Frustration-driven magnetic order on the Shastry-Sutherland lattice

Pinaki Sengupta Nanyang Technological University Singapore

Workshop on Current Trends in Frustrated Magnetism Jawaharlal Nehru University, New Delhi

10th Feb., 2015

Collaborators

Theory:

- Keola Wierschem, NTU
- Zhifeng Zhang, NTU
- Naoki Kawashima, ISSP, U. Tokyo
- Takafumi Suzuki, U. Hyogo

Expt.:

- Christos Panagopoulos, NTU
- Sunku Sai Swaroop, NTU
- Tai Kong, Ames Lab, Iowa
- Paul Canfield, Ames Lab, Iowa

Outline

- Rare earth tetraborides a "new" family of Shastry-Sutherland compounds
- Generalized Shastry-Sutherland model
- Magnetization plateaus in TmB₄
- Spin supersolid in the generalized SSM
- Proliferation of plateaus in the generalized SSM
- Conclusion

"Other" realizations of the SSL model

- ❖ Rare earth tetraborides: TmB₄, ErB₄, HoB₄, DyB₄, GdB₄, TbB₄

 ❖ R₂T₂M: Yb₂Pt₂Pb, Ce₂Pt₂Pb
 - Weakly coupled layers
 - □ R³⁺ ions arranged in SSL geometry

Mata's. et.al., J. Phys: Conf. Ser., 200, 032041 (2010)

Magnetization plateaus in RB₄

- Ground state has long range magnetic ordering in most of the rare earth tetraborides
- Field-induced plateaus observed in all members
- Sequence of plateaus differ across the family
- Multi-step melting of magnetic order observed in many RB₄ compounds

HoB₄

2

Magnetic Field (Tesla)

0.0

B|| (001)

TECHNOLOG

Rare earth tetraborides

Generic features

Low saturation field (~ 10T) – low-T neutron scattering possible

Span wide parameter regime including magnetic ground state at zero field

- Higher spins, single ion anisotropies => effective exchange anisotropy
- Additional interactions

Extensive insight into the interplay of competing strong interactions and geometric frustration in the Shastry-Sutherland lattice

Metallic ground state – interaction of itinerant electrons with localized magnetic moments in a frustrated configuration – interesting magneto-electric effects

Magnetization Plateaus in TmB₄

Stripe superstructures modulate underlying short-range structures

K. Siemensmeyer et. al., PRL 101, 177201 (2008)

Low energy effective model

- > Large magnetic moment for Tm^{3+} : S = 6
- > Large single-ion anisotropy: $-D(S_i^z)^2$, $D_J \approx 5$

Effective low energy model involving the lowest 2 levels

$$\begin{split} H &= \sum_{\langle i,j \rangle} J_{ij}^z S_i^z S_j^z + J_{ij}^{xy} (S_i^x S_j^x + S_i^y S_j^y) \\ J_{ij}^{xy} < 0 \qquad J_{ij}^z \gg |J_{ij}^{xy}| \quad \text{Ising limit} \\ \end{split}$$

Ferromagnetic exchange term – sign problem in QMC simulations alleviated

Stochastic Series Expansion QMC algorithm used for simulation

Generalized Shastry-Sutherland model

- S=1/2 XXZ model with large Ising anisotropy
- J and J' along the SSL lattice axes

Longer range interactions mediated by itinerant electrons

- NNN interaction (J₃) along the diagonals of the plaquettes with no J
- Additional 3rd neighbor interaction J₄
- Same anisotropy for all interactions.
- Rich variety of magnetic phases
- Potentially realized in the different members of the rare-earth tetraborides

Low energy effective model for TmB₄

Start with the generalized Shastry Sutherland model with J and J'

inconsistency with experimental observation

<u>Ising limit</u>: Extended 1/3 plateau followed by a direct transition to full saturation

TmB₄: Extended ½ plateau, no 1/3 plateau

<u>Need addítional interactions</u>

Longer range RKKY interactions mediated by itinerant electrons

- > AFM J_3 necessary to account for the appearance of $\frac{1}{2}$ plateau
- > FM J_4 necessary to explain the suppression of 1/3 plateau

Together they explain the principal plateau structure observed in TmB₄.

Suzuki, et. al., PRB <u>80</u>, 180405 (2009); PRB <u>82</u>, 214404 (2010)

Modeling TmB₄

- ✓ Correct critical values for m/m_s=1/2 plateau reproduced
- ✓ Correct saturation field reproduced
- No evidence of lower magnetization plateaus for the current model
- ✓ No evidence for "hysteresis" effects.

Suzuki, et. al., PRB 80, 180405 (2009); PRB 82, 214404 (2010)

Fractional plateau in TmB₄

- J1

J2

13

3

1/2 plateau

Schematic spin configuration

Neutron scattering data Michimura, et.al., 2009

Magnetization in generalized SSM

- Varied sequence of magnetization plateaus as the parameters are varied
- Fertile framework for investing frustration drivn field induced magnetic phases – plateaus, spins-supersolid (?)
- Potentially realizable in the different members of the rare earth tetraboride family of compounds
- Help identify dominant interactions driving observed magnetic phases

Magnetization plateaus in extended SSM

- \succ Effect of J_3 explored in detail
- \succ ZF: (π , π) AFM order for FM and weak AFM J_3 in the Ising limit
- \succ (π ,0) AFM order for moderate to strong AFM J_3 – observed in ErB4
- 1/3 plateau persists to finite J_3
- $\frac{1}{2}$ plateau appears for any $J_3 \neq 0$
- Finite exchange interactions induce superfluidity at boundary between plateaus

Columnar AFM order

K. Wierschem and P.S., PRL **110**, 207207 (2013)

Spin supersolid in extended SSM

- Spin supersolid GS observed at densities close to, but less that half-filling
- > Longitudinal AFM order at $(\pi, 0)$ and (π, π)
- > Transverse AFM order at (π,π)
- Simple mechanism based on delocalization of holes in the half-plateau by 1st order process
- Magnetization behaviour qualitatively similar to ErB4, but spin SSOL phase not yet reported

Delocalization of a single flipped spin at the ½ plateau

NANYANG TECHNOLOGICAL UNIVERSITY

K. Wierschem and P.S., PRL 110, 207207 (2013)

Magnetic phases in generalized SSM

- Inclusion of J₄ changes plateau sequence significantly
- > AFM J_3 and J_4 destabilises the $\frac{1}{2}$ plateau – emergence of the 5/9 plateau
- Different structures for same plateau realised for different parameters
- Spin-SSOL stablised over extended parameter ranges

Plateau sequence in the Ising limit for finite J_4

Understanding plateaus in generalized SSM

- Explain spin textures at plateaus in terms of a plaquette unit cell
- Construct a "pinwheel" around a square with no diagonal bond
- Many different configurations possible (for Ising spins)
- Local dimer states determine nature of spin modulation
- Many possibilities for same plaquette magnetic moment
- Leads to multiple distinct plateaus with same magnetization
- Possible because of additional interactions
- Stable for finite exchange Confirmed by QMC simulations in XXZ model

Electronic transport in rare earth tetraborides

- Itinerant electrons in rare earth tetraborides couple to local moments
- Electronic transport affected significantly by underlying magnetic texture
- Study within the framework of Shastry Sutherland Kondo lattice model (SSKLM)
- Control electronic transport by applied magnetic field and magnetism by driving current
- Small change in applied magnetic field changes magnetic structure interesting magneto-electric phenomena

Conclusions

- Interplay between geometric frustration, strong interaction and high magnetic field results in many novel quantum phases on the Shastry-Sutherland lattice
- Rare earth tetraborides present experimental realizations of many of these phases
- Metallicity makes these quantum magnets even more interesting
- Magnetic phases explored in great detail transport promises new phases and phenomena

