# Quantitative radiobiology for treatment evaluation



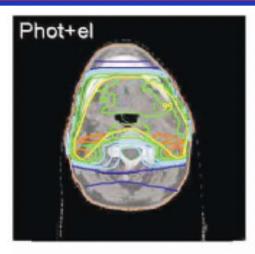
The Use and QA of Biologically Related Models for Treatment Planning

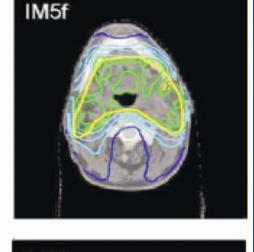
Report of AAPM Task Group 166 of the Therapy Physics Committee

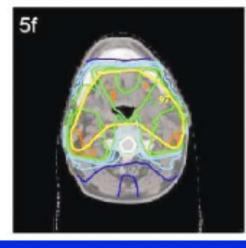
March 2012

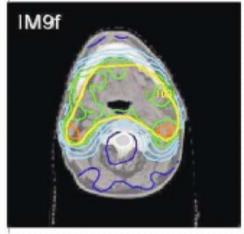
### TG-166: biological models discussed

- The linear-quadratic (L-Q) model
  - to account for fractionation and dose-rate effects
- Effective volume, effective dose, and generalized equivalent uniform dose (gEUD) models
  - to account for volume effects on radiobiological response
- Tumor control probability (TCP) and normal tissue complication probability (NTCP) models
- The use of these models in commercial treatment planning systems


### Comparison of rival treatment plans


- Visual inspection of isodose distributions (2D, 3D)
  - highly subjective
- Visual comparison of DVHs
  - fairly subjective
- Quantitative measures of plan "quality" from DVH
  - D<sub>min</sub>, D<sub>max</sub>, D90, D100, V90, V100, etc.
  - V<sub>eff</sub>, D<sub>eff</sub>, EUD
  - TCPs, NTCPs


### Visual inspection of isodose plans


Four plans for comparison:

- photons + electrons
- •5-field photons
- •5-field IMRT
- •9-field IMRT









### Comparison of tumor DVHs

(from Andrzej Niemierko, ASTRO, 2001)



# Some quantitative measures to go by

| Plan      | D90  | D100 | V90 | V100 | Range<br>(Gy) | Std. dev.<br>(Gy) |
|-----------|------|------|-----|------|---------------|-------------------|
| IMRT      | 59Gy | 30Gy | 94% | 50%  | 30 - 65       | 2.5               |
| AP-<br>PA | 57Gy | 55Gy | 83% | 50%  | 55 - 73       | 3.5               |

IMRT: most uniform (lower standard deviation), higher V90, but lower D100

AP-PA: higher D100, but lower V90 and also higher D<sub>max</sub>

### But which is the better plan?

- Need to consider both tumor and normal tissue DVHs
- Want good coverage of the target, low D<sub>max</sub> to normal tissues, and low volume of normal tissues receiving doses close to "tolerance"

# Can the DVH be reduced to a single "biologically relevant" number?

- Yes, if we have a volumeeffect model of dose response
  - most common is the powerlaw model

# Power-law volume-effect models (they have been around for a long time and we still use them today)

Skin tolerance dose  $\propto A^{-0.33}$ 

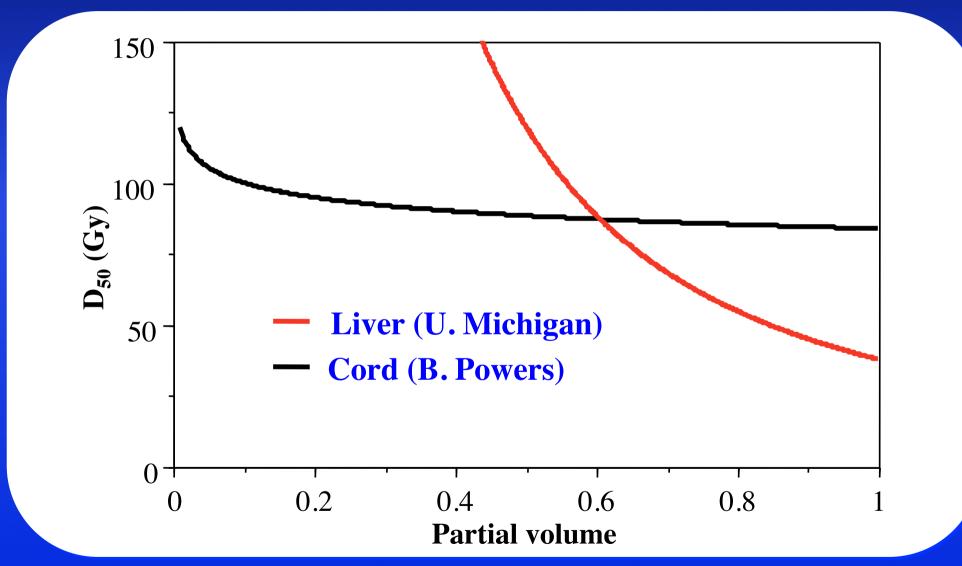
Cube - root rule, Meyer, 1939

Tissue tolerance dose  $\propto V^{-0.11}$ 

*Jolles*, 1946

### General power-law model

$$D_{v} = D_{1} \cdot v^{-n}$$


where  $D_v$  is the dose which, if delivered to fractional volume, v, of an organ, will produce the same biological effect as dose  $D_1$  given to the whole organ

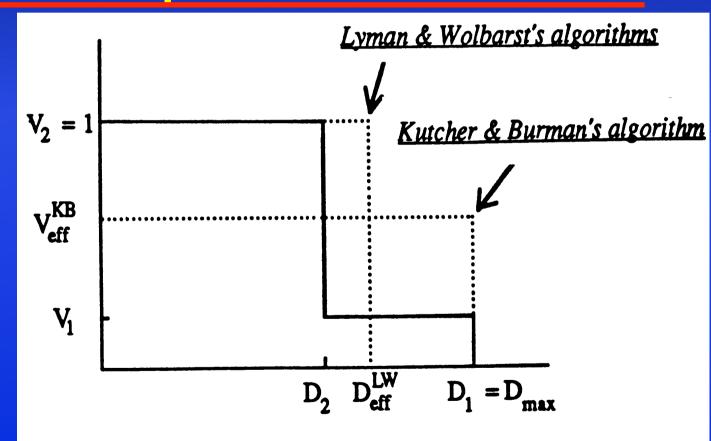
This is the basis of many present-day biological treatment planning methods

# What does the volume effect exponent "n" mean?

- n is negative for tumors
- n is positive for normal tissues
- ◆ n = 0 means that cold spots in tumors or hot spots in normal tissues are not tolerated
- n = 1 means that isoeffect doses change linearly with volume
- n large means that cold spots in tumors or hot spots in normal tissues are well tolerated

#### Hot-spots not tolerated - spinal cord (*n* small) Hot-spots well tolerated – liver (*n* large)




(from Andrzej Niemierko, ASTRO, 2001)

# Two methods to get a single number to represent a DVH

As a very simple demonstration, a two-step DVH is reduced to one step:

Kutcher & Berman: effective volume at maximum dose,  $V_{eff}$ 

Lyman & Wolbarst: effective dose to whole (or reference) volume,  $D_{eff}$ 



Niemierko, A., Goitein, M.

### Mohan et al expression for $D_{eff}$ (1992)

$$D_{eff} = \left[\sum_{i} D_{i}^{1/n} \cdot (V_{i} / V_{tot})\right]^{n}$$

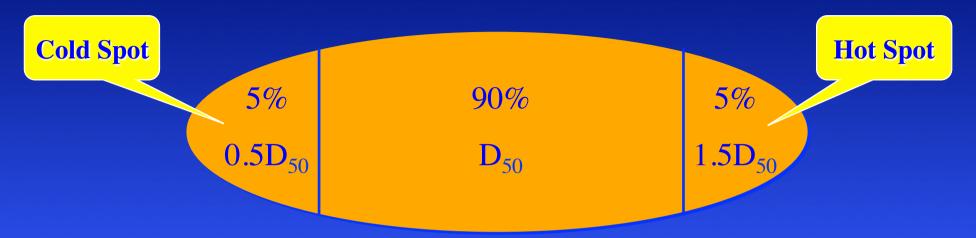
where  $V_i$  is the subvolume irradiated to dose  $D_i$ ,  $V_{tot}$  is the total volume of the organ or tissue, and n is the tissue-specific volume-effect parameter in the power-law model

Mohan et al called this the "effective uniform dose"

### The EUD equation (Niemierko, 1999)

Niermierko renamed  $D_{eff}$  the Equivalent Uniform Dose EUD(originally defined only for tumors in 1997 but extended to all tissues in 1999 and initially called it the generalized EUD, or gEUD)

$$EUD = \left[\sum_{i} v_{i} D_{i}^{a}\right]^{1/a}$$

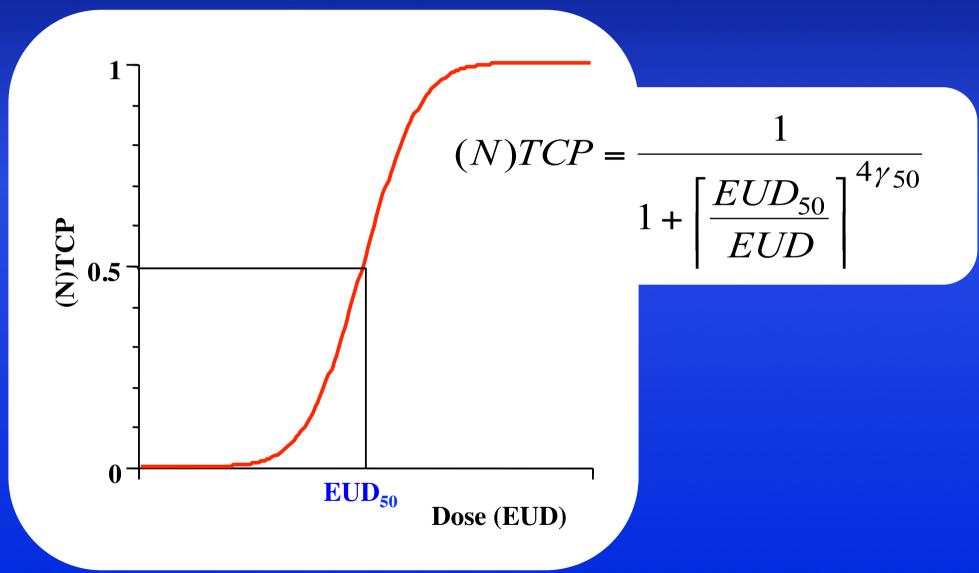

where  $v_i$  is the volume of the tissue in dose bin  $D_i$  as a fraction of the volume of the total organ or tumor i.e.  $v_i = V_i/V_{tot}$ 

Note that EUD is identical to  $D_{eff}$ , of Mohan et al with a = 1/n

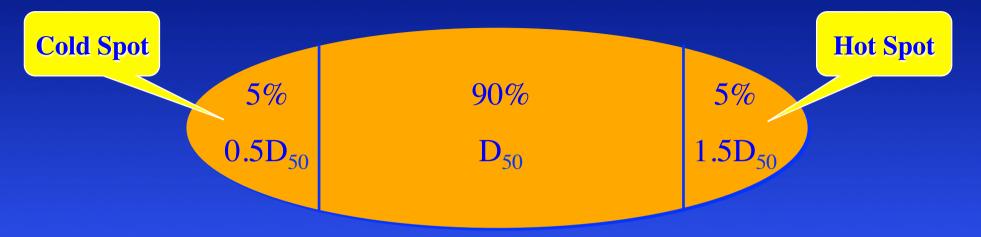
|                   | Structure (Source)           | End-point                | a     |
|-------------------|------------------------------|--------------------------|-------|
|                   | Chordoma base of skull (MGH) | Local control            | -13   |
| Tumors>           | Squamous cc (Brenner)        | Local control            | -13   |
| Tullio18          | Melanoma (Brenner)           | Local control            | -10   |
|                   | Breast (Brenner)             | Local control            | -7.2  |
|                   | Parotids (Eisbruch)          | Salivary function (<25%) | < 0.5 |
|                   | Parotids (Chao)              | Salivary function (<25%) | 0.5   |
|                   | Liver (Lawrence)             | Liver failure            | 0.6   |
|                   | Liver (Dawson)               | Liver failure            | 0.9   |
|                   | Lung (Kwa)                   | Pneumonitis              | 1.0   |
|                   | Lung (Emami)                 | Pneumonitis              | 1.2   |
| Normal tissues -> | Kidney (Emami)               | Nephritis                | 1.3   |
| 1voimai ussues    | Liver (Emami)                | Liver failure            | 2.9   |
|                   | Heart (Emami)                | Pericarditis             | 3.1   |
|                   | Bladder (Emami)              | Symptomatic contracture  | 3.8   |
|                   | Brain (Emami)                | Necrosis                 | 4.6   |
|                   | Colon (Emami)                | Obstruction/perforation  | 6.3   |
|                   | Spinal cord (Powers)         | White matter necrosis    | 13    |
|                   | Esophagus (Emami)            | Perforation              | 18    |
|                   | Spinal cord (Schultheiss)    | Paralysis                | 20    |

(from Andrzej Niemierko, ASTRO, 2001)

#### EUD – Tumors (from Andrzej Niemierko, ASTRO, 2001)




$$EUD = \left[0.05(0.5D_{50})^a + 0.9(D_{50})^a + 0.05(1.5D_{50})^a\right]^{\frac{1}{a}}$$


| Tumor  | a    | EUD/D <sub>50</sub><br>% | TCP(%)<br>(γ <sub>50</sub> =2) |
|--------|------|--------------------------|--------------------------------|
| Breast | -7.2 | 74                       | 8                              |

### TCP & NTCP: logistic model

(from Andrzej Niemierko, ASTRO, 2001)



#### EUD – Tumors (from Andrzej Niemierko, ASTRO, 2001)



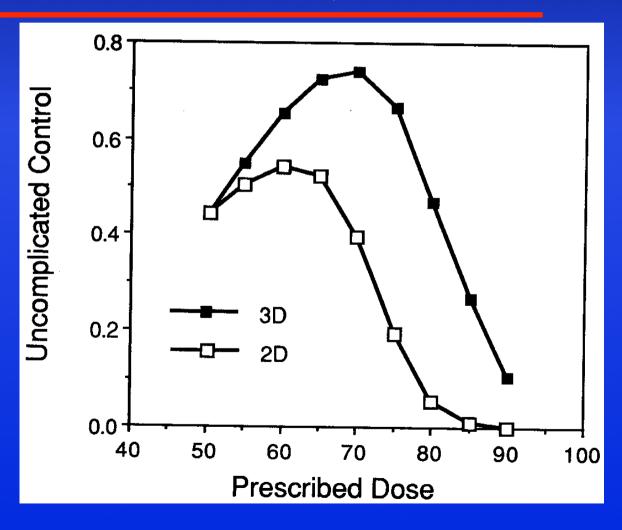
| Tumor    | a    | EUD/D <sub>50</sub><br>(%) | TCP(%)<br>(γ <sub>50</sub> =2) |
|----------|------|----------------------------|--------------------------------|
| Breast   | -7.2 | 74                         | 8                              |
| Melanoma | -10  | 67                         | 4                              |
| Chordoma | -13  | 63                         | 2                              |
|          | -∞   | 50                         | <1                             |

#### EUD - Normal Structures (from Andrzej Niemierko, ASTRO, 2001)



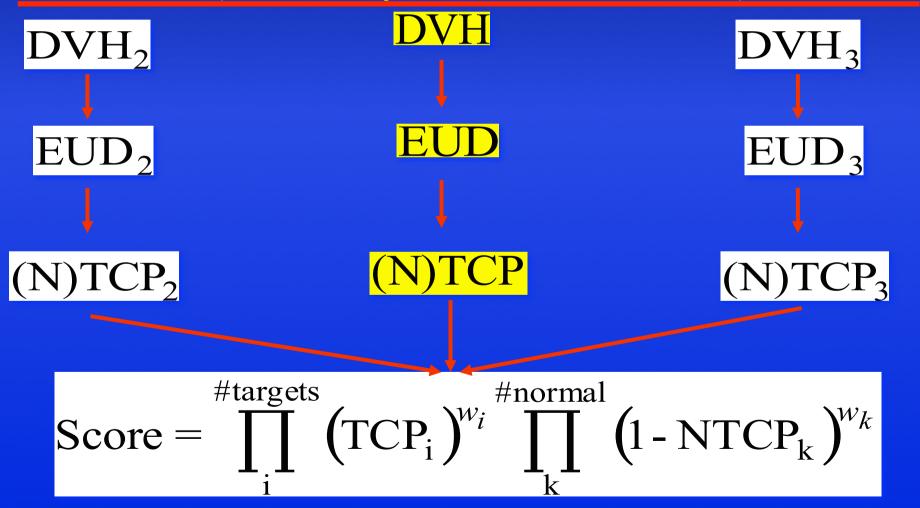
| Structure   | a   | EUD/D <sub>5</sub> (%) | NTCP(%)<br>(γ <sub>50</sub> =4) |
|-------------|-----|------------------------|---------------------------------|
| Liver       | 0.6 | 99                     | 4.6                             |
| Lung        | 1   | 100                    | 5                               |
| Heart       | 3.1 | 103                    | 7                               |
| Brain       | 4.6 | 105                    | 10                              |
| Spinal cord | 14  | 122                    | 55                              |
|             | +∞  | 150                    | >95                             |

### Optimization


- The objective is to develop the treatment plan which will deliver a dose distribution that will ensure the highest TCP that meets the NTCP constraints imposed by the radiation oncologist
- This will usually be close to the peak of the probability of uncomplicated local control (PULC) curve

### Nasopharynx: comparison of conventional (2-D) with non-coplanar (3-D) techniques

Kutcher, 1998


Probability of uncomplicated local control (PULC) given by:

PULC =TCP(1-NTCP)



# Creating a Score function for plan optimization or plan evaluation

(from Andrzej Niemierko, ASTRO, 2001)



### EUD used to optimize treatment plans

According to AAPM TG Report 166: "incorporating EUD-based cost functions into inverse planning algorithms for the optimization of IMRT plans may result in improved sparing of OARs without sacrificing target coverage"

### DVH data can be used directly without calculation of EUDs: the NTCP probit-based model

The Pinnacle TP system uses the Kutcher and Burman DVH reduction method to calculate the effective volume  $v_{eff}$ 

$$NTCP_{(dose, volume)} = \frac{1}{2} \left[ 1 + erf\left(\frac{t}{\sqrt{2}}\right) \right].$$

The parameter t is determined by the effective volume method,

$$t = \frac{D_{\text{max}} - D_{50}(\boldsymbol{\nu}_{\text{eff}})}{\mathbf{m}D_{50}(\boldsymbol{\nu}_{\text{eff}})} : D_{50}(\boldsymbol{\nu}_{\text{eff}}) = D_{50}\boldsymbol{\nu}_{\text{eff}}^{-N},$$

$$\mathbf{m} = \frac{1}{\sqrt{2\pi} \times \gamma_{50}}$$
 and  $\mathbf{v}_{eff} = \frac{1}{\mathbf{v}_{ref}} \sum_{i} \mathbf{v}_{i} \left(\frac{D_{i}}{D_{max}}\right)^{1/N}$ ,

## Another example: TCPs calculated using the Poisson statistics model

According to Poisson statistics, if a number of patients with similar tumors are treated with a certain regimen, the probability of local control, which is the probability that no cancer cells will survive, is given by:

$$TCP = e^{-N_m}$$

where  $N_m$  is the mean number of cancer cells surviving in any patient

### Poisson statistics model (cont'd.)

Then, if the average number of cancer cells in each patient's tumor before treatment is  $N_0$ , and the mean surviving fraction of cells after treatment is  $S_m$ :

$$N_m = N_0 S_m$$

Hence :

$$TCP = e^{-N_0 S_m}$$

## Which is better for optimization, EUD or TCP/NTCP?

"Although both concepts can be used interchangeably for plan optimization, the EUD has the advantage of fewer model parameters, as compared to TCP/NTCP models, and allows more clinical flexibility"

(AAPM TG 166 Report)

### TG 166 conclusion

"A properly calibrated EUD model has the potential to provide a reliable ranking of rival treatment plans and is most useful when a clinician needs to select the best plan from two or more alternatives"

### NTCP and TCP calculations: effect of dose/fraction

- Since biological effects are a function of dose/ fraction, EUD, NTCP and TCP calculations need to take this into account
- One way to do this is to transform all doses within the irradiated volume to "effective" doses at some standard dose/fraction e.g. 2 Gy, before calculation of the TCP or NTCP
- This may be done using the linear-quadratic model

### The 2 Gy/fraction equivalent dose

$$BED = Nd(1 + \frac{d}{\alpha / \beta})$$

$$D_i \left( 1 + \frac{d_i}{\alpha / \beta} \right) = D_2 \left( 1 + \frac{2}{\alpha / \beta} \right)$$



$$D_2 = D_i \left[ \frac{\left(1 + \frac{d_i}{\alpha/\beta}\right)}{1 + \frac{2}{\alpha/\beta}} \right]$$

### Alternatively could use the LQ model directly: TCP calculations using Poisson statistics

#### According to the Poisson statistics model:

$$TCP_i = e^{-N_{0,i}S_{m,i}}$$
 and  $TCP = \prod_i TCP_i$ 

where, using the L-Q model:

$$S_{m,i} = e^{-\left(\alpha d_i + \beta d_i^2\right)N}$$

so 
$$TCP_i = e^{-N_{0,i}e^{-\left(\alpha d_i + \beta d_i^2\right)N}}$$

#### Want more on calculation of TCPs?

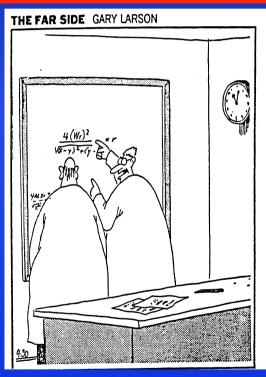
### Try reading:

"Tumor control probability in radiation treatment"

by Marco Zaider and Leonid Hanin, Med. Phys. 38, 574 (2011)

# Biological models used in treatment planning systems

- Monaco
  - Tumor: Poisson statistics cell kill model
  - Normal tissues: EUD
- Pinnacle
  - Tumor: LQ-based Poisson TCP model; EUD
  - Normal tissues: Lyman-Kutcher NTCP model; EUD
- Eclipse
  - Tumor: LQ-based Poisson TCP model; EUD
  - Normal tissues: LQ-based Poisson NTCP model; Lyman-Kutcher NTCP model


### Do we know what parameters to use?

- Yes, well, kind of!
- At least we are close for normal tissues due to the QUANTEC initiative stimulated by the AAPM
- QUANTEC: Quantitative Analyses of Normal Tissue Effects in the Clinic
  - development of large data bases
  - model evaluation and data analysis
  - publication of best-fit models and parameters

### Summary

- Biological models can be used for treatment planning, optimization, and evaluation
- Power-law volume effect models are used extensively
- Inhomogeneous dose distributions, possibly corrected for the effect of fractionation, can be reduced to a single number, the EUD, TCP, NTCP, or PULC

## Final slide Can we compare rival treatment plans?



Yes, Dr. Padovani, if you multiply the EUD by  $\alpha$ , subtract from this  $EUD^2$  multiplied by  $\beta$ , and then subtract the number you  $1^{st}$  thought of, you can compare treatment plans perfectly