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What do we mean 

by LOCC? 

• Alice makes a measurement and communicates her result to 
Bob (say, by a phone call).  

• Then depending on her result, Bob will make his 
measurement and communicate his result to Alice.  

• And so on. 
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• Quantum states that can be prepared by 

LOCC → Separable states. 

• How do they look like? Mathematically?  

• Separable states: mixtures of products over 

pure states of individual systems. 
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Which “entanglements” can we compute? 

Understanding entanglement 

• Nielsen, Preskill, Wootters et al. 

• Osborne and Nielsen, QIP’02, PRA’02 

• Osterloh, Amico, Falci, Fazio, Nature’02 

 

 

 



• Nielsen, Preskill, Wootters et al. 

• Osborne and Nielsen, QIP’02, PRA’02 

• Osterloh, Amico, Falci, Fazio, Nature’02 
Idea of using entanglement-like concepts 

in quantum many-body phenomena was put forward. 
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N = sum of mod of negative eigenvalues  

in partial transpose of state. 
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entanglement of formation of two-qubit 

states. 

• For pure two-party states, local von 

Neumann entropy is a “good” measure of 

entanglement, and is computable. 

Possible in arbitrary dimensions. 

This sets the stage for the  

QI - many-body interface. 
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• Bipartite states. 

• For mixed two-party states, only 

entanglement of formation of two-qubit 

states. 

• For pure two-party states, local von 

Neumann entropy is a “good” measure of 

entanglement, and is computable. 

Possible in arbitrary dimensions. 

Indeed, two of the main directions of study are 

1. EoF of reduced densities  

of spin-1/2 ground states 

2. Scaling of local entropy  

in ground state partitions 
“Area Law” 
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Multiparty entanglement 

• Many notions available. 

• However, not all r computable. 

a. Geometric measure 

b. Global measure 

c. Generalized geometric measure 
Wei, Goldbart, PRA’03 

Balsone, DellAnno, DeSiene, Illuminatti, PRA’08 

+ …… 
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c. Generalized geometric measure 
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+ …… 

Understanding entanglement 



Multiparty entanglement 

• Many notions available. 

• However, not all r computable. 

a. Geometric measure 

b. Global measure 

c. Generalized geometric measure 

Understanding entanglement 



Multiparty entanglement 

• Many notions available. 

• However, not all r computable. 

a. Geometric measure 

b. Global measure 

c. Generalized geometric measure 

A. Sen(De), US, PRA’10 
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Two-site densities 

Spin-1/2 Chain 

The reduced state is a two-qubit state. 
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  J [(1 + ) S S + (1 - ) S S  ]– a S 
x y y x z 

i i i i+1 i+1 

S are half of Pauli matrices. 
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  J [(1 + ) S S + (1 - ) S S  ]– a S 
x y y x z 

i i i i+1 i+1 

Quantum phase transition at h=1. 
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Quantum XY spin model 

 

 

 

 

 

  J [(1 + ) S S + (1 - ) S S  ]– a S 
x y y x z 

i i i i+1 i+1 

Quantum phase transition at h=1. 

For  = 1: Transverse Ising Model. 
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Linking QI with concepts in quantum statistical 

mechanics and quantum phase transitions.  

    Near QPT in 1D transverse 

Ising model, 2-site 

entanglement remains short 

ranged, while 2-site 

correlation length diverges.  

     

    Entanglement, however, 

does show signs of 

criticality. 

 
 

 

 

 

 

 

 

 
Osterloh, Amico, Falci, & Fazio,  

Nature 2002; Osborne & Nielsen,  

Phys. Rev. A 2002. 
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The prescription: 

1. Find ground state of spin-1/2 system 

2. Remove all spins except two NNs 

3. Find EoF of resulting two-site density 

4. Investigate it wrt the relevant system parameter 

Why ground state? 

Guarantees that there are 

no thermal effects. 
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Two-site densities 

 

The prescription: 

1. Find ground state of spin-1/2 system 

2. Remove all spins except two NNs 

3. Find EoF of resulting two-site density 

4. Investigate it wrt the relevant system parameter 

Why ground state? 

Thermal states, 

time-evolved states 

also considered. 
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The prescription: 

1. Find ground state of spin-1/2 system 

2. Remove all spins except two NNs 

3. Find EoF of resulting two-site density 

4. Investigate it wrt the relevant system parameter 

Why NN? 

In many instances,  

but NOT all, 

NNN and so on 

have little to no entanglement. 
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Multiparty entanglement 

Multiparty entanglement detects QPT 

a. Geometric measure 

b. Global measure 

c. Generalized geometric measure (GGM) 
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Geometric measure detects QPT 

Wei, Das, Mukhopadhyay, Vishveshwara, Goldbart, PRA’05 
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Global measure of multipartite entanglement detects QPT 

deOliviera, Rigolin, deOliviera, PRA’06  
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GGM detects QPT 

A. Sen(De), US, 

1002.1253 
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A. Sen(De), US, 

1002.1253 
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derivative 

A. Sen(De), US, 

1002.1253 
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GGM detects QPT GGM –1/2 

derivative 
anisotropy 

Blue dashes  1 (Ising) 

Pink circles  0.8 

Green dots  0.2 

A. Sen(De), US, 

1002.1253 
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GGM detects QPT GGM –1/2 

derivative 
anisotropy 

Blue dashes  1 (Ising) 

Pink circles  0.8 

Green dots  0.2 

A. Sen(De), US, 

1002.1253 

J_1-J_2 models in 1D & 2D: 

A. Biswas, R. Prabhu, A. Sen(De), US, PRA’14 
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configuration to 

minimize individual 

interaction terms 

J 
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?? From a classical 
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From a quantum 

perspective 

Draw a parallel 

What is frustration? 



From a quantum 

perspective 

Classical frustration: 

spin configuration 

Quantum frustration: GSs 

of  two terms not same 

J 

J 

J 

?? 𝓗 = 𝓗𝒍𝒐𝒄 + 𝓗𝒊𝒏𝒕 

Dawson and Nielsen, PRA 69, 052316 (2004) 
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Classical 

spin configuration 

Quantum 

 non-commutativity 

1 

3 2 

+J |–J -J |+J 

-J 

-J 

1 

2 3 

+J |–J 

-J |+J 

1 

2 3 

-J 

+J |–J 

-J |+J 

𝓗 = 𝓗𝒍𝒐𝒄 + 𝓗𝒊𝒏𝒕 

 𝝍𝒈𝒔 𝒍𝒐𝒄
  𝝍𝒈𝒔 𝒊𝒏𝒕

 

 𝝍𝒈𝒔  

Cannot get optimal spin 

configuration 

TRADE OFF 

GSs of  two terms not same 
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Classical frustration “Frustration degree” 

Sen(De), US, Dziarmaga, Sanpera, Lewenstein, PRL’08 

     Jindal, Rane, Dhar, Sen(De), US, PRA’14 
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part 

Non-Frustrated 

part 

F = avg 
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More work done 

• Adv. Phys. 56, 243 (2007)  

• Rev. Mod. Phys. 80, 517 (2008) 

 

And much more left … 
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