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Shastry Sutherland Model
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Shastry Sutherland Model

● J'=0 :  isolated dimers

● J' = J/2 : exactly solvable limit  
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Shastry Sutherland Model

● J'=0 :  isolated dimers

● J' = J/2 : exactly solvable limit  

J
J'

ground state is an 
arrangement of singlets on 

dimers

Realized in SrCu2(BO3)2 :
Cu3+ (3d9)  S=1/2 moments 

J'/J
dimer solid ground state

SrCu2(BO3)2

~0.7~0.65
Corboz and Mila, PRB 2013 & 

references therein
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Excitations from neutron scattering

Flat band of single 
triplet excitations

Two triplet 
excitations

Momoi and Totsuka, PRB 2000

dimer Hilbert space

Kageyama et al, PRL (2000)

triplets
singlet

● Localized triplets ⇒ flat triplet band(s)

● Spin rotational symmetry ⇒ triply degenerate triplet band

– Weak triplet hopping possible by 6th order process



  

Role of Anisotropies

● Precise measurements of triplon dispersion

– neutron scattering 

– Electron Spin Resonance (ESR)

– Infrared absorption

● Triplet degeneracy broken

● Weakly dispersing bands, bandwidth/gap ~ 10%

➔ Anisotropies arising from Dzyaloshinskii Moriya 
(DM) interactions

Gaulin et al, PRL (2004)

Rõõm et al, PRB (2004)

Nojiri et al, JPSJ (2003)



  

Minimal Hamiltonian

● DM coupling allowed by lattice symmetries

● Intra-dimer coupling D is in-plane

● Inter-dimer couping D' is predominantly out of plane; only one in-plane 
component (as shown) enters in our treatment 

● We use J=722 GHz, J' = 468 GHz, D∥
* = 20 GHz, D'⊥ = -21 GHz

– Reproduce ESR data within bond operator theory†

– Minor corrections to parameters should not affect topological properties

Cépas et al, PRL (2001)
Romhányi et al, PRB (2011)



  

Bond operator theory

D D

● D, D', hz ≪ J, J'

– Keep up to linear order

● Small O(D2) magnetic moments on each dimer

● Three 'triplon' excitations: use a bosonic representation



  

Dynamics of triplons
● Hopping like processes 

● Pairing like processes - neglect*

– Involve two triplet excitations

– Do not affect triplon energy to O(D,D')

– Negligible in the dilute triplon limit when T ≪ J

● Neglect 3-particle and 4-particle interactions, assuming dilute triplons

J', D'



  

Dynamics of triplons
● Hopping like processes 

● Pairing like processes - neglect*

– Involve two triplet excitations

– Do not affect triplon energy to O(D,D')

– Negligible in the dilute triplon limit when T ≪ J

● Neglect 3-particle and 4-particle interactions, assuming dilute triplons

● Unitary transformation renders the two dimers equivalent

– Square lattice: each site hosts three flavours of bosons

J', D'



  

Hopping Hamiltonian

● L is a vector of spin-1 (3x3) matrices

satisfying [Lα,Lβ] = i εαβγ Lγ and

● dk is a three dimensional vector, a function of momentum

● Three eigenvalues for every k: J - |dk|, J, J + |dk|

● Reproduces ESR peaks with our parameters



  

Spin-1/2 analogy: two band problem

● Any 2x2 Hermitian matrix is of the form: 

● σ  are spin-1/2 Pauli matrices; dk is a 3 dimensional vector

● Eigenvalues: J+|dk|/2, J-|dk|/2

– Each eigenvalue forms a band over the Brillouin zone

● If dk =0 at a point, both bands touch ⇒ Dirac point

● If dk is never zero, bands are well separated

– Topology characterized by Chern number

– Chern numbers are +Nskyrmion, -Nskrymion



  

Spin-1/2 analogy: Topology in k-space

● Brillouin zone (BZ) is a 2D torus

● dk : 3D vector field defined at each point in the BZ

● Topology classified by skyrmion number – maps to Chern number of bands

kx

ky

One skyrmion
Chern numbers +1, -1

No skyrmion
Chern numbers 0, 0



  

Spin-1 realization: triplons in SrCu2(BO3)2

● Not the most general 3x3 unitary Hamiltonian!

● Eigenvalues: J - |dk|, J, J + |dk|

– One flat band with energy J

● When dk is zero, three bands touch and form a spin-1 Dirac cone

● If dk never vanishes on the BZ, we have three well-separated bands 

– Chern numbers are -2Nskyrmion, 0, 2Nskyrmion

– Spin-1 nature of Hamiltonian naturally gives Chern numbers ∓2



  

Magnetic field tuned topological transitions

hz=0 hz=hc ∝D'
hz



  

Magnetic field tuned topological transitions

hz=0 hz=hc ∝D'
hz
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Skyrmions in momentum space

0 hc ∝D' hz

-hc

... -1 1 00

● Associate each momentum in the BZ with a 3D dk vector

– a closed, orientable 2D surface embedded in 3D

– Composed of two disconnected chambers touching along line nodes

– Inner surface of upper chamber smoothly connects to outer surface of 
lower chamber

● If surface passes through origin, dk = 0 ⇒ gap closes in a spin-1 Dirac point

● Origin is monopole of Berry flux; Chern number is total flux through surface



  

Spin-1 Dirac point

hz=0 hz=hc ∝D'
hz

ESR IR absorption



  

Protected edge states

● Edge states are protected by topology

● Even with interactions, protected against damping by energy conservation

Zhitomirsky and Chernyshev, RMP (2013)



  

Thermal Hall effect
● Chern bands possible when time reversal is broken

● Electronic systems → integer Hall effect

– Doping places Fermi level in gap

– Transverse current carried by edge states

● Bosonic  systems: no Fermi level, cannot fully populate a band

– Not electrical, but heat currents 

● Chern bands can be populated thermally

– Wavepacket in a Chern band has rotational motion

– Magnon Hall effect in ferromagnets: DM coupling/dipolar interactions
Sundaram and Niu, PRB 1999

Matsumoto and Murakami, PRB, PRL 2011

thermal gradient

Magnetic 
field

transverse 
heat current



  

Thermal Hall signal

● Within our assumptions, Hall signal increases monotonically with temperature

● At 5 K, neutron scattering shows very little broadening of triplon mode →  
interactions can be ignored

● Even at ~10 K, band occupation ~ 5% → justifies our quadratic treatment

Matsumoto and Murakami, PRB & PRL 2011



  

Bosonic Analogues of IQHE

Photons Photonic crystals with Faraday effect Raghu et al., PRA 2008

Phonons Raman spin-phonon coupling Zhang et al., PRL 2010

Magnons Kagome ferromagnets with DM Katsura et al., PRL 2010

● SrCu2(BO3)2 is the first quantum magnet to show this physics

● Key ingredient is Dzyaloshinskii Moriya interaction
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Effect of next nearest neighbour triplet hopping
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