre-treatment" plan check discussed
In "homogeneous" phantom
Goal is for "safe" treatment delivery
TLD in vivo dosimetry per physician request only

Making Cancer History®