ICTP international workshop on
Current Trends in Frustrated Magnetism
SPS, JNU

Ujjwal Sen
HRI, Allahabad

Outline

1. Understanding entanglement
2. Entanglement in many-body physics
3. What is frustration?
4. Characterizing "classical" frustration in q systems
5. Frustration and Entanglement
I. Area Law
II. Genuine multipartite entanglement
6. End remarks

Outline

1. Understanding entanglement
2. Entanglement in many-body physics
3. What is frustration?
4. Characterizing "classical" frustration in q systems
5. Frustration and Entanglement
I. Area Law
II. Genuine multipartite entanglement
6. End remarks

Understanding entanglement

LOCC paradigm in quantum info

- If the state is shared between two or more parties, the parties would only be able to act locally.
Allowed operations: LOCC.

Understanding entanglement

LOCC paradigm in quantum info

- If the state is shared between two or more parties, the parties would only be able to act locally.
Allowed operations: LOCC.
- What do we mean by LOCC?

Understanding entanglement

LOCC paradigm in quantum info

- If the state is shared between two or more parties, the parties would only be able to act locally.
Allowed operations: LOCC.
- What do we mean by LOCC?

Not this!!

Understanding entanglement

What do we mean by LOCC?

- Alice makes a measurement and communicates her result to Bob (say, by a phone call).

Understanding entanglement

What do we mean by LOCC?

- Alice makes a measurement and communicates her result to Bob (say, by a phone call).
- Then depending on her result, Bob will make his measurement and communicate his result to Alice.
- And so on.

Understanding entanglement

Separable and Entangled states

- Quantum states that can be prepared by LOCC \rightarrow Separable states.
- Otherwise \rightarrow Entangled states.

Understanding entanglement

Separable and Entangled states

- Quantum states that can be prepared by LOCC \rightarrow Separable states.
- How do they look like?

Understanding entanglement

Separable and Entangled states

- Quantum states that can be prepared by LOCC \rightarrow Separable states.
- How do they look like? Mathematically?

Understanding entanglement

Separable and Entangled states

- Quantum states that can be prepared by LOCC \rightarrow Separable states.
- How do they look like? Mathematically?
- Separable pure states: products over pure states of individual systems.

Understanding entanglement

Separable and Entangled states

- Quantum states that can be prepared by LOCC \rightarrow Separable states.
- How do they look like? Mathematically?
- Separable states: mixtures of products over pure states of individual systems.

Understanding entanglement

Which "entanglements" can we compute?

Circa 2000

- Nielsen, Preskill, Wootters et al.

Understanding entanglement

Which "entanglements" can we compute?

Circa 2000

- Nielsen, Preskill, Wootters et al.

Idea of using entanglement-like concepts in quantum many-body phenomena was put forward.

Understanding entanglement

Which "entanglements" can we compute?

Circa 2000

- Nielsen, Preskill, Wootters et al.
- Osborne and Nielsen, QIP’02, PRA'02
- Osterloh, Amico, Falci, Fazio, Nature'02

Understanding entanglement

Which "entanglements" can we compute?

Understanding entanglement

Which "entanglements" can we compute?

To see the behavior of entanglement in real systems, it is not sufficient
to understand an entanglement measure conceptually.

Understanding entanglement

Which "entanglements" can we compute?

To see the behavior of entanglement in real systems, it is not sufficient
to understand an entanglement measure conceptually. We must also be able to compute it for the states of the real systems.

Understanding entanglement

Which "entanglements" can we compute?

- Bipartite states.

Understanding entanglement

Which "entanglements" can we compute?

- Bipartite states.
- For mixed two-party states, only entanglement of formation of two-qubit states.

Understanding entanglement

Which "entanglements" can we compute?

- Bipartite states.

Ene mivad twa nortur ctatac anly

Entanglement of formation of a two-party state is the number of singlets that r required to create the state by LOCC.

Understanding entanglement

Which "entanglements" can we compute?

- Bipartite states.
- Ear mivad twa narturatatac anly

Entanglement of formation of a two-party state is the number of singlets that r required to create the state by LOCC.

Modulo certain additivity problems.

Understanding entanglement

Which "entanglements" can we \boldsymbol{c}

- Bipartite states.

Far mivad twa nartiv ctatac anlv

Entanglement of formation of a two-party state is the number of singlets that r required to create the state by LOCC.

Modulo certain additivity problems.

Understanding entanglement

Which "entanglements" can we compute?

- Bipartite states.
- For mixed two-party states, only entanglement of formation of two-qubit states.
- In higher dimensions, logarithmic negativity can be calculated. But it cannot detect bound entanglement.

Understanding entanglement

Which "entanglements" can we compute?

- Bipartite states.

Enr mivad trun nnotry atotac anly

$$
\begin{aligned}
& \text { Logneg of a two-party state is } \\
& \qquad \log _{2}(2 N+1) .
\end{aligned}
$$

Understanding entanglement

Which "entanglements" can we compute?

- Bipartite states.

Far mivad trun narter atatac anly

Logneg of a two-party state is $\log _{2}(2 N+1)$.
$\mathrm{N}=$ sum of mod of negative eigenvalues in partial transpose of state.

Understanding entanglement

Which "entanglements" can we compute?

- Bipartite states.
- For mixed two-party states, only entanglement of formation of two-qubit states.

Understanding entanglement

Which "entanglements" can we compute?

- Bipartite states.
- For mixed two-party states, only entanglement of formation of two-qubit states.

Understanding entanglement

Which "entanglements" can we compute?

- Bipartite states.
- For mixed two-party states, only entanglement of formation of two-qubit states.
- For pure two-party states, local von Neumann entropy is a "good" measure of entanglement

Understanding entanglement

Which "entanglements" can we compute?

- Bipartite states.
- For mixed two-party states, only entanglement of formation of two-qubit states.
- For pure two-party states, local von Neumann entropy is a "good" measure of entanglement, and is computable.

Understanding entanglement

Which "entanglements" can we compute?

- Bipartite states.
- For mixed two-party states, only entanglement of formation of two-qubit states.
- For pure two-party states, local von Neumann entropy is a "good" measure of entanglement, and is computable.

Possible in arbitrary dimensions.

Understanding entanglement

Which "entanglements" can we compute?

- Bipartite states.

This sets the stage for the
QI - many-body interface.

Understanding entanglement

Which "entanglements" can we compute?

- Bipartite states.

Indeed, two of the main directions of study are

1. EoF of reduced densities

of spin-1/2 ground states
2. Scaling of local entropy
in ground state partitions

1 Ussivic 11 arvillaly unininsivis.

Understanding entanglement

Which "entanglements" can we compute?

- Bipartite states.

Indeed, two of the main directions of study are

1. EoF of reduced densities
of spin-1/2 ground states
2. Scaling of local entropy
in ground state partitions

1 Ussivic 11 alvillaly unilulisivis.

Understanding entanglement

Which "entanglements" can we compute?

- Bipartite states.

Indeed, two of the main directions of study are

1. EoF of reduced densities
of spin-1/2 ground states
2. Scaling of local entropy
in ground state partitions

1 Ussivic 11 alvillaly unilulisivis.

Understanding entanglement

Which "entanglements" can we compute?

- Bipartite states.

Indeed, two of the main directions of study are

1. EoF of reduced densities
of spin-1/2 ground states
2. Scaling of local entropy in ground state partitions

Understanding entanglement Multiparty entanglement

- Many notions available.

Understanding entanglement Multiparty entanglement

- Many notions available.
- However, not all r computable.

Understanding entanglement Multiparty entanglement

- Many notions available.
- However, not all r computable.
a. Geometric measure

Understanding entanglement Multiparty entanglement

- Many notions available.
- However, not all r computable.
a. Geometric measure

Wei, Goldbart, PRA’03
Balsone, DellAnno, DeSiene, Illuminatti, PRA'08 +

Understanding entanglement Multiparty entanglement

- Many notions available.
- However, not all r computable.
a. Geometric measure
b. Global measure

Understanding entanglement Multiparty entanglement

- Many notions available.
- However, not all r computable.
a. Geometric measure
b. Global measure

Meyer, Wallach, JMP’02 $+\ldots .$.

Understanding entanglement Multiparty entanglement

- Many notions available.
- However, not all r computable.
a. Geometric measure
b. Global measure
c. Generalized geometric measure

Understanding entanglement Multiparty entanglement

- Many notions available.
- However, not all r computable.
a. Geometric measure
b. Global measure
c. Generalized geometric measure
A. $\operatorname{Sen}(\mathrm{De}), \mathrm{US}, \mathrm{PRA}^{\prime} 10$

Outline

1. Understanding entanglement
2. Entanglement in many-body physics
3. What is frustration?
4. Characterizing "classical" frustration in q systems
5. Frustration and Entanglement
I. Area Law
II. Genuine multipartite entanglement
6. End remarks

Entanglement in many-body physics Quantum Phase Transitions

Entanglement in many-body physics Quantum Phase Transitions

Entanglement in many-body physics Quantum Phase Transitions

- Transitions at zero temperature.

Entanglement in many-body physics Quantum Phase Transitions

- Transitions at zero temperature.
- Implying, transition not temp. driven.

Entanglement in many-body physics

Quantum Phase Transitions

- Transitions at zero temperature.
- Implying, transition not temp. driven.
- Driven by system parameter, like a magnetic field.

Entanglement in many-body physics Quantum Phase Transitions

Typical situation:

- $\mathrm{H}=\mathrm{H}(\mathrm{int})+\mathrm{a} \mathrm{H}($ field $)$

Entanglement in many-body physics Quantum Phase Transitions

Typical situation:

- $\mathrm{H}=\mathrm{H}(\mathrm{int})+\mathrm{a} \mathrm{H}(f i e l d)$
- Ground state of H

Entanglement in many-body physics Quantum Phase Transitions

Typical situation:

- H = H(int) + a H(field)
- Ground state of $\mathrm{H} \leftarrow$ guarantees $\mathrm{T}=0$

Entanglement in many-body physics Quantum Phase Transitions

Typical situation:

- $\mathrm{H}=\mathrm{H}(\mathrm{int})+\mathrm{a} \mathrm{H}(f i e l d)$
- Ground state of $\mathrm{H} \leftarrow$ guarantees $\mathrm{T}=0$
- GS depends on " a ".

Entanglement in many-body physics Quantum Phase Transitions

Typical situation:

- $\mathrm{H}=\mathrm{H}(\mathrm{int})+\mathrm{a} \mathrm{H}(f i e l d)$
- Ground state of $\mathrm{H} \leftarrow$ guarantees $\mathrm{T}=0$
- GS depends on " a ".
- "a" can be changed.

Entanglement in many-body physics Quantum Phase Transitions

Typical situation:

- H = H(int) + a H(field)
- Ground state of $\mathrm{H} \leftarrow$ guarantees $\mathrm{T}=0$
- GS depends on " a ".
- "a" can be changed.
- Nonanalyticity appears in some physical quantity as "a" is changed.

Entanglement in many-body physics Two-site densities

Entanglement in many-body physics Two-site densities

Entanglement in many-body physics

Two-site densities

The reduced state is a two-qubit state.
Spin-1/2 Chain

Entanglement in many-body physics

Two-site densities

The prescription:

Entanglement in many-body physics

Two-site densities

The prescription:

1. Find ground state of spin-1/2 system

Entanglement in many-body physics

Two-site densities

The prescription:

1. Find ground state of spin- $1 / 2$ system
2. Remove all spins except two NNs

Entanglement in many-body physics

Two-site densities

The prescription:

1. Find ground state of spin- $1 / 2$ system
2. Remove all spins except two NNs
3. Find EoF of resulting two-site density

Entanglement in many-body physics

Two-site densities

The prescription:

1. Find ground state of spin- $1 / 2$ system
2. Remove all spins except two NNs
3. Find EoF of resulting two-site density
4. Investigate it wrt the relevant system parameter

Entanglement in many-body physics Quantum XY spin model

Entanglement in many-body physics

Quantum XY spin model

$$
\Sigma \mathrm{J}\left[(1+\gamma) \mathrm{S}_{\mathrm{x}}^{\mathrm{i}} \mathrm{~S}_{\mathrm{x}}^{\mathrm{i}+1}+(1-\gamma) \mathrm{S}_{\mathrm{y}}^{\mathrm{i}} \mathrm{~S}_{\mathrm{y}}^{\mathrm{i}+1}\right]-\mathrm{a} \mathrm{~S}_{\mathrm{z}}^{\mathrm{i}}
$$

S are half of Pauli matrices.

Entanglement in many-body physics Quantum XY spin model

$$
\Sigma \mathrm{J}\left[(1+\gamma) \mathrm{S}_{\mathrm{x}}^{\mathrm{i}} \mathrm{~S}_{\mathrm{x}}^{\mathrm{i}+1}+(1-\gamma) \mathrm{S}_{\mathrm{y}}^{\mathrm{i}} \mathrm{~S}_{\mathrm{y}}^{\mathrm{i}+1}\right]-\mathrm{a} \mathrm{~S}_{\mathrm{z}}^{\mathrm{i}}
$$

Quantum phase transition at $\mathrm{h}=1$.

Entanglement in many-body physics Quantum XY spin model

For $\gamma=1$: Transverse Ising Model.

$$
\Sigma \mathrm{J}\left[(1+\gamma) \mathrm{S}_{\mathrm{x}}^{\mathrm{i}} \mathrm{~S}_{\mathrm{x}}^{\mathrm{i}+1}+(1-\gamma) \mathrm{S}_{\mathrm{y}}^{\mathrm{i}} \mathrm{~S}_{\mathrm{y}}^{\mathrm{i}+1}\right]-\mathrm{a} \mathrm{~S}_{\mathrm{z}}^{\mathrm{i}}
$$

Quantum phase transition at $\mathrm{h}=1$.

Entanglement in many-body physics

Linking QI with concepts in quantum statistical mechanics and quantum phase transitions.

Near QPT in 1D transverse Ising model, 2-site entanglement remains short ranged, while 2-site correlation length diverges.

Entanglement, however, does show signs of criticality.

Osterloh, Amico, Falci, \& Fazio,
Nature 2002; Osborne \& Nielsen,
Phys. Rev. A 2002.

Entanglement in many-body physics

Entanglement in many-body physics

Two-site densities

The prescription:

1. Find ground state of spin- $1 / 2$ system
2. Remove all spins except two NNs
3. Find EoF of resulting two-site density
4. Investigate it wrt the relevant system parameter

Entanglement in many-body physics

Two-site densities

Why ground state?

The prescription:

1. Find ground state of spin-1/2 system
2. Remove all spins except two NNs
3. Find EoF of resulting two-site density
4. Investigate it wrt the relevant system parameter

Entanglement in many-body physics

Two-site densities

Why ground state?

The prescription:

1. Find ground s
2. Remove all s]
3. Find EoF of r
4. Investigate it

Guarantees that there are no thermal effects.

Entanglement in many-body physics

Two-site densities

Why ground state?

The prescription:

1. Find grounds
2. Remove all s]
3. Find EoF of r
4. Investigate it

Thermal states,

 time-evolved states also considered.
Entanglement in many-body physics

Two-site densities

Why NN?

The prescription:

1. Find ground state of spin-1/2 system
2. Remove all spins except two NNs
3. Find EoF of resulting two-site density
4. Investigate it wrt the relevant system parameter

Entanglement in many-body physics

Two-site densities

Why $N N ?$

The prescription:

1. Find ground s
2. Remove all s]

In many instances, but NOT all,
NNN and so on
have little to no entanglement.

Entanglement in many-body physics

 Multiparty entanglementMultiparty entanglement detects QPT
a. Geometric measure
b. Global measure
c. Generalized geometric measure (GGM)

Entanglement in many-body physics Geometric measure detects QPT

Wei, Das, Mukhopadhyay, Vishveshwara, Goldbart, PRA’05

Entanglement in many-body physics

Global measure of multipartite entanglement detects QPT

deOliviera, Rigolin, deOliviera, PRA’06

Entanglement in many-body physics GGM detects QPT

Entanglement in many-body physics

GGM $-1 / 2$

GGM detects QPT

Entanglement in many-body physics

GGM $-1 / 2$ GGM detects QPT

Entanglement in many-body physics

GGM $-1 / 2$ GGM detects QPT

Entanglement in many-body physics

GGM $-1 / 2$ GGM detects QPT

Entanglement in many-body physics

GGM $-1 / 2$ GGM detects QPT

darivativa

anisotropy

Blue dashes $\rightarrow 1$ (Ising)
Pink circles $\rightarrow 0.8$
Green dots $\rightarrow 0.2$
A. Sen(De), US, 1002.1253

Entanglement in many-body physics

GGM $-1 / 2$ GGM detects QPT

J_1-J_2 models in 1D \& 2D:
darive
A. Biswas, R. Prabhu, A. Sen(De), US, PRA'14
anisouvpy
Blue dashes $\rightarrow 1$ (Ising)
Pink circles $\rightarrow 0.8$
Green dots $\rightarrow 0.2$
A. $\operatorname{Sen}(\mathrm{De}), \mathrm{US}$, 1002.1253

Outline

1. Understanding entanglement
2. Entanglement in many-body physics
3. What is frustration?
4. Characterizing "classical" frustration in q systems
5. Frustration and Entanglement
I. Area Law
II. Genuine multipartite entanglement
6. End remarks

What is frustration?

What is frustration?

From a classical perspective

What is frustration?

From a classical perspective

Consider an Ising model:
$\mathcal{H}=J \sum \sigma_{i} \sigma_{j} ; J>0$

What is frustration?

From a classical perspective

Consider an Ising model:

$$
\mathcal{H}=J \sum \sigma_{i} \sigma_{j} ; J>0
$$

What is frustration?

From a classical perspective

Failure to have spin configuration to minimize individual interaction terms

What is frustration?

From a quantum perspective

What is frustration?

From a quantum perspective

Draw a parallel

What is frustration?

From a quantum perspective

Classical frustration: spin configuration

Quantum frustration: GSs of two terms not same

$$
\mathcal{H}=\mathcal{H}_{\text {loc }}+\mathcal{H}_{\text {int }}
$$

What is frustration?

Classical
 spin configuration

Cannot get optimal spin configuration

What is frustration?

Classical
 spin configuration

Quantum non-commutativity

Cannot get optimal spin configuration

GSs of two terms not same

Outline

1. Understanding entanglement
2. Entanglement in many-body physics
3. What is frustration?
4. Characterizing "classical" frustration in q systems
5. Frustration and Entanglement
I. Area Law
II. Genuine multipartite entanglement
6. End remarks

Characterizing "classical" frustration in q systems

Characterizing "classical" frustration in q systems

Classical frustration

Characterizing "classical" frustration in q systems

Classical frustration

"Frustration degree"

Sen(De), US, Dziarmaga, Sanpera, Lewenstein, PRL'08 Jindal, Rane, Dhar, Sen(De), US, PRA'14

Characterizing "classical" frustration in q systems Frustration degree

- Given $\mathrm{H},|\Gamma\rangle$,

Characterizing "classical" frustration in q systems Frustration degree

- Given $H,|\Gamma\rangle$,
replace one-body, two-body etc. in H by Ising ones, i.e. by σ_{i}^{z} or $\sigma_{i}^{z} \sigma_{j}^{z}$ etc.

Characterizing "classical" frustration in q systems Frustration degree

- Given $H,|\Gamma\rangle$,
replace one-body, two-body etc. in H by Ising ones, i.e. by σ_{i}^{z} or $\sigma_{i}^{z} \sigma_{j}^{z}$ etc.

Find H^{I}

Characterizing "classical" frustration in q systems Frustration degree

- Given $H,|\Gamma\rangle$,
replace one-body, two-body etc. in H by Ising ones, i.e. by σ_{i}^{Z} or $\sigma_{i}{ }_{i} \sigma_{j}{ }_{j}$ etc.

Find H^{I}

$$
\Phi=\operatorname{avg} \frac{\sum_{\mathrm{k}}\langle\Gamma| \mathrm{H}_{\mathrm{f}}^{\mathrm{k}}|\Gamma\rangle}{\left.\sum_{\mathrm{l}}\left|\langle\Gamma| \mathrm{H}_{\mathrm{nf}}^{\mathrm{t}}\right| \Gamma\right\rangle \mid}
$$

Characterizing "classical" frustration in q systems Frustration degree

Ising model: $\mathrm{H}=\mathrm{J} \Sigma \sigma_{\mathrm{i}}{ }_{\mathrm{i}}^{\mathrm{z}_{\mathrm{j}}} \quad$ with $\mathrm{J}>0$

Characterizing "classical" frustration in q systems Frustration degree

Ising model: $\mathrm{H}=\mathrm{J} \Sigma \sigma_{\mathbf{i}}^{\mathbf{i}^{2}} \sigma_{\mathbf{j}} \quad$ with $\mathrm{J}>0$

Characterizing "classical" frustration in q systems Frustration degree

Ising model: $\mathrm{H}=\mathrm{J} \Sigma \sigma_{\mathrm{i}}^{\mathrm{z}} \sigma_{\mathrm{j}}^{\mathrm{z}} \quad$ with $\mathrm{J}>0$

Characterizing "classical" frustration in q systems Frustration degree

 Ising model: $\mathrm{H}=\mathrm{J} \Sigma \sigma_{\mathrm{i}}^{\mathrm{z}} \sigma_{\mathrm{j}}^{\mathrm{z}} \quad$ with $\mathrm{J}>0$

Characterizing "classical" frustration in q systems Frustration degree

Ising model: $\mathrm{H}=\mathrm{J} \Sigma \sigma_{\mathrm{i}}{ }_{\mathrm{i}} \sigma_{\mathrm{j}} \quad$ with $\mathrm{J}>0$

Characterizing "classical" frustration in q systems Frustration degree

Ising model: $\mathrm{H}=\mathrm{J} \Sigma \sigma_{\mathrm{i}}{ }_{\mathrm{i}} \sigma_{\mathrm{j}} \quad$ with $\mathrm{J}>0$

Characterizing "classical" frustration in q systems Frustration degree

 Ising model: $\mathrm{H}=\mathrm{J} \Sigma \sigma_{\mathrm{i}}{ }_{\mathrm{i}} \sigma_{\mathrm{j}} \quad$ with $\mathrm{J}>0$

Characterizing "classical" frustration in q systems Frustration degree

Ising model: $\mathrm{H}=\mathrm{J} \Sigma \sigma_{\mathrm{i}}^{\mathrm{z}} \sigma_{\mathrm{j}}^{\mathrm{z}} \quad$ with $\mathrm{J}>0$

Characterizing "classical" frustration in q systems Frustration degree

Ising model: $\mathrm{H}=\mathrm{J} \Sigma \sigma_{\mathrm{i}}^{\mathrm{i}} \sigma_{\mathrm{j}}^{\mathrm{z}} \quad$ with $\mathrm{J}>0$

Characterizing "classical" frustration in q systems
 Frustration degree

Ising model: $\mathrm{H}=\mathrm{J} \Sigma \sigma_{\mathrm{i}}^{\mathrm{z}} \sigma_{\mathrm{j}}^{\mathrm{z}} \quad$ with $\mathrm{J}>0$

Characterizing "classical" frustration in q systems Frustration degree

Ising model: $\mathrm{H}=\mathrm{J} \Sigma \sigma_{\mathrm{i}}^{\mathrm{z}} \sigma_{\mathrm{j}}^{\mathrm{z}_{\mathrm{j}}} \quad$ with $\mathrm{J}>0$

Outline

1. Understanding entanglement
2. Entanglement in many-body physics
3. What is frustration?
4. Characterizing "classical" frustration in q systems

5. Frustration and Entanglement

I. Area Law
II. Genuine multipartite entanglement
6. End remarks

Outline

1. Understanding entanglement
2. Entanglement in many-body physics
3. What is frustration?
4. Characterizing "classical" frustration in q systems

5. Frustration and Entanglement

I. Area Law
II. Genuine multipartite entanglement
6. End remarks

Reduced entropy S would depend on the surface of separation between A and B.

Reduced entropy S would depend on the surface of separation between A and B.

We r talking abt interacting systems.

Reduced entropy S would depend on the surface of separation between A and B.

Would be true (trivially) if ...

Reduced entropy S would depend on the surface of separation between A and B.

Boundary particles are pure entangled states.

Reduced entropy S would depend on the surface of separation between A and B.

Boundary particles are pure entangled states. Plus no long-range entangled pairs.

Reduced entropy S would depend on the surface of separation between A and B.

Typical situation is far from being such.

Reduced entropy S would depend on the surface of separation between A and B.

Typical situation is far from being such.

Usually intricately multiparty quantum correlated.

Reduced entropy S would depend on the surface of separation between A and B.

$$
\mathrm{S}\left(\rho_{\mathrm{L}}\right) \sim \mathrm{L}^{\mathrm{d}-1}
$$

L: characteristic length of A

Reduced entropy S would depend on the surface of separation between A and B.

$$
\mathrm{S}\left(\rho_{\mathrm{L}}\right) \sim \mathrm{L}^{\mathrm{d}-1}
$$

L: characteristic length of A

Area Law:1D

$$
\mathrm{E}\left(|\Psi\rangle_{\mathrm{L}: \mathrm{N}-\mathrm{L}}\right)=\mathrm{S}\left(\rho_{\mathrm{L}}\right)
$$

Area Law:1D

$$
\mathrm{E}\left(|\Psi\rangle_{\mathrm{L}: \mathrm{N}-\mathrm{L}}\right)=\mathrm{S}\left(\rho_{\mathrm{L}}\right) \sim \mathrm{L}^{\mathrm{d}-1} \equiv \mathrm{constant}
$$

away from criticality

Area Law:1D

$$
\mathrm{E}\left(|\Psi\rangle_{\mathrm{L}: \mathrm{N}-\mathrm{L}}\right)=\mathrm{S}\left(\rho_{\mathrm{L}}\right) \sim \mathrm{L}^{\mathrm{d}-1} \equiv \mathrm{c} \rho \text { tant }
$$

independent of block-size

Area Law:1D

Block entanglement: $\mathrm{E}\left(|\Psi\rangle_{\mathrm{L}: \mathrm{N}-\mathrm{L}}\right)$

$$
\mathrm{E}\left(|\Psi\rangle_{\mathrm{L}: \mathrm{N}-\mathrm{L}}\right)=\mathrm{S}\left(\rho_{\mathrm{L}}\right) \sim \ln \mathrm{L}
$$

at criticality

Area Law:1D

Block entanglement: $\mathrm{E}\left(|\Psi\rangle_{\mathrm{L}: \mathrm{N}-\mathrm{L}}\right)$

$$
\underset{\underset{\text { atcDe }}{\mathrm{E}\left(|\Psi\rangle_{\mathrm{L}: \mathrm{N}-\mathrm{L}}\right)=\mathrm{S}\left(\rho_{\mathrm{L}}\right)} \sim \log \text { divergence }}{\sim \ln \mathrm{L}}
$$

Lot of progress in different directions.

Lot of progress in different directions. A case study:

 Frustrated systems
Main Thesis

$>$ Highly frustrated systems do not follow area law

Main Thesis

$>$ Highly frustrated systems do not follow area law

while

$>$ Weakly frustrated systems follow same area law as nonfrustrated systems away from criticality

Sen(De), US, Dziarmaga, Sanpera, Lewenstein, PRL'08
Jindal, Rane, Dhar, Sen(De), US, PRA'14

Area Law

 for frustrated systems1. Long range Ising model
2. Majumdar Ghosh model
3. Shastry-Sutherland model
4. Is ing chain with $\mathfrak{N J V}$ interactions

Coosing/Quenching Method

$>$ Initial state:

$$
|\Phi\rangle_{\mathrm{in}} \equiv|\psi\rangle_{1} \otimes|\psi\rangle_{2} \otimes|\psi\rangle_{3} \otimes \ldots \otimes|\psi\rangle_{\mathrm{N}}
$$

Cooling/Quenching Method

$>$ Initial state:

$$
|\Phi\rangle_{\text {in }} \equiv|\psi\rangle_{1} \otimes|\psi\rangle_{2} \otimes|\psi\rangle_{3} \otimes \ldots \otimes|\psi\rangle_{\mathrm{N}}
$$

$>$ Project $|\Phi\rangle_{\text {in }}$ onto the ground state space of the model.

$$
|\Phi\rangle_{\mathrm{f}}=\left(\sum|\Gamma\rangle_{\mathrm{i}}\langle\Gamma|\right)|\Phi\rangle_{\mathrm{in}}
$$

Cooling/Quenching Method

> Initial state:

$$
|\Phi\rangle_{\text {in }} \equiv|\psi\rangle_{1} \otimes|\psi\rangle_{2} \otimes|\psi\rangle_{3} \otimes \ldots \otimes|\psi\rangle_{\mathrm{N}}
$$

$>$ Project $|\Phi\rangle_{\text {in }}$ onto the ground state space of the model.

$$
|\Phi\rangle_{\mathrm{f}}=\left(\sum|\Gamma\rangle_{\mathrm{i}}\langle\Gamma|\right)|\Phi\rangle_{\mathrm{in}}
$$

$>$ Calculate $\mathrm{E}_{\mathrm{N} / 2: \mathrm{N} / 2}\left(|\Phi\rangle_{\mathrm{f}}\right)$.

Cooling/Quenching Method

> Initial state:

$$
|\Phi\rangle_{\text {in }} \equiv|\psi\rangle_{1} \otimes|\psi\rangle_{2} \otimes|\psi\rangle_{3} \otimes \ldots \otimes|\psi\rangle_{\mathrm{N}}
$$

$>$ Project $|\Phi\rangle_{\text {in }}$ onto the ground state space of the model.

$$
|\Phi\rangle_{\mathrm{f}}=\left(\sum|\Gamma\rangle_{\mathrm{i}}\langle\Gamma|\right)|\Phi\rangle_{\mathrm{in}}
$$

$>$ Calculate $\mathrm{E}_{\mathrm{N} / 2: \mathrm{N} / 2}\left(|\Phi\rangle_{\mathrm{f}}\right)$.
$>$ Maximize $\mathrm{E}_{\mathrm{N} / 2: \mathrm{N} / 2}\left(|\Phi\rangle_{\mathrm{f}}\right)$ over all choices of the initial state.

for frustrated systems

1. Long range Ising model
2. Majumdar Ghosh model
3. Shastry-Sutherland model
4. Ising chain with $\mathfrak{N V V}$ interactions

Long range Ising model

 $\mathrm{H}=\mathrm{J} \Sigma \sigma^{\mathbf{Z}}{ }_{i} \sigma^{\mathbf{Z}}{ }_{j} \quad$ with $\mathrm{J}>0$
Long range Ising model

 $\mathrm{H}=\mathrm{J} \Sigma \sigma^{\mathrm{Z}}{ }_{i} \sigma^{\mathrm{Z}}{ }_{j} \quad$ with $\mathrm{J}>0 \quad \Phi \approx 1$Long range Ising model

$$
\mathrm{H}=\mathrm{J} \Sigma \sigma_{i}^{\mathrm{Z}} \sigma^{\mathrm{Z}}{ }_{j} \quad \text { with } \mathrm{J}>0
$$

After quenching:
$|\psi\rangle=$ superposition of all vectors with $\mathrm{m}|0\rangle \mathrm{s}$ and $\mathrm{m}|1\rangle \mathrm{s}$

Long range Ising model $\mathrm{H}=\mathrm{J} \Sigma \sigma^{\mathrm{Z}}{ }_{i} \sigma^{\mathrm{Z}}{ }_{j} \quad$ with $\mathrm{J}>0$

After quenching:
$|\psi\rangle=$ superposition of all vectors with
$\mathrm{m}|0\rangle \mathrm{s}$ and $\mathrm{m}|1\rangle \mathrm{s}$

$$
E_{k: 2 m-k}=1 / 2 \log k
$$

Long range Ising model

$$
\mathrm{H}=\mathrm{J} \Sigma \sigma_{i}^{\mathrm{Z}} \sigma^{\mathrm{Z}}{ }_{j} \quad \text { with } \mathrm{J}>0
$$

After quenching:
$|\psi\rangle=$ superposition of all vectors with $\mathrm{m}|0\rangle \mathrm{s}$ and $\mathrm{m}|1\rangle \mathrm{s}$

Area law Clear departure from area law

$>$ Long range Ising model: "Infinite" dimensions

Area law Clear departure from area law

$>$ Long range Ising model: "Infinite" dimensions
$>$ Possible area law: $\mathrm{k}^{1-1 / \mathrm{d}}$ with $\mathrm{d} \rightarrow \infty$

Area law Clear departure from area law

$>$ Long range Ising model: "Infinite" dimensions
$>$ Possible area law: $\mathrm{k}^{1-1 / \mathrm{d}}$ with $\mathrm{d} \rightarrow \infty$

Note: Effect due to frustration.
Not due to long-range interactions.

Area Law Clear departure from area law

$>$ Long range Ising model: "Infinite" dimensions
$>$ Possible area law: $\mathrm{k}^{1-1 / \mathrm{d}}$ with $\mathrm{d} \rightarrow \infty$

Note: Effect due to frustration.
Not due to long-range interactions.
Ising with $\mathrm{J}<0$: constant block entanglement.

Area Law

for frustrated systems

1. Long range Ising model
2. Majumdar Ghosh model
3. Shastry-Sutherland model
4. Ising chain with $\mathfrak{N N V}$ interactions

Majumdar-Ghosh mode[

$\mathrm{H}=\mathrm{J}_{1} \Sigma \sigma_{i} \sigma_{i+1}+\mathrm{J}_{2} \Sigma \sigma_{i} \sigma_{i+2}$ with $\mathrm{J}_{1}, \mathrm{~J}_{2}>0 ; \mathrm{J}_{2}=\mathrm{J}_{1} / 2$

Majumdar-Ghosh mode[

$$
\mathrm{H}=\mathrm{J}_{1} \Sigma \sigma_{i} \sigma_{i+1}+\mathrm{J}_{2} \Sigma \sigma_{i} \sigma_{i+2}
$$

$$
\Phi \approx 1 / 2
$$

Majumdar-Ghosk mode[

$\mathrm{H}=\mathrm{J}_{1} \Sigma \sigma_{i} \sigma_{i+1}+\mathrm{J}_{2} \Sigma \sigma_{i} \sigma_{i+2}$ with $\mathrm{J}_{1}, \mathrm{~J}_{2}>0 ; \mathrm{J}_{2}=\mathrm{J}_{1} / 2$
Ground state:
(1)

Majumdar-Ghosh model

$\mathrm{H}=\mathrm{J}_{1} \Sigma \sigma_{i} \sigma_{i+1}+\mathrm{J}_{2} \Sigma \sigma_{i} \sigma_{i+2}$ with $\mathrm{J}_{1}, \mathrm{~J}_{2}>0 ; \mathrm{J}_{2}=\mathrm{J}_{1} / 2$
Ground state:

After quenching:

Majumdar-Ghosh model

$\mathrm{H}=\mathrm{J}_{1} \Sigma \sigma_{i} \sigma_{i+1}+\mathrm{J}_{2} \Sigma \sigma_{i} \sigma_{i+2}$ with $\mathrm{J}_{1}, \mathrm{~J}_{2}>0 ; \mathrm{J}_{2}=\mathrm{J}_{1} / 2$
Ground state:
(1)

After quenching:

$$
E \geq 2 \quad \text { (even) or } 1
$$

(odd)

Majumdar-Ghosh model

$\mathrm{H}=\mathrm{J}_{1} \Sigma \sigma_{i} \sigma_{i+1}+\mathrm{J}_{2} \Sigma \sigma_{i} \sigma_{i+2}$ with $\mathrm{J}_{1}, \mathrm{~J}_{2}>0 ; \mathrm{J}_{2}=\mathrm{J}_{1} / 2$
Ground state:
(1)

After quenching:
$E \geq 2 \quad($ even $)$ or 1
$E \leq \log 5($ even $)$ or
$\log 3($ odd $)$

Majumdar-Ghosh model

$\mathrm{H}=\mathrm{J}_{1} \Sigma \sigma_{i} \sigma_{i+1}+\mathrm{J}_{2} \Sigma \sigma_{i} \sigma_{i+2}$ with $\mathrm{J}_{1}, \mathrm{~J}_{2}>0 ; \mathrm{J}_{2}=\mathrm{J}_{1} / 2$
Ground state:
(1)

After quenching:

$$
\begin{aligned}
& E \geq 2 \quad(\text { even }) \text { or } 1 \\
& E \leq \log 5(\text { even }) \text { or } \\
& \log 3(\text { odd })
\end{aligned}
$$

Numerically, $\mathrm{E}=2.3$ for 8 spins

Majumdar-Ghosh model

$\mathrm{H}=\mathrm{J}_{1} \Sigma \sigma_{i} \sigma_{i+1}+\mathrm{J}_{2} \Sigma \sigma_{i} \sigma_{i+2}$ with $\mathrm{J}_{1}, \mathrm{~J}_{2}>0 ; \mathrm{J}_{2}=\mathrm{J}_{1} / 2$
Ground state:
(1)

After quenching:

$$
\begin{aligned}
& \mathrm{E} \geq 2 \quad \text { (even) } \\
& \mathrm{E} \leq \log 5 \text { a }
\end{aligned}
$$

Numerically, $\mathrm{E}=2.3$ for \& spons

Area Law

 for frustrated systems

NO Area law

Area law

Outline

1. Understanding entanglement
2. Entanglement in many-body physics
3. What is frustration?
4. Characterizing "classical" frustration in q systems

5. Frustration and Entanglement

I. Area Law
II. Genuine multipartite entanglement
6. End remarks

Main Thesis

$>$ Highly frustrated systems do not follow any area law
Highly frustrated systems r near-maximally genuine multi-party entangled

While

Weakly frustrated systems do not have a similar definite behavior regarding genuine multi-party entanglement.
$>$ Weakly frustrated systems follow the same area law as nonfrustrated systems away from criticality.

Sen(De), US, Dziarmaga, Sanpera, Lewenstein, PRL'08 Jindal, Rane, Dhar, Sen(De), US, PRA '14

Frustrated systems: Area law and Genuine multiparty entangโement

NO Area law
High genuine multiparty entanglement

Area law
No definite genuine multiparty entanglement

More work done

- Adv. Phys. 56, 243 (2007)
- Rev. Mod. Phys. 80, 517 (2008)

Thank you!

Pictures used may not be free, and so do not use them commercially without relevant permissions!

References r incomplete!

