

Bosons in optical lattices

Subroto Mukerjee Department of Physics Indian Institute of Science Bangalore

Current trends in frustrated magnetism, JNU 2015

Collaborators

- Arya Dhar
- Maheswar Maji
- Sayonee Ray
- Tapan Mishra
- Ramesh Pai
- Arun Paramekanti

Funding: Department of Science and Technology, Govt. of India

Outline

- Frustration and bosons
- Frustrated Bose-Hubbard ladder and the Chiral Mott phase
- Bond ordered and supersolid phases

Bose-Hubbard model

 $H = -t \sum_{\langle ij \rangle} c_i^{\dagger} c_j + \text{h.c.} + \frac{U}{2} \sum_i n_i (n_i - 1) - \mu \sum_i n_i$

Interaction strength tunes quantum phase transition from a superfluid to a Mott insulator

SF - superfluid MI-Mott insulator

Experiments

Cold atoms

Josephson junction arrays

Greiner et. al. (2002)

Mooij group (1992)

Frustration

Many classical ground states

- Quantum effects pick particular states
- Interesting states like spin liquids

Bosons with frustration
$$H = -\sum_{\langle ij \rangle} t_{ij} c_i^{\dagger} c_j + \text{h.c.} + \frac{U}{2} \sum_i n_i (n_i - 1) - \mu \sum_i n_i$$

Flux
$$\phi = \frac{p}{q}$$

 \boldsymbol{q} bands with degenerate minima

Kinetically frustrated bosons have many ways to condense

Interactions relieve frustration

Phase diagram?

Frustrated bosons

Frustration of the superfluid phase

Experiments

Optical lattices with frustration using artificial gauge fields

Struck et. al. (2011)

Aidelsberger et. al. (2011)

Frustrated Bose-Hubbard model

$$H = -t \sum_{i} a_{i}^{\dagger} a_{i+1} + \text{h.c.} + \frac{U}{2} \sum_{i} n_{i}^{(a)} \left[n^{(a)} - 1 \right]$$
$$+ t \sum_{i} b_{i}^{\dagger} b_{i+1} + \text{h.c.} + \frac{U}{2} \sum_{i} n_{i}^{(b)} \left[n^{(b)} - 1 \right]$$

Filling: one boson per site $\phi = 1/2$ per plaquette. Frustration

Band structure

U = 0 band structure

 $t_{\perp} = 0$ Multiple minima

 $\begin{array}{ll} \text{Single boson condensate} \\ t_{\perp} \neq 0 & \text{wavefunction} \\ |\psi\rangle = a_0 |0\rangle + a_{\pi} |\pi\rangle \end{array}$

Weak interactions

 $|\psi\rangle = a_0|0\rangle + a_\pi|\pi\rangle$

 $|0\rangle(|\pi\rangle)$ has the character of the a(b) leg Avg. density in $a(b) \log \propto |a_0|^2(|a_{\pi}|^2)$

Filling n = 1 and $U > 0 \Rightarrow |a_0| = |a_\pi|$

$$\begin{aligned} \text{Chiral order} \\ |\psi\rangle &= Ae^{i\theta} \left(|0\rangle + e^{i\phi} |\pi\rangle \right) \\ |\psi\rangle &= \frac{1}{\sqrt{N!}} \left[e^{i\theta} \left(a_0^{\dagger} + e^{i\phi} a_{\pi}^{\dagger} \right) \right]^N |0\rangle \\ \text{Ginzburg-Landau theory} \\ E_{\text{low}}^{\text{mft}} &= (-E_0 - \mu) \sum_{i=0,\pi} |\varphi_i|^2 + U \left(u_0^4 + v_0^4 \right) \sum_{i=0,\pi} |\varphi_i|^4 \\ &+ 8U u_0^2 v_0^2 |\varphi_0|^2 |\varphi_{\pi}|^2 + \frac{2U u_0^2 v_0^2 \left(\varphi_0^{*2} \varphi_{\pi}^2 + \varphi_{\pi}^{*2} \varphi_0^2 \right)}{\sqrt{4}} \\ \text{Favours } \phi &= \pm \pi/2 \sum_{i=0,\pi} Z_2 \text{ symmetry} \\ &|\varphi_0| &= |\varphi_{\pi}| \end{aligned}$$

Dhar, Maji, Mishra, Pai, Mukerjee & Paramekanti (2013)

Chiral SuperFluid (CSF)

Breaks $U(1) \times Z_2$ symmetry

$$|\psi\rangle = Ae^{i\theta} \left(|0\rangle + e^{\pm i\pi/2}|\pi\rangle\right)$$

Polini et. al. (2005), Lim et. al. (2008), Powell et. al. (2010), Moller and Cooper (2010), Sinha and Sengupta (2011)

Increasing interaction strength

Single site mean-field theory gives single transition from CSF to MI

$$\frac{1}{\sqrt{4t^2 + t_{\perp}^2}} = \frac{n}{\mu - U(n-1)} + \frac{n+1}{Un-\mu}$$

Beyond mean-field theory

- Monte Carlo on classical 1+1D model
- DMRG on quantum model

Cut to the chase

As *U* is increased a novel Chiral Mott Insulator (CMI) forms which has a charge gap but retains the chiral order of the CSF. Upon further increase of *U*, a regular MI develops.

Dhar, Maji, Mishra, Pai, Mukerjee & Paramekanti (2013)

1+1D classical model

BKT transition from CSF to CMI

Ising transition from CMI to MI

DMRG on the quantum model

BKT transition from CSF to CMI

Ising transition from CMI to MI

Phase diagram Monte-Carlo DMRG (A) (\mathbf{B}) **BKT** Transition Ising Transition 1.53 MI CMI r__ ĭ⊣1 CSF CSF 0.5 MI **BKT Transition** Ising Transition 0.75 0.8 0.85 0.9 0.95 0 3.6 3.8 4.2 4 $1/J_{\tau}$ U/t

- CSF- Algebraic SF, long-ranged loop current order
- CMI Charge gap, long-ranged loop current order
- MI Charge gap, no loop current order

Chiral Mott Insulator

Physical Pictures

- Vortex-antivortex supersolid
- Indirect excitonic condensate

Variational wavefunction

$$\psi(r_1, r_2, \dots, r_n) = e^{-\sum_{ij} v(r_i - r_j)} \psi_{\rm CSF}(r_1, r_2, \dots, r_n)$$

Sine-Gordon model

$$\phi_{s(a)} = \phi_+ \pm \phi_-; \ \theta_{s(a)} = \phi_+ \pm \phi_-$$

$$H = H_s^0 + H_a^0 + g_1 \int dx \cos\left[\sqrt{8}\theta_a(x)\right] + g_2 \int dx \cos\left[\sqrt{8}\phi_s(x)\right] \\ + g_3 \int dx \cos\left[\sqrt{8}\phi_a(x)\right] + g_4 \int dx \cos\left[\sqrt{2}\phi_s(x)\right] \cos\left[\sqrt{2}\phi_s(x)\right] \\ H^0 = \frac{u}{2\pi} \int dx \left[K \left(\nabla\theta(x)\right)^2 + \frac{1}{K} \left(\nabla\phi(x)\right)^2\right]$$

Also Tokuno & Georges (2014)

Sine-Gordon model

$$H = H_s^0 + H_a^0 + g_1 \int dx \cos\left[\sqrt{8}\theta_a(x)\right] + g_2 \int dx \cos\left[\sqrt{8}\phi_s(x)\right]$$

+ $g_3 \int dx \cos\left[\sqrt{8}\phi_a(x)\right] + g_4 \int dx \cos\left[\sqrt{2}\phi_s(x)\right] \cos\left[\sqrt{2}\phi_a(x)\right]$

Phase	Relevant	Irrelevant
\mathbf{SF}	g_3	g_1,g_2,g_4
CSF	g_1	g_2, g_3, g_4
MI	g_4	g_1
CMI	g_1,g_2	g_3,g_4
??	g_2, g_3	g_1, g_4

Chiral Mott states elsewhere

- Two component boson system, Petrescu & Le Hur (2013)
- Frustrated triangular lattice, Zalatel, Parameswaran, Ruegg & Altman (2014)
- Chiral Bose liquid at finite temperature, Li, Paramekanti, Hemmerich & Liu (2014)
- Field theoretical study of ladders with flux, Tokuno & Georges (2014)

Extended Bose-Hubbard model

Extended Bose Hubbard model
$$H = -t \sum_{j} \left[b_{j}^{\dagger} b_{j+1} + \text{h.c.} + \frac{U}{2} n_{j} \left(n_{j} - 1 \right) + V n_{j} n_{j+1} \right]$$

MI - Mott Insulator
SF - Superfluid
DW - Density Wave
HI - Haldane Insulator

V Kurdestany, Pai, Mukerjee & Pandit (2014)

Other types of chiral states Unfrustrated coupled extended Bose-Hubbard ladders

Essentially the same phases

Dela Torre, Berg, Altman and Giamarchi (2011)

Frustrated ladders, chiral version of DW and HI phase?

Roy, Mukerjee & Paramekanti (in progress)

t-t'-V model Hard core bosons $H = -t \sum_{i} b_{i}^{\dagger} b_{i+1} + \text{h.c.} - t' \sum_{i} b_{i}^{\dagger} b_{i+2} + \text{h.c.} + V \sum_{i} n_{i} n_{i+1}$

Frustration t > 0, t' < 0

Mishra, Pai, Mukerjee & Paramekanti (2013 & 2014)

$$t-t'-V \mod el$$
Effective spin 1/2 model
$$H = -2t \sum_{i} S_{i}^{+} S_{i+1}^{-} + \text{h.c.} - 2t' \sum_{i} S_{i}^{+} S_{i+2}^{-} + \text{h.c.}$$

$$+V \sum_{i} n_{i} n_{i+1}$$

V = 0 & t' = t/2: Easy plane Majumdar Ghosh model

Ground state: $|\psi\rangle_G \sim \prod_{j \in even} (|\uparrow\rangle_j |\downarrow\rangle_{j+1} + |\downarrow\rangle_j |\uparrow\rangle_{j+1})$

Bond ordering

t' = 0 can be mapped on the XXZ model

$$H = -2t \sum_{j} \left(S_{j}^{x} S_{j+1}^{x} + S_{j}^{y} S_{j+1}^{y} \right) + V \sum_{j} S_{j}^{z} S_{j+1}^{z}$$

Bethe anstaz solvable

 $V \leq 2t$ spin Luttinger liquid (superfluid)

V > 2t gapped Ising antiferromagnet (CDW)

$$|\psi\rangle_G \sim |\uparrow\rangle|\downarrow\rangle|\uparrow\rangle|\downarrow\rangle\dots$$

t-t'-V model

DMRG calculation

Mishra, Pai, Mukerjee & Paramekanti (2013)

- Re-entrant phase transition
- Continuously varying Luttinger parameter along phase boundaries

t-t'-V model

DMRG calculation

Incommensurate filling

- SS supersolid phase
- No bond-ordered supersolid found

Summary

Frustration in bosonic systems can produce interesting phases like the Chiral Mott state, bond ordered solid, supersolid etc.