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Symmetry breaking transitions: Generalities

» Symmetry-breaking state characterized by long-range
correlations of “order-parameter” O

» phenomenological Landau free energy density F[O]
Expanding F in powers of O (symmetry allowed terms)

» Neglecting derivatives (fluctuations):
phase transition — change in minimum of F



Fluctuation effects at continuous transitions:

» More complete description of long-wavelength physics:
Include (symmetry allowed) gradient terms in F

» In most cases: Corrections to mean-field exponents
» In rare cases: Fluctuation-induced first-order behaviour



Symmetries are (usually) decisive:

» Transformation properties of O determine nature of continuous
transition



In this talk...

» Two well-known scenarios for continuous melting of
three-sublattice order in frustrated triangular and Kagome-lattice
easy-axis antiferromagnets:

Two-step melting with intermediate power-law ordered phase
with power-law exponent n(T) € (3, ;)

OR

Three-state Potts transition

» Main message of talk—

Thermodynamic signature of two-step melting process
distinguishes between the two kinds of continuous transitions



Frustrated easy-axis antiferromagnets

» Easy-axis n and triangular motifs...
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Wannier’s triangular lattice Ising antiferromagnet

> Hiing = JZ<,~,~> ofo; on the triangular lattice

» T — 0 limit characterized by power-law correlations:
(o303 ~ QD)
r~0 rl/2

Incipient order at three-sublattice wavevector Q = (27/3,27/3)
Stephenson (1964)

Power-law spin-liquid in the T — 0 limit




Lattice-gas models for monolayers on graphite

» Three-sublattice long-range order of noble-gas monolayers on
graphite
Hyg, = I3 0i0) = J1 2oy 0i0) —Ja - = B30
Long-range three-sublattice ordering (wavevector Q) at low
temperature
D. P. Landau (1983)



Prototypical example of order-by-quantum fluctuations

> Hrpm =J 3 oio; — '3, of on the triangular lattice
Long-range order at three-sublattice wavevector Q

» Equivalent: Plaquette-ordered valence-bond-solid state of
honeycomb lattice quantum dimer model

Moessner, Sondhi, Chandra (2001), Isakov & Moessner (2003)



Ferri vs antiferro three-sublattice order
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Ferri vs antiferro order distinguished by the choice of phase ¢
Ferri: 6 = 2wm/6, Antiferro: 0 = 2m + 1) /6 (n =0,1,2...5)



S = 1 antiferromagnets with single-ion anisotropy

> Hap =J 35 Si- S — DY,(57)? on triangular lattice

» Low-energy physics for D > J:

Hy = =55 i (blbj + he) + T3 g (i — D) (mj— 1) + ...

» Low-temperature state for D >> J: “supersolid” state of hard-core
bosons at half-filling on triangular lattice with unfrustrated
hopping ¢t = J?/D and frustrating nearest-neighbour repulsion
U=1J

» Implies: Coexisting three-sublattice order in $¢ and
“ferro-nematic” order in §i (KD & Senthil 2006)

(Simple easy-axis version of Chandra-Coleman (1991)
“spin-nematic” ideas)



Is three-sublattice ordering of ¢ in Har ferri or
antiferro?

» Natural expectation: Quantum fluctuations induce antiferro order
.
Ordering will be antiferro three-sublattice order (like transverse
field Ising antiferromagnet)
e. g. Melko et. al. (2005)



QMC evidence: Ferri three-sublattice order of S¢
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Heidarian and KD (2005)



Ising models for “Artificial Kagome-ice”

> Hgagome = JZ@ oiof —Ji Z((l’/’)) oiof —Ja. ..
» Only nearest-neighbour couplings — classical short-range spin
liquid (Kano & Naya 1950)

» Further neighbour couplings destabilize spin liquid —
three-sublattice order at low T (Wolff & Schotte 1988)

» “Artificial Kagome-ice: Moments M; = o7n;
(n; at different sites non-collinear)
Expt: Tanaka et. al. (2006), Qi et. al. (2008), Ladak et. al.
(2010,11)
Theory: Moller, Moessner (2009), Chern, Mellado,
Tchernyshyov (2011)



Three-sublattice order on the Kagome lattice
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Ferr| vs antiferro distinguished by the ch0|ce of phase ¢
Ferri: 0 = 2mm/6, Antiferro: 6 = 2m + 1)7/6 (m=0,1,2...5)



Landau-theory for melting of three-sublattice order

> F = K|VYP + |y +ulg[* + X (00 + %) + ...
Connection to physics of six-state clock models
Z= Z{p[} eXP[Z(,’j) V(%(Pi —pj))l
Eachp; =0,1,2,...5
V(x) = K, cos(x) + K> cos(2x) + K3 cos(3x)
Cardy (1980)



Melting scenarios for three-sublattice order

» Analysis (Cardy 1980) of generalized six-state clock models
— Three generic possibilities of relevance here:
Two-step melting, with power-law ordered intermediate phase
OR
3-state Potts transition
OR
First-order transition (always possible!)

Both these continuous melting scenarios realized in one or more
examples on triangular and kagome lattices



Nature of melting transition in triangular lattice
supersolid?

» Clearly: Nature of melting transition not a priori obvious

» Prediction of Boninsegni & Prokofiev (2005)
Three-state Potts transition
Prediction based on argument about relative energies of
different kinds of domain walls
hard to get right at quantitative level



Our answer from large-scale QMC simulations
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Detecting power-law order?

Need extremely sensitive scattering experiment to detect power-law
version of Bragg peaks

Or

High resolution real-space data by scanning some local probe + Lots
of image-processing

difficult!



Alternate thermodynamic signature(!)

» Singular thermodynamic susceptibility to uniform easy-axis field
B:
Xu(B) ~ \BI%

> p(T) = 42900 for (1) € (4, 2)

So p(T) varies from 1/3 to 0 as T increases from T; to just below
1

(KD 2014, with referees)



Review: picture for power-law ordered phase

» In state with long-range three-sublattice order, 6 feels A cos(66)
potential.
Locks into values 27wm /6 (resp. (2m + 1)7/6) in ferri (resp.
antiferro) three-sublattice ordered state for T < T

» In power-law three-sublattice ordered state for T € (T}, T5), A¢
does not pin phase 6
6 spread uniformly (0, 2)
Distinction between ferri and antiferro three-sublattice order lost
forT € (T, T»)



Review: more formal RG description

» Fixed point free-energy density: = fKT = ﬁ(ve)z
with ¢(T) € (3, 1) corresponding to T e (T),T,)

> g cos(60) irrelevant along fixed line
> (" (Ne(0) ~ Sty
with n(T') = g(T)
Jose, Kadanoff, Kirkpatrick, Nelson (1977)



General argument for result—I

» Landau theory admits term \ym(y)> + ¢*3)
m is uniform magnetization mode

» Formally irrelevant along fixed line Fxr
_>
Physics of two-step melting unaffected—m “goes for a ride..”

But ...



General argument for result—II

> m “inherits” power-law correlations of cos(30):
Cu(r) = (m(r)m(0)) ~ sy
> xo~ [ d*rC,(r) in a finite-size system at B = 0
> X~ L2710 for (T) € (3, 3)
Diverges with system size at B =0



General argument for result—III

v

Uniform field B > 0 — additional term h3 cos(30) in Fxr

v

Strongly relevant along fixed line, with RG eigenvalue 2 — 9g/2
Implies finite correlation length &(B) ~ |B|‘ﬁ

-8y L 2
Yu(B) ~ B~ 55 for n(T) € (4,2)
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The proof of the pudding...l
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In power-law ordered phase of Hj,j,
(R=—-(1 +Jp)/Jand k = (J, — J1)/J) (Ghanshyam, KD (in
preparation))




The proof of the pudding...

10000

100

10000

100

In power-law ordered phase of Hrgv (Biswas, KD (in preparation))
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The proof of the pudding...llI
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In power-law ordered phase of H, (KD, Heidarian (in preparation))
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