Quantum Ordered & Disordered Phases in XY Pyrochlores Er₂Ti₂O₇ and Yb₂Ti₂O₇

K.A. Ross ^{1,2} J.P.C. Ruff ^{1, 3} E. Kermarrec ¹ H.A. Dabkowska ¹

L. Savary ^{4,5} L. Balents ⁴

¹ McMaster University
 ² Colorado State University
 ³ CHESS Cornell University

⁴Kavli Institute for Theoretical Physics, UC Santa Barbara ⁵ MIT

Bruce D. Gaulin McMaster University

Brockhouse Institute for Materials Research

Real Pyrochlores: playgrounds for frustration

Differences in Anisotropy is very important

	Single Ion Anisotropy	Interactions	Ground state
Ho, Dy	Ising	FM	spin ice
Tb	Ising	AFM	spin liquid
Gd	Heisenberg	AFM	partial order
Er	XY	AFM	"order by disorder"
Yb	XY	FM	"quantum spin ice"

Geometric Frustration from Tetrahedra

freedom of choice for each tetrahedron leads to a macroscopic degeneracy: NO Long Range Order

Structure of Ice

Ferro coupling + [III] anisotropy "2 in 2 out"
6-fold degenerate

Spin Ice

•Classical macroscopic degeneracy

Supports monopole excitations

•Rare example of deconfined excitations in 3D

C. Castelnovo, R. Moessner, and S.L. Sondi, Nature, 451, 43 (2007) L. Balents, Nature, 464, 199 (2010)

"Quantum" Spin Ice

- Can tunnel between ice rules states
- Introduces fluctuations in the gauge field
 - Electric monopoles coherent, propagating wavepacket of ice configurations
 - Magnetic monopoles violate ice rules, i.e. 3-in 1-out
 - Gauge photons transverse fluctuations of gauge field

Crystal Field Environment at the RE Site

(2J+1) degenerate multiplet splits in presence of strong crystalline electric field from O²⁻ neighbours

Crystal Field Effects

Yb2Ti2O7Malkin et al, PHYSICAL REVIEW B 70, 075112 (2004)680K	<section-header></section-header>	Dy2Ti2O7Bertin et al., J. Phys: CM, 24, 256003, 2012550K500K450K300K
	———— 76K	
$g_{ } = 1.78$ $g_{\perp} = 4.28$	$g_{\parallel} = 2.32$ $g_{\perp} = 6.80$	$g_{\parallel} \sim 10$ $g_{\perp} \sim 0$
4f ¹³ J = $7/2$	4f J = 15/2	4f ⁹ J = I 5/2

Crystal Field Effects: How do you get S_{effective}=1/2 from J=big, ie J=15/2?

Hund's rules: L+S=J states, split by crystal fields

$$H_{\rm ion} = -D\left(\vec{J_i}\cdot\hat{n}_i\right)^2$$

following L. Balents

D<0: Yb₂Ti₂O₇, Er₂Ti₂O₇

A
 B
 O

Time of Flight Neutron Scattering

"Disk Chopper Spectrometer" (DCS)

② NIST Center for Neutron Research

Yb₂Ti₂O₇ by the numbers:

- Ferromagnetic "XY" pyrochlore
 "T_C" ~ 240 mK
- CW_T ~ +0.6 K g_⊥/g_{||} ~ 2.4
- Rods of scattering observed previously by Bonville et al.

Application of a Field

Field removes diffuse scattering

Weak magnetic field // [110] induces LRO:

appearance of long-lived spin waves at low T and moderate H

K. A. Ross, J. P. C. Ruff, C. P. Adams, J. S. Gardner, H. A. Dabkowska, Y. Qiu, J. R. D. Copley, and B. D. Gaulin, Phys. Rev. Lett. 103, 227202 (2009)

Anisotropic Exchange

RE ions are heavy - spin orbit coupling is strong

 \rightarrow anisotropic exchange possible

4 symmetry-allowed terms for exchange tensor

S. Curnoe. Phys. Rev. B 78, 094418 (2008).

local XY-plane

local z-axes

$$\begin{split} H &= \sum_{\langle ij \rangle} \Big\{ J_{zz} \mathbf{S}_{i}^{z} \mathbf{S}_{j}^{z} - J_{\pm} (\mathbf{S}_{i}^{+} \mathbf{S}_{j}^{-} + \mathbf{S}_{i}^{-} \mathbf{S}_{j}^{+}) + J_{++} \Big[\gamma_{ij} \mathbf{S}_{i}^{+} \mathbf{S}_{j}^{+} + \gamma_{ij}^{*} \mathbf{S}_{i}^{-} \mathbf{S}_{j}^{-} \Big] \\ &+ J_{z\pm} \Big[\mathbf{S}_{i}^{z} (\zeta_{ij} \mathbf{S}_{j}^{+} + \zeta_{ij}^{*} \mathbf{S}_{j}^{-}) + i \leftrightarrow j \Big] \Big\}, \end{split}$$

Hermele, M., Fisher, M. & Balents, L. Phys. Rev. B 69, 064404 (2004)

L. Savary, L. Balents, Phys. Rev. Lett. 108, 037202 (2012)

Yb₂Ti₂O₇ field polarized state

H along [1-10]

Gauge Mean Field Phase Diagram

L. Savary, L. Balents, Phys. Rev. Lett. 108, 037202 (2012)

]_{±±}/]_{zz}

see also: H. Yan, O. Benton, L. Jaubert, N. Shannon, arXiv 1311.3501v1 (2013)

How close are we to the Coulomb QSL phase or Coulomb FM phase?

MFT phase diagram: Yb₂Ti₂O₇

Huge suppression of T_c because of quantum fluctuations

•Observed range of sensitivity of T_c in specific heat

AF planar pyrochlore: $Er_2Ti_2O_7$: $\Theta_{CW} \sim -22$ K

2003-2012: The nine-year Er₂Ti₂O₇ ground state puzzle

<u>"What is the mechanism leading to ordered state selection?</u>" P. Stasiak, P. A. McClarty, M. J. P. Gingras, Phys. Rev. B 89, 024425 (2014)

- Not dipolar interactions \rightarrow leads to " ψ_3 " state (roughly Palmer-Chalker)

State selected by isotropic J plus long range dipolar

 $Er_2 Ti_2 O_7$ @ 50 mK

J. P. C. Ruff, J.P. Clancy, A. Bourque, M.A. White, M. Ramazanoglu, J.S. Gardner, Y. Qiu, J. R. D. Copley, M.B. Johnson, H.A. Dabkowska, and B. D. Gaulin, Phys. Rev. Lett. 101, 147205 (2008)

Er₂Ti₂O₇: two experiments and fits

H = 3T

Degeneracy of Ground State

→ continuous degeneracy at Mean Field level

→ Cannot be broken by dipolar or further range interactions

→ parameterized by single angle parameter: alpha

 \rightarrow degeneracy broken by OBD gives states with alpha = 0, pi/3, etc.

 \rightarrow does the data show the 6 OBD states?

$$\begin{split} H &= \sum_{\langle ij \rangle} \Big\{ J_{zz} \mathbf{S}_{i}^{z} \mathbf{S}_{j}^{z} - J_{\pm} (\mathbf{S}_{i}^{+} \mathbf{S}_{j}^{-} + \mathbf{S}_{i}^{-} \mathbf{S}_{j}^{+}) + J_{++} \Big[\gamma_{ij} \mathbf{S}_{i}^{+} \mathbf{S}_{j}^{+} + \gamma_{ij}^{*} \mathbf{S}_{i}^{-} \mathbf{S}_{j}^{-} \Big] \\ &+ J_{z\pm} \Big[\mathbf{S}_{i}^{z} (\zeta_{ij} \mathbf{S}_{j}^{+} + \zeta_{ij}^{*} \mathbf{S}_{j}^{-}) + i \leftrightarrow j \Big] \Big\}, \end{split}$$

Order by Disorder (quantum and thermal)

<u>'accidental degeneracy'</u>: at the mean field level, the ground state shows a continuous symmetry that is not present in the Hamiltonian.

When dynamics are *softer* along specific directions, higher density of low E modes = more microstates available at specific "alphas"

→ the entropic term in F = E-TS selects the ordered state at non-zero T (thermal ObD) OR

→ Quantum fluctuations select the ordered state even at zero T (Quantum ObD) i.e. fluctuations introduce an effective term to the Hamiltonian that breaks the accidental degeneracy

The necklaces represent surfaces of constant free energy in configuration space

Er₂Ti₂O₇ : zero field calculation

H = 0T

States selected by Order by Disorder show better agreement

A Very Small Gap Exists!

Extremely high energy resolution measurements at the NCNR (NIST) 24 hours of counting on a 7 gram crystal

MFT phase diagram: Er₂Ti₂O₇

Little suppression of T_c due to frustration, fluctuations

 $T_C^{MF}/T_C^{exp} \sim 2.1$

 $H_C^{MF} = H_C^{exp}!$

Collaboration

Lucile Savary Leon Balents Kate Ross Edwin Kermarrec Jacob Ruff Image: Additional stress <tdI

K.A. Ross, L. Savary, B. D. Gaulin, and L. Balents, *Quantum Excitations in Quantum Spin Ice*, Phys. Rev. X **1**, 021002 (2011).

L. Savary, K. A. Ross, B.D. Gaulin, J.P.C. Ruff, and L. Balents, Order by Quantum Disorder in Er₂Ti₂O₇, Phys. Rev. Lett. 109, 167201 (2012).

K. A. Ross, Y. Qiu, J.R.D. Copley, H.A. Dabkowska, and B.D. Gaulin, Order by Quantum Disorder Spin Wave Gap in Er₂Ti₂O₇, Phys. Rev. Lett. 112, 057201 (2013).