Magnetic Neutron Scattering:

Elucidating Structure and Dynamics of Highly Frustrated Magnets

K.A. Ross ^{1,2} E. Kermarrec¹ J.P. Clancy 1,3 J.P.C. Ruff ^{1,4} K. Fritsch ^{1,5} H.A. Dabkowska¹ M.M.P. Couchman¹ J. Zhang¹ D.D. Maharaj¹ J. Gaudet¹ J.B. Kycia⁶ D. Pomaranski⁶ M.A. White ⁷

L. Savary ⁸ L. Balents ⁸ M.J.P. Gingras ⁶ Z. Zhao ⁶ R.R.P. Singh ⁹

- ¹ McMaster University
 ² Johns Hopkins University
 ³ University of Toronto
 ⁴ CHESS, Cornell University
 ⁵ Helmholz Zentrum Berlin
 ⁶ University of Waterloo
 ⁷ Dalhousie University
- ⁸ Kavli Institute for Theoretical
- Physics, UC Santa Barbara
- ⁹ University of California, Davis

Bruce D. Gaulin McMaster University

Brockhouse Institute for Materials Research

MCMAS

235U + n Joint Control of Control

no charge s=1/2 massive: mc²~1 GeV

neutrons:

How do we produce neutrons

Fission

- chain reaction
- continuous flow
- 1 neutron/fission

Spallation

- no chain reaction
- pulsed operation
- 30 neutrons/proton

Development of Neutron Science Facilities

(Updated from Neutron Scattering, K. Skold and D. L. Price: eds., Academic Press, 1986)

Clifford G. Shull, MIT, Camebridge, Massachusetts, USA, receives one half of the 1994 Nobel Prize in Physics for development of the neutron diffraction technique.

T > Tc

T < Tc

Neutrons have *mass* so higher energy means faster – lower energy means slower

 $v (km/sec) = 3.96 / \lambda (A)$

4 A neutrons move at ~ 1 km/sec
DCS: 4 m from sample to detector
It takes 4 msec for elastically

scattered 4 A neutrons to travel 4 m

- msec timing of neutrons is easy
- $\delta E / E \sim 1-3 \%$ very good !

We can measure a neutron's energy, wavelength by measuring its speed

Life Cycle of a New Material

Real Pyrochlores: playgrounds for frustration

Differences in Anisotropy is very important

	Single Ion Anisotropy	Interactions	Ground state
Ho, Dy	Ising	FM	spin ice
Tb	Ising	AFM	spin liquid
Gd	Heisenberg	AFM	partial order
Er	XY	AFM	"order by disorder"
Yb	XY	FM	"quantum spin ice"

Neutron Diffraction:

Dipole moment of the neutron interacts with the magnetic field generated by the electron

Dipole field due to orbital currents

Dipole field due to Spin of the electron(s)

Magnetic neutron scattering cross section:

 $d^2\sigma/d\Omega dE' = (\gamma r_0)^2/(2\pi\hbar) k'/k N\{1/2 g F_d(\kappa)\}^2$

×
$$\Sigma_{\alpha\beta}$$
 ($\delta_{\alpha\beta} - \kappa_{\alpha}\kappa_{\beta}$) $\Sigma_{|} \exp(i\kappa \cdot l)$

Polarization factor: neutrons only sense moments perp to Q

Magnetic form factor

- × $\int \langle \exp(-i\kappa \cdot u_0) \rangle \exp(i\kappa \cdot u_1(t)) \rangle$
- × $<S_0^{\alpha}(0) S_1^{\beta}(t) > \exp(-i\omega t) dt$

T_C

I.I T_C

0.9 T_C

 $\mathbf{H} = 2\mathbf{J} \ \Sigma_{ij} \ \mathbf{S_i} \cdot \mathbf{S_j}$

Neutron diffraction study of conventional magnetic order

Elastic Bragg scattering

CsCoBr₃

critical diffuse scattering

$$\frac{d\sigma(\vec{Q})}{d\Omega} = \frac{\chi(\vec{Q}_{ord})}{1 + \frac{q_a^2 + q_b^2}{\kappa_{ab}^2} + \frac{q_c^2}{\kappa_c^2}},$$

Spin Waves as elementary excitations in ordered magnets

Figure 9 A spin wave on a line of spins. (a) The spins viewed in perspective. (b) Spins viewed from above, showing one wavelength. The wave is drawn through the ends of the spin vectors.

Time of Flight Neutron Scattering

"Disk Chopper Spectrometer" (DCS)

@ NIST Center for Neutron Research

Phonon scattering at large Q

Magnetic scattering at small Q

La_{2-x}Ba_xCuO₄

Real Pyrochlores: playgrounds for frustration

Differences in Anisotropy is very important

	Single Ion Anisotropy	Interactions	Ground state
Ho, Dy	Ising	FM	spin ice
Tb	Ising	AFM	spin liquid
Gd	Heisenberg	AFM	partial order
Er	XY	AFM	"order by disorder"
Yb	XY	FM	"quantum spin ice"

Spin Ice Physics

freedom of choice for each tetrahedron leads to a macroscopic degeneracy: NO Long Range Order

 [1-10] Magnetic field should decompose pyrochlore lattice into polarized α chains (red chains) and decoupled qausi-1D β chains (blue chains).

K. A. Ross, J. P. C. Ruff, C. P. Adams, J. S. Gardner, H. A. Dabkowska, Y. Qiu, J. R. D. Copley, and B. D. Gaulin, Phys. Rev. Lett. 103, 227202 (2009)

 $Yb_2Ti_2O_7$

"Time of Flight" data

Can slice through this volume in several directions

$Yb_2Ti_2O_7$

Field Induced Order

No structure to inelastic scattering

Spin Wave Excitations

E (meV)

Collaboration

