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Symmetry breaking transitions: Generalities

I Symmetry-breaking state characterized by long-range
correlations of “order-parameter” Ô

I phenomenological Landau free energy density F [Ô]

Expanding F in powers of Ô (symmetry allowed terms)
I Neglecting derivatives (fluctuations):

phase transition→ change in minimum of F



Fluctuation effects at continuous transitions:

I More complete description of long-wavelength physics:
Include (symmetry allowed) gradient terms in F

I In most cases: Corrections to mean-field exponents
I In rare cases: Fluctuation-induced first-order behaviour



Symmetries are (usually) decisive:

I Transformation properties of Ô determine nature of continuous
transition



In this talk...

I Two well-known scenarios for continuous melting of
three-sublattice order in frustrated triangular and Kagome-lattice
easy-axis antiferromagnets:
Two-step melting with intermediate power-law ordered phase
with power-law exponent η(T) ∈ ( 1

9 ,
1
4 )

OR
Three-state Potts transition

I Main message of talk—
Thermodynamic signature of two-step melting process
distinguishes between the two kinds of continuous transitions



Frustrated easy-axis antiferromagnets

I Easy-axis n and triangular motifs...

?

+n

−n



Wannier’s triangular lattice Ising antiferromagnet

I HIsing = J
∑
〈ij〉 σ

z
iσ

z
j on the triangular lattice

I T → 0 limit characterized by power-law correlations:
〈σz

rσ
z
0〉 ∼

cos(Q·r)
r1/2

Incipient order at three-sublattice wavevector Q = (2π/3, 2π/3)

Stephenson (1964)
Power-law spin-liquid in the T → 0 limit



Lattice-gas models for monolayers on graphite

I Three-sublattice long-range order of noble-gas monolayers on
graphite
HJ1J2 = J

∑
〈ij〉 σ
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Long-range three-sublattice ordering (wavevector Q) at low
temperature
D. P. Landau (1983)



Prototypical example of order-by-quantum fluctuations

I HTFIM = J
∑
〈ij〉 σ

z
iσ

z
j − Γ

∑
i σ

x
i on the triangular lattice

Long-range order at three-sublattice wavevector Q
I Equivalent: Plaquette-ordered valence-bond-solid state of

honeycomb lattice quantum dimer model
Moessner, Sondhi, Chandra (2001), Isakov & Moessner (2003)



Ferri vs antiferro three-sublattice order
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Ferri vs antiferro order distinguished by the choice of phase θ
Ferri: θ = 2πm/6, Antiferro: θ = (2m + 1)π/6 (m = 0, 1, 2 . . . 5)



S = 1 antiferromagnets with single-ion anisotropy

I HAF = J
∑
〈ij〉
~Si ·~Sj − D

∑
i(Sz

i )
2 on triangular lattice

I Low-energy physics for D� J:
Hb = − J2

D

∑
〈ij〉(b†i bj + h.c.) + J

∑
〈ij〉(ni − 1

2)(nj − 1
2) + . . .

I Low-temperature state for D� J: “supersolid” state of hard-core
bosons at half-filling on triangular lattice with unfrustrated
hopping t = J2/D and frustrating nearest-neighbour repulsion
U = J

I Implies: Coexisting three-sublattice order in Sz and
“ferro-nematic” order in ~S2

⊥ (KD & Senthil 2006)
(Simple easy-axis version of Chandra-Coleman (1991)
“spin-nematic” ideas)



Is three-sublattice ordering of Sz in HAF ferri or
antiferro?

I Natural expectation: Quantum fluctuations induce antiferro order
→
Ordering will be antiferro three-sublattice order (like transverse
field Ising antiferromagnet)
e. g. Melko et. al. (2005)



QMC evidence: Ferri three-sublattice order of Sz

-0.005 0 0.005

δρ=ρ−1/2

0

0.1

(δ
ρ

)

β=20(a)    U=10, L=48 , 

P

Heidarian and KD (2005)



Ising models for “Artificial Kagome-ice”

I HKagome = J
∑
〈ij〉 σ

z
iσ

z
j − J1

∑
〈〈ij〉〉 σ

z
iσ

z
j − J2 . . .

I Only nearest-neighbour couplings→ classical short-range spin
liquid (Kano & Naya 1950)

I Further neighbour couplings destabilize spin liquid→
three-sublattice order at low T (Wolff & Schotte 1988)

I “Artificial Kagome-ice: Moments Mi = σz
i ni

(ni at different sites non-collinear)
Expt: Tanaka et. al. (2006), Qi et. al. (2008), Ladak et. al.
(2010,11)
Theory: Moller, Moessner (2009), Chern, Mellado,
Tchernyshyov (2011)



Three-sublattice order on the Kagome lattice
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Ferri vs antiferro distinguished by the choice of phase θ
Ferri: θ = 2πm/6, Antiferro: θ = (2m + 1)π/6 (m = 0, 1, 2 . . . 5)



Landau-theory for melting of three-sublattice order

I F = K|∇ψ|2 + r|ψ|2 + u|ψ|4 + λ6(ψ6 + ψ∗6) + . . .

Connection to physics of six-state clock models
Z =

∑
{pi} exp[

∑
〈ij〉 V( 2π

6 (pi − pj))]

Each pi = 0, 1, 2, ...5
V(x) = K1 cos(x) + K2 cos(2x) + K3 cos(3x)

Cardy (1980)



Melting scenarios for three-sublattice order

I Analysis (Cardy 1980) of generalized six-state clock models
→ Three generic possibilities of relevance here:
Two-step melting, with power-law ordered intermediate phase
OR
3-state Potts transition
OR
First-order transition (always possible!)

Both these continuous melting scenarios realized in one or more
examples on triangular and kagome lattices



Nature of melting transition in triangular lattice
supersolid?

I Clearly: Nature of melting transition not a priori obvious
I Prediction of Boninsegni & Prokofiev (2005)

Three-state Potts transition
Prediction based on argument about relative energies of
different kinds of domain walls
hard to get right at quantitative level



Our answer from large-scale QMC simulations

KD & Heidarian (in preparation)



Detecting power-law order?

Need extremely sensitive scattering experiment to detect power-law
version of Bragg peaks
Or
High resolution real-space data by scanning some local probe + Lots
of image-processing
difficult!



Alternate thermodynamic signature(!)

I Singular thermodynamic susceptibility to uniform easy-axis field
B:
χu(B) ∼ 1

|B|p(T)

I p(T) = 4−18η(T)
4−9η(T) for η(T) ∈ ( 1

9 ,
2
9 )

So p(T) varies from 1/3 to 0 as T increases from T1 to just below
T2

(KD 2014, with referees)



Review: picture for power-law ordered phase

I In state with long-range three-sublattice order, θ feels λ6 cos(6θ)
potential.
Locks into values 2πm/6 (resp. (2m + 1)π/6) in ferri (resp.
antiferro) three-sublattice ordered state for T < T1

I In power-law three-sublattice ordered state for T ∈ (T1,T2), λ6

does not pin phase θ
θ spread uniformly (0, 2π)

Distinction between ferri and antiferro three-sublattice order lost
for T ∈ (T1,T2)



Review: more formal RG description

I Fixed point free-energy density: FKT
kBT = 1

4πg (∇θ)2

with g(T) ∈ ( 1
9 ,

1
4 ) corresponding to T ∈ (T1,T2)

I λ6 cos(6θ) irrelevant along fixed line
I 〈ψ∗(r)ψ(0)〉 ∼ 1

rη(T)

with η(T) = g(T)

Jose, Kadanoff, Kirkpatrick, Nelson (1977)



General argument for result—I

I Landau theory admits term λ3m(ψ3 + ψ∗3)

m is uniform magnetization mode
I Formally irrelevant along fixed line FKT

→
Physics of two-step melting unaffected—m “goes for a ride...”

But ...



General argument for result—II

I m “inherits” power-law correlations of cos(3θ):
Cm(r) = 〈m(r)m(0)〉 ∼ 1

r9η(T)

I χL ∼
∫ L d2rCm(r) in a finite-size system at B = 0

I χL ∼ L2−9η(T) for η(T) ∈ ( 1
9 ,

2
9 )

Diverges with system size at B = 0



General argument for result—III

I Uniform field B > 0→ additional term h3 cos(3θ) in FKT

I Strongly relevant along fixed line, with RG eigenvalue 2− 9g/2

I Implies finite correlation length ξ(B) ∼ |B|−
2

4−9η

I χu(B) ∼ |B|−
4−18η
4−9η for η(T) ∈ ( 1

9 ,
2
9 )



The proof of the pudding...I
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In power-law ordered phase of HJ1J2

(R = −(J1 + J2)/J and κ = (J2 − J1)/J) (Ghanshyam, KD (in
preparation))



The proof of the pudding...II
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The proof of the pudding...III

In power-law ordered phase of Hb (KD, Heidarian (in preparation))
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