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* |f the state Is shared between two or more parties, the
parties would only be able to act locally.

Allowed operations: LOCC.
* What do we mean by LOCC?

Not this!!
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Bob (say, by a phone call).

» Then depending on her result, Bob will make his
measurement and communicate his result to Alice.

« And so on.



Understanding entanglement

Separable and Entangled states

« Quantum states that can be prepared by
LOCC — Separable states.

« Otherwise — Entangled states.



Understanding entanglement

Separable and Entangled states

« Quantum states that can be prepared by
LOCC — Separable states.

* How do they look like?



Understanding entanglement

Separable and Entangled states

« Quantum states that can be prepared by
LOCC — Separable states.

» How do they look like? Mathematically?



Understanding entanglement

Separable and Entangled states

« Quantum states that can be prepared by
LOCC — Separable states.

» How do they look like? Mathematically?

 Separable pure states: products over pure
states of individual systems.




Understanding entanglement

Separable and Entangled states

« Quantum states that can be prepared by
LOCC — Separable states.

» How do they look like? Mathematically?

« Separable states: mixtures of products over
pure states of individual systems.
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Circa 2000

* Nielsen, Preskill, Wootters et al.
* Osborne and Nielsen, QIP’02, PRA’02
e Osterloh, Amico, Falcl, Fazio, Nature’02
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* In higher dimensions, logarithmic negativity
can be calculated. But it cannot detect
bound entanglement.
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Which “entanglements” can we compute?

* Bipartite states.

* For mixed two-party states, only
entanglement of formation of two-qubit
states.

 For pure two-party states, local von

Neumann entropy 1s a “good” measure of
entanglement, and Is computable.

[ Possible In arbitrary dimensions. }
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Entanglement in many-body physics &
Quantum Phase Transitions

 Transitions at zero temperature.
 Implying, transition not temp. driven.

* Driven by system parameter, like a
magnetic field.
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Quantum Phase Transitions

Typical situation:

« H=H(int) + a H(field)

« Ground state of H < guarantees T=0
* GS depends on “a”.

¢¢ 9%

e “a” can be changed.
» Nonanalyticity appears in some physical

(1P

quantity as “a” 1s changed.
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Quantum XY spin model

I 1+1 i i+
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Entanglement in many-body physics

Linking QI with concepts in guantum statistical
mechanics and guantum phase transitions.

Near QPT in 1D transverse
Ising model, 2-site
entanglement remains short
ranged, while 2-site 2
correlation length diverges.

05—

0.5 -12f

Entanglement, however, R T
. A

does show signs of Osterloh, Amico, Falci, & Fazio,

criticality. Nature 2002; Osborne & Nielsen,

Phys. Rev. A 2002.
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Two-site densities

Why NN?
The prescription:

2. Remove all s|

4. Investigate It
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- GGM detects QPT
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GGM detects QPT
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GGM detects QPT
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Entanglement in many-body physics
GM detects

JSSMEs GO cetects QPT

-0.05

d & 0 ¥
e ®

]
..

J 1-J 2 modelsin 1D & 2D:
A. Biswas, R. Prabhu, A. Sen(De), US, PRA’14

aniSOu upy
Blue dashes = 1 (Ising)
Pink circles - 0.8

A. Sen(De), US,
1002.1253

Green dots = 0.2

0

0.5 1.8



Outline

1. Understanding entanglement

2. Entanglement in many-body physics

3. What is frustration?

4. Characterizing “classical” frustration in q systems

5. Frustration and Entanglement
|. Area Law
[1. Genuine multipartite entanglement

6. End remarks



What 1s frustration?



What 1s frustration?

From a classical
perspective



What 1s frustration?

From a classical
perspective

Consider an Ising
model:

fi‘[z]Zaiaj; J>0



What 1s frustration?

. 29
From a classical F

perspective

Consider an Ising
model: ]

fi‘[z]Zaiaj; J>0




What 1s frustration?

From a classical
perspective




What 1s frustration?

From a quantum
perspective



What 1s frustration?

From a quantum
perspective




What 1s frustration?

From a qguantum
perspective

Classical frustration: Quantum frustration: GSs
spin configuration of two terms not same

' ' H=Hp+Hiy

Dawson and Nielsen, PRA 69, 052316 (2004)
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What 1s frustration?

Classical Quantum
spin configuration non-commutativity
® ®
1 1 H=Hipc+Hipn
J 1+ + 1+ J J1+4] / \
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1 ~ [/
o PN TRADE OFF
@lﬁﬂl_]\‘ ® ‘l'
[¥gs)

Cannot get optimal spin

&) GSs of two terms not same
configuration



Outline

1. Understanding entanglement
2. Entanglement in many-body physics

3. What is frustration?

4. Characterizing “classical” frustration in q systems

5. Frustration and Entanglement
|. Area Law
[1. Genuine multipartite entanglement

6. End remarks



Characterizing “classical” frustration
In g systems




Characterizing “classical” frustration
In g systems

Classical frustration



Characterizing “classical” frustration
In g systems

Classical frustration > “Frustration degree”

Sen(De), US, Dziarmaga, Sanpera, Lewenstein, PRL’08
Jindal, Rane, Dhar, Sen(De), US, PRA’14
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In q systems
Frustration degree
« Given H, |I'),
replace one-body, two-body etc. in H by Ising ones,
l.e. by ¢“; or ¢%6% etc.
Find H!

Frustrated Non-Frustrated

H'= 2 HY +2 Hiy

>, (TJH4{D)

b = av
Y S KOH D)
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............. o—@ @ 0@

1 2 3 4 5
Block entanglement: E(|¥), .n.)

E(¥)L.n-0)= So) w

independent of block-size
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Block entanglement: E(|¥), .n..)
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Main Thesis

»Highly frustrated systems do not follow area law
while

»Weakly frustrated systems follow same area law as
nonfrustrated systems away from criticality

Sen(De), US, Dziarmaga, Sanpera, Lewenstein, PRL’08
Jindal, Rane, Dhar, Sen(De), US, PRA’14
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Long range Ising model
Majumdar Ghosh model

Shastry-Sutherland model

Ising chain with NN interactions
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Cooling/Quenching Method &

> Initial state:
D)in= )1 ® W)@ [¥):3 @ ... ® [y)x

» Project |®)i, onto the ground state space of
the model.

D)= (W) [Din

» Calculate Enjo-n(|D)s).

» Maximize Enyp:n2(|D)s ) over all choices of the
Initial state.
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Long range Ising mo ré[ (&
O=~1
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Area law

Clear departure from area law

»Long range Ising model: “Infinite” dimensions

> Possible area law: k1M withd —>o

Note: Effect due to frustration.
Not due to long-range interactions.
Ising with J<O : constant block entanglement.




Area Law
for frustrated systems

Long range Ising model

Majumdar Ghosh model

Shastry-Sutherland model

Ising chain with NN interactions
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Majumdar-Ghosh model

H:Jl ZGiGiﬂ +‘J2 ZGiGi+2 with ‘]1’ ‘]2>O; ‘]2: ‘Jl/2



H:‘]l ZGiGi+1 +vJ2 ZGiGi"'Z

Majumdar-Ghosh model &

= {

O ~1/2




H=J, 20,0141 +J, 20,64, With J;, J,>0; J,=J,/2
Ground state:

(1)
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H=J, 20,0141 +J, 20,64, With J;, J,>0; J,=J,/2
Ground state:

(1)

After quenching:
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H=J, 20,0141 +J, 20,64, With J;, J,>0; J,=J,/2
Ground state:

(1)

After quenching:
E >2 (even) or 1  (odd)
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H=J, 20,0141 +J, 20,64, With J;, J,>0; J,=J,/2
Ground state:

(1)

After guenching:
E >2 (even) or 1 (odd)
E <log5 (even) or log 3 (odd)



H=J, 20,0141 +J, 20,64, With J;, J,>0; J,=J,/2
Ground state:

(1)

After guenching:
E >2 (even) or 1 (odd)
E <log5 (even) or log 3 (odd)

Numerically, E = 2.3 for 8 spins



Majumdar-Ghosh model &

H=J, 20,0141 +J, 20,64, With J;, J,>0; J,=J,/2
Ground state:

(1)

After quenching:
E >2
E <lo

(even)

Numerically, E = 2.3



Area Law
for frustrated .systems

:> NO Area law
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for frustrated .systems

:> NO Area law

:> Area law




Outline

1. Understanding entanglement
2. Entanglement in many-body physics

3. What is frustration?

4. Characterizing “classical” frustration in q systems

5. Frustration and Entanglement

|. Area Law
[1. Genuine multipartite entanglement

6. End remarks



Main Thesis

»Highly frustrated systems do not follow any area

law
Highly frustrated systems r near-maximally genuine multi-party

entangled
While
Weakly frustrated systems do not have a similar definite

behavior regarding genuine multi-party entanglement.

»Weakly frustrated systems follow the same area
law as nonfrustrated systems away from criticality.

Sen(De), US, Dziarmaga, Sanpera, Lewenstein, PRL’08
Jindal, Rane, Dhar, Sen(De), US, PRA’14



:> NO Area law

High genuine multiparty
entanglement

:> Area law

No definite genuine

>
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? multiparty entanglement
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More work done

« Adv. Phys. 56, 243 (2007)
* Rev. Mod. Phys. 80, 517 (2008)
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Pictures used may not be free, and so do not
use them commercially without relevant
permissions!

References r incomplete!



