Workshop on current trends in frustrated magnetism, 9-13 Feb 2015, JNU

Spin-liquid Behaviour in Sc₂Ga₂CuO₇

Avinash V. Mahajan

GENERAL THEME OF OUR WORK

- Explore systems for novel magnetism
- Low dimensional, frustrated magnets and spinliquid behaviour
- 3d/4d/5d systems... strong spin-orbit coupling
- Characterisation...structure, $\chi(T)$, $C_P(T)$, NMR

Here, I will focus on Sc₂Ga₂CuO₇

Magnetic Frustration

Balents, KITP

** Local moments: Curie-Weiss law at high T

$$\chi \sim \frac{A}{T - \Theta_{CW}}$$

- ** Frustration parameter: $f = |\Theta_{CW}|/T_N$
 - * f>>1: wide regime $T_N < T < |\Theta_{CW}|$

Few examples:

Triangular: NiGa₂S₄, Ba₃CuSb₂O₉

Kagome: ZnCu₃(OH)₆Cl₂, SrCr_{9p}Ga_{12-9p}O₁₉

Hyperkagome: Na₄Ir₃O₈

Pyrochlore: Y₂Mo₂O₇, Ho₂Ti₂O₇

STRUCTURE OF Sc₂Ga₂CuO₇

Cu PLANE AND Ga BI-PLANE

X-RAY AND NEUTRON DIFFRACTION (PSI)

- \times Small amts of impurities....Sc₂O₃~1.2 %, CuGa₂O₄~0.5%
- * Cu-Ga antisite disorder expected due to their similar ionic sizes.
- Due to similar scattering lengths of Cu and Ga (in both XRD and ND), refinements are very similar for various occupancies
- * The (0, 0, 0.25) planes are nearly fully Ga (10-15% Cu). The biplanes are an equal mix.

ACTUAL STRUCTURE

MAGNETIC SUSCEPTIBILITY

 μ_{eff} = 1.79 μ_{B} θ ~ -50 K No ZFC/FC bifurcation

MAGNETISATION ISOTHERMS

⁷¹Ga NMR (AMES LAB)

71Ga AND 45Sc SPIN-LATTICE RELAXATION RATE

Slowing down of fluctuation frequency of Cu spins

HEAT CAPACITY (MPICPTS DRESDEN)

ANALYSIS OF HEAT CAPACITY

- Subtract data at different fields from each other (removes the lattice and any field independent contribution)
- Fit such data to a combination of two Schottky terms
- Obtain (i) the Schottky gap for various fields and the (ii) fraction of spins which contribute (fixed to 10% in our case)
- Fit high-T data to a combination of Einstein and Debye terms... extrapolate to low-T
- \star Subtract Schottky and lattice part from the measured data to obtain the magnetic contribution C_m .

LATTICE HEAT CAPACITY

1 Debye + 3 Einstein with weights 1:1:4:6 Entropy change only about 20% of the value for ordered $S = \frac{1}{2}$ system Even lower at higher fields.

MAGNETIC HEAT CAPACITY

Broad max around 2-4 K Similar max seen in other frustrated systems $NiGa_2S_4$, $Na_4Ir_3O_8$, $Ba_3CuSb_2O_9$, $Ba_3NiSb_2O_9$

POWER LAW BEHAVIOUR

Conclusion

- •Sc₂Ga₂CuO₇ has "triangular" Cu planes with some Ga/Cu disorder
- Large Curie-Weiss $\theta = -50 K$ but no ordering/freezing down to 50 mK
- •NMR susceptibility follows HTSE for a Heisenberg triangular system with $J \sim 40~\text{K}$
- ■Slowing down of Cu spin fluctuations below 2 K as T^{2.2}
- •Magnetic heat capacity follows power law (T^2) at low-T for H > 90 kOe
- •Field induced suppression of the magnetic excitations at low-T at lower fields
- ■We suggest a quantum spin liquid ground state for Sc₂Ga₂CuO₇

Collaboration and Funding

IIT Bombay:Ramender Kumar, B. Koteswararao MPICPfS Dresden: P. Khuntia, M. Baenitz Ames Lab ISU: P. Khuntia, Yuji Furukawa EPFL/PSI: P. Freeman, H. Ronnow, Denis Sheptyakov

Indian Institute of Technology Bombay Department of Science and Technology, India Indo-Swiss Joint Research Programme