
  

BED Applications in Practice 
w The main application of the BED 

model is to design and/or compare 
different fractionation or dose-rate 
schemes 

w It can also be used for correction for 
errors and for rest periods 



  

Examples of the use of 
the BED model 

w Simple fractionation changes 
w Correction for errors 
w Conversion to 2 Gy/fraction equivalent dose 
w Effect of change in overall treatment time 
w Correction for rest periods 
w Change in dose rate 
w Conversion from LDR to HDR 
w Effect of half life on permanent implant doses 



  

Example 1: simple 
change in fractionation 

w Question: what dose/fraction delivered in 25 
fractions will give the same probability of late 
normal tissue damage as 60 Gy delivered in 30 
fractions at 2 Gy/fraction? 

w The L-Q equation is: 
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Solution (cont’d) 
  Assuming α/β for late 
reacting normal tissues is 3 
Gy, the BED for 60 Gy at 2 
Gy/fraction is  

          60(1 + 2/3) = 100 



  

Solution (cont’d) 
  Then the dose/fraction, d, is given 

by: 
             100 = 25d(1 + d/3) 
  Solving this quadratic equation for 

d gives: 
               d = 2.27 Gy/fraction 



  

Using the L-Q model to  
correct for errors 
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The Mike Joiner method 
w Joiner found that if several  fractions are 

delivered at the wrong dose/fraction, 
you can derive a dose/fraction to use for 
the remainder of the course that will 
result in the planned BEDs being 
delivered to all tissues 
•  it is independent of the α/β of the tissue 



  

The Mike Joiner method: 
definitions 

w The planned total dose is:  
 Dp Gy at dp Gy/fraction 

w The dose given erroneously is:  
 De Gy at de Gy/fraction 

w The dose required to complete the course is:  
 Dc Gy at dc Gy/fraction in Nc fractions 



  

The Joiner equations 
 
 



  

Example 2: dose below 
prescribed for 1st two fractions 
  Planned treatment: HDR brachytherapy to 42 Gy 

at 7 Gy/fraction 
  Given in error: 2 fractions of 3 Gy 
  Then the dose/fraction needed to complete the 

treatment is: 
 
 
 



  

Example 2 (cont’d.) 
w The extra dose required is: 

   Dc = 42 – 6 = 36 Gy 
w Hence the number of fractions required is: 

   Nc = 36/7.67 = 4.7 
w Since we cannot deliver 0.7 of a fraction, complete 

the treatment with 5 fractions of 36/5 = 7.2 Gy/
fraction  
•  always round out the number of fractions up, since 

increased fractionation spares normal tissues 
     



  

Additional benefit of the 
Joiner model 

   The solution is not only 
independent of α/β but it is 
also independent of any 
geometrical sparing of 

normal tissues 



  

Conversion to 2 Gy/fraction 
equivalent dose 
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Example 3 
   What total dose given at 2 Gy/fraction is 

equivalent to 50 Gy delivered at 3 Gy/fraction for 
(a) cancers with α/β = 10 Gy? 

(b) normal tissues with α/β = 3 Gy? 
Answers 

(a)  D2 = 50(1 + 3/10)/(1 + 2/10) = 54.2 Gy 
(b)  D2 = 50(1 + 3/3)/(1 + 2/3) = 60.0 Gy 



  

Example 4: change in fractionation 
accounting for repopulation 

w Problem: it is required to change a fractionation 
scheme of 60 Gy delivered in 30 fractions at 2 
Gy/fraction over 42 days to 10 fractions delivered 
over 14 days 

w What dose/fraction should be used to keep the 
same effect on cancer cells and will the new 
scheme have increased or decreased effect on 
late-reacting normal tissues? 



  

Solution I: assume no repopulation 
and no geometrical sparing 

   Assuming the tumor α/β = 10 Gy, the tumor BED 
for 30 fractions of 2 Gy is: 

BEDt = 30 x 2(1 + 2/10) = 72 
   Then, for this same BED in 10 fractions of dose 

d/fraction: 
72 = 10 x d(1 + d/10) 

   The solution to this quadratic equation is: 
d = 4.85 Gy 



  

Solution I (cont’d.): effect on 
late-reacting normal tissues 

   Assuming the late-reacting normal tissue α/β = 3 
Gy, the normal tissue BED for 30 fractions of 2 Gy 
is: 

   BEDlate = 30 x 2(1 + 2/3) = 100 
   and the normal tissue BED for 10 fractions of 4.85 

Gy is: 
   BEDlate = 10 x 4.85(1 + 4.85/3) = 127 

   It appears that the 10 fraction scheme is far more 
damaging to normal tissues (127 vs. 100) 

 



  

Solution II: assume a geometrical 
sparing factor of 0.6 

   The dose to normal tissues will now be 2 x 0.6 = 1.2 
Gy for the 30 fraction treatments and 4.85 x 0.6 = 
2.91 Gy for the 10 fraction treatments 

   Then the BEDs for normal tissues will be: 
BEDlate = 30 x 1.2(1 + 1.2/3) = 50 

BEDlate = 10 x 2.91(1 + 2.91/3) = 57 
   It appears that the 10 fraction scheme is somewhat 

more damaging to normal tissues (57 vs. 50) 
 



  

Solution III: assume geometrical sparing 
and repopulation (at k = 0.3/day) 

Now we need to recalculate the tumor BEDs 
The tumor BED for 30 fractions of 2 Gy is: 

BEDt = 30 x 2(1 + 2/10) – 0.3 x 42 = 55.2 
   Then, for this same BED in 10 fractions of dose d/

fraction: 
55.2 = 10 x d(1 + d/10) – 0.3 x 14 

   The solution to this quadratic equation is: 
d = 4.26 Gy 

 



  

Solution III (cont’d.): effect on 
late reactions 

   The dose to normal tissues will still be 2 x 0.6 = 1.2 Gy 
for the 30 fraction treatments but will become 4.26 x 
0.6 = 2.56 Gy for the 10 fraction treatments 

   Then the BEDs for normal tissues will be: 
   BEDlate = 30 x 1.2(1 + 1.2/3) = 50 

   BEDlate = 10 x 2.56(1 + 2.56/3) = 47 
   It appears that the 10 fraction scheme is now 

somewhat less damaging to normal tissues (47 vs. 50) 
 



  

What does this mean? 
w Decreasing the number of fractions, i.e. 

hypofractionation, does not necessarily 
mean increasing the risk of normal tissue 
damage when keeping the effect on 
tumor constant 
•  This is why we may be using far more hypofractionation 

in the future, especially since it will be more cost-
effective 



  

Example 5: Rest period during treatment 

w Problem: a patient planned to receive 
60 Gy at 2 Gy/fraction over 6 weeks is 
rested for 2 weeks after the first 20 
fractions 

w How should the course be completed 
at 2 Gy/fraction if the biological 
effectiveness is to be as planned? 



  

Solution I: for late-
reacting normal tissues 

w Since late-reacting normal tissues 
probably do not repopulate during the 
break, they do not benefit from the 
rest period so the dose should not be 
increased  

w Complete the course in 10 more 
fractions of 2 Gy 



  

Solution II: for cancer cells 
w  Assume that the cancer is repopulating at an average rate, so 

k = 0.3 BED units/day and α/β = 10 Gy 
w  For a rest period of 14 days, the BED needs to be increased 

by 14 x 0.3 = 4.2 
w  The BED for the additional N fractions of 2 Gy is then: 

2N(1 + 2/10) – (7/5)N x (0.3) which must equal 4.2  
Solution is N = 2.12  

i.e. instead of 10 fractions you need about 12 fractions of 2 Gy 
But remember, the effect on normal tissues will increase 



  

Example 6: change in dose rate 

w A radiation oncologist wants to 
convert a 60 Gy implant at 0.5 
Gy/h to a higher dose rate of 1 
Gy/h, keeping the effect on the 
tumor the same 

w What total dose is required? 



  

The BED equation for LDR 
treatments 

 

 

where      
       R = dose rate (in Gy h-1) 
        t = time for each fraction (in h) 

               µ = repair-rate constant (in h-1) 
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Simplified forms of the LDR BED 
equation 
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Solution 
   Assume that α/β (tumor) is 10 Gy, and µ (tumor) is 

0.46 h-1 (i.e. repair half time is 0.693/0.46 = 1.5 h) 
   The approximate BED equation is: 
 
 
   Hence the BED for 60 Gy at 0.5 Gy/h is: 
   BED (tumor) = 60[1 + 2x0.5/(0.46x10)]  
                               = 73.0 
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Solution (cont’d.) 
  To obtain this same BED of 73.0 at 1 

Gy/h, the overall time t is given by: 
          73.0 = 1xt[1 + 2x1/(0.46x10)] 
  Hence: 
                      t = 73.0/1.43  
                          = 51.0 h 



  

Solution (cont’d.) 

The total dose is thus 51.0 
times the dose rate of 1 Gy/h 

= 51.0 Gy 



  

Solution (cont’d.) 
w Actually, this is only an approximate 

solution since only the approximate 
expression for BED was used 

w Calculation of t using the full BED equation 
would have been far more mathematically 
challenging and would have yielded a 
required dose of 51.3 Gy, not much 
different from the approximate solution of 
51.0 Gy obtained here 



  

Example 7: conversion of LDR to HDR 

     Problem: 
 It is required to replace an LDR implant 
of 60 Gy at 0.6 Gy h-1 by a 10-fraction 
HDR implant  
 What dose/fraction should be used to 
keep the effect on the tumor the same? 



  

Solution 
 Since t = 100 h we can use the simplified 
version of the BED equation: 
   BED = Rt[1+2R/(µ.α/β)] 
 Assume: µ = 1.4 h-1 and α/β  = 10 Gy for tumor  
 Then the BED for the LDR implant is: 
        BED = 60[1+1.2/(1.4 x 10)]  

                                = 65.1 



  

Solution (cont’d.) 
 If d is the dose/fraction of HDR 
then: 
 65.1 = Nd[1+d/(α/β)] = 10d[1+0.1d] 
 This is a quadratic equation in d the 
solution of which is 
    d = 4.49 Gy 



  

Is this better or worse as far as normal 
tissues are concerned? 

For late-reacting normal tissues assume 
α/β = 3 Gy and µ = 0.46 h-1 

Then the BED for 60 Gy at 0.6 Gy h-1 is: 
BEDLDR = 60[1+1.2/(0.46 x 3)] = 112.2 
and the BED for 10 HDR fractions of 4.49 

Gy is: 
BEDHDR = 10 x 4.49[1+4.49/3] = 112.2 



  

Is this better or worse as far as normal 
tissues are concerned? 

w Amazing! By pure luck I selected a 
problem where the LDR and HDR 
implants are identical in terms of both 
tumor and normal tissue effects 

w We will now demonstrate some general 
conditions for equivalence using the L-Q 
model 



  

    For equivalence 
to LDR at 0.6 Gy 
h-1 need to use 
about  4.5 Gy/
fraction with 
HDR (this was 
the example just 
shown) 

HDR equivalent to LDR for the same 
tumor and normal tissue effects 



  

Does geometrical sparing 
make any difference? 

Now HDR at about 6 
Gy/fraction is 
equivalent to LDR at 
0.6 Gy h-1 if the 
geometrical sparing 
factor is 0.6 (yellow 
line) 

Yes, a big difference 



  

Example 8: permanent implants 

   What total dose for a 103Pd permanent 
prostate implant will produce the 

same tumor control as a 145 Gy  125I 
implant, assuming α/β for prostate 
cancer is 1.5 Gy and assuming that 

repopulation can be ignored?  



  

BED equation for permanent implants 

   Ignoring repopulation, the BED equation 
for a permanent implant of a 

radionuclide with decay constant λ at 
initial dose rate R0 is: 
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Solution 
w R0/λ is the total dose and λ for I-125, 

half life 60 days, is 0.693/(60 x 24) h-1 = 
0.00048 h-1 

w Hence, for a total dose of 145 Gy, the 
initial dose rate R0 is 145 x 0.00048 = 

0.0696 Gy/h 



  

Solution (cont’d.) 
  Substituting this in the equation and 

assuming α/β for prostate cancer is 
1.5 Gy and µ = 0.46 h-1 gives: 
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Solution (cont’d.) 
  Now we need to substitute this in the BED equation in 
order to calculate the initial dose rate R0 using the (17 day 

half life) Pd-103 λ of 0.693/(17 x 24) = 0.0017 h-1 

  The solution to this quadratic equation is 
       R0 = 0.209 Gy/h 

 Hence the total dose of Pd-103 is 0.209/0.0017  
                                  = 122.9 Gy 
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Summary 
w The BED model is useful for the solution of  

radiotherapy problems with changes in  
fractionation and/or dose rate 

w But remember, this equation must be just an 
approximation for the highly complex biological 
changes that occur during radiotherapy 
•  the model is approximate 
•  the parameters are approximate 
                   But the model is useful! 


