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Geometric Frustration

No unique ground state !

Examples: triangle of anti-ferromagnetically
interacting Ising spins
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Geometric Frustration

No unique ground state !

Corner-sharing triangles : Kagome lattice

Examples: triangle of anti-ferromagnetically
interacting Ising spins

Infinite number of degenerate ground states
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Geometric Frustration

No unique ground state !

Corner-sharing triangles : Kagome lattice

Examples: triangle of anti-ferromagnetically
interacting Ising spins

X X XX
A, XX
N V

Va®

Pyrochlore lattice: Spin ice
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Geometric Frustration

No unique ground state !

Corner-sharing triangles : Kagome lattice

Examples: triangle of anti-ferromagnetically
interacting Ising spins

Infinite number of degenerate ground states )
\/ \/
N
Pyrochlore lattice: Spin ice Features:

e |arge degeneracy of ground state
® non-zero ground state entropy. (ice entropy, Pauling 1935)

e fluctuations can be classical (thermal) and
quantum (T=0).

order by disorder

Quantum spin liquids
(fractional excitations, artificial gauge field)

L. Balents, Insight Article in Nature 464, 199 (2010)
C. L. Henley, Annual Review of Condensed Matter Physics 1, 179 (2010)
C. Castelnovo, R. Moessner, and S.L. Sondhi, Annual Review of Condensed Matter Physics (2011)
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Frustrated magnets with emergent gauge fields

Pyrochlore lattice: Spin ice
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Pyrochlore lattice: Spin ice
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Frustrated magnets with emergent gauge fields

Pyrochlore lattice: Spin ice
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Geometric Frustration: Spin ice

Pyrochlore lattice: Spin ice

Why “ice”?

water ice

== Covalent

? ... Hydrogen bond

o ’q*‘ @® ... Hydrogen
° o
... Oxygen

Around each oxygen atom, two hydrogen atoms are closer, two are far.
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Geometric Frustration: Spin ice

Pyrochlore lattice: Spin ice

Why “ice”?

water ice

. Covalent

. Hydrogen bond

. Hydrogen

. Oxygen

Around each oxygen atom, two hydrogen atoms are closer, two are far.

The Structure and Entropy of Ice and of Other Crystals with Some Randomness of
Atomic Arrangement

By Linus PAvuLING

many possibilities!

(1) In ice each oxygen atom has two hydrogen
atoms attached to it at distances of about 0.95 A.,
forming a water molecule, the HOH angle being
about 105° as in the gas molecule.

(2) Each water molecule is oriented so that its
two hydrogen atoms are directed approximately
toward two of the four oxygen atoms which sur-
round it tetrahedrally, forming hydrogen bonds.

(3) The orientations of adjacent water mole-
cules are such that only one hydrogen atom lies
approximately along each oxygen—oxygen axis.

(4) Under ordinary conditions the interaction
of non-adjacent molecules is not such as to appre-
ciably stabilize any one of the many configura-
tions satisfying the preceding conditions with
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Geometric Frustration: Spin ice

Pyrochlore lattice: Spin ice

substances”

(ice entropy, Pauling 1935)

Nobel Prize 1954 (Chemistry)
"for his research into the nature
of the chemical bond and its

application to the elucidation of
the structure of complex

Nobel Prize 1962 (Peace)

Why “ice”?

water ice

. Covalent

. Hydrogen bond

. Hydrogen

. Oxygen

Around each oxygen atom, two hydrogen atoms are closer, two are far.

The Structure and Entropy of Ice and of Other Crystals with Some Randomness of

Atomic Arrangement

By Linus PAvuLING

many possibilities!

(1) In ice each oxygen atom has two hydrogen
atoms attached to it at distances of about 0.95 A.,
forming a water molecule, the HOH angle being
about 105° as in the gas molecule.

(2) Each water molecule is oriented so that its
two hydrogen atoms are directed approximately
toward two of the four oxygen atoms which sur-
round it tetrahedrally, forming hydrogen bonds.

(3) The orientations of adjacent water mole-
cules are such that only one hydrogen atom lies
approximately along each oxygen-oxygen axis.

(4) Under ordinary conditions the interaction
of non-adjacent molecules is not such as to appre-
ciably stabilize any one of the many configura-
tions satisfying the preceding conditions with
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Geometric Frustration: Spin ice

Pyrochlore lattice: Spin ice

Why “ice”?

water ice
== Covalent
? _____ ... Hydrogen bond
-~

1933... William F. Giauque

Theory:
[{ - §o = 0.806 Cal/deg mol

| EXperiment:
| So=0.82+0.05 Cal/deg mol
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Geometric Frustration: Spin ice

Pyrochlore lattice: Spin ice == _ Covalent

... Hydrogen bound

@ ... Hydrogen

. ... Oxygen

Dipoles
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Geometric Frustration: Spin ice

Pyrochlore lattice: Spin ice == _ Covalent

... Hydrogen bound

@ ... Hydrogen

. ... Oxygen

Dipoles
two-in / two-out
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Geometric Frustration: Spin ice

Pyrochlore lattice: Spin ice

“Spin-lce”

two-in / two-out

This can be modelled in a square lattice

’\¢S2 pointing out
Ice Rule : Two in Two out

2 pointing inx—\/
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Geometric Frustration: Spin ice

Pyrochlore lattice: Spin ice

Spin-lce materials:

HooTioO7
Dy2Ti2O7
Ho2Sn20O7

“Spin-lce”

two-in / two-out

This can be modelled in a square lattice

’\¢S2 pointing out
Ice Rule : Two in Two out

2 pointing inx—\/
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Spin ice : Six vertex model

Ice Rule : Two in Two out

4+ -

Six-vertex Model

‘ R. J. Baxter, Exactly solved models

in statistical mechanics
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Spin ice : Six vertex model

Ice Rule : Two in Two out

% % 6 configurations

Six-vertex Model

‘ ' t R. J. Baxter, Exactly solved models

in statistical mechanics
Spin-1/2 model

Spin-1/2 Ising system
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Spin ice : Six vertex model

++
e

REainc s
-

_J(O' —|—O' —|—O' —I—O')

6 configurations
Six-vertex Model

(Classical spin ice)

Every pair-interaction has the same strength

(Independent of inter-particle separation)

Ground state constraint:

i
2 0:=

1€+

~
Equivalent to
Gauss’s law
(flux free fields)
y,
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Spin ice : Six vertex model

e
e

_J(O' —|—O' —I—O' —I—O')

6 configurations
Six-vertex Model

+

quantum fluctuations
(Hopping dynamics)

(Quantum spin ice)
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Quantum Spin Ice

From Water Ice to Spin Ice ... to Quantum Spin Ice

tunneling between Ice-rule configurations

1 Quantum Spin Liquids (3D)
> _I_ Resonating Valence bonds solid (2D)
~ [ [ [ ]

spin fluctuations even at T=0.
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Ice-type Models: Spin Ice

From Water Ice to Spin Ice

tunneling between Ice-rule configurations

spin fluctuations even at T=0.

... to Quantum Spin Ice

Non-trivial dynamics of Quantum Spin Ice models

Non-trivial dynamics has to

satisfy Ice rules

Quantum Spin Liquids (3D)
Resonating Valence bonds solid (2D)

l # A A
< < i > > >
A A
\4
—_— > € <
v T 7 T

Monday, 16 March 15



Ice-type Models: Spin Ice

From Water Ice to Spin Ice ... to Quantum Spin Ice

tunneling between Ice-rule configurations

Quantum Spin Liquids (3D)
Resonating Valence bonds solid (2D)

spin fluctuations even at T=0.

Non-trivial dynamics of Quantum Spin Ice models

—p>
l # A A
< < | > > >

Flips of 1, 2 or 3 spins are not

Non-trivial dynamics has to allowed!

satisfy Ice rules
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Ice-type Models: Spin Ice

From Water Ice to Spin Ice ... to Quantum Spin Ice

tunneling between Ice-rule configurations

Quantum Spin Liquids (3D)
' > _I_ Resonating Valence bonds solid (2D)
® o ®

spin fluctuations even at T=0.

Non-trivial dynamics of Quantum Spin Ice models

—
b ‘
— 1,

Flips of 1, 2 or 3 spins are not

Non-trivial dynamics has to allowed!

satisfy Ice rules
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Ice-type Models: Spin Ice

From Water Ice to Spin Ice ... to Quantum Spin Ice

tunneling between Ice-rule configurations

Quantum Spin Liquids (3D)
Resonating Valence bonds solid (2D)

spin fluctuations even at T=0.

Non-trivial dynamics of Quantum Spin Ice models

—p>
l # A A
< < | > > >

Flips of 1, 2 or 3 spins are not

Non-trivial dynamics has to allowed!

satisfy Ice rules
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Ice-type Models: Spin Ice

From Water Ice to Spin Ice ... to Quantum Spin Ice

tunneling between Ice-rule configurations

Quantum Spin Liquids (3D)
Resonating Valence bonds solid (2D)

spin fluctuations even at T=0.

Non-trivial dynamics of Quantum Spin Ice models

—p>

Flips of 1, 2 or 3 spins are not

Non-trivial dynamics has to allowed!

satisfy Ice rules

l A A
< < i > > >
A A
4-spin (plaquette moves /
ring exchange) are allowed! 4
—_— > » <€ <
v T 7 T
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Ice-type Models: Spin Ice

From Water Ice to Spin Ice ... to Quantum Spin Ice

tunneling between Ice-rule configurations

Quantum Spin Liquids (3D)
Resonating Valence bonds solid (2D)

spin fluctuations even at T=0.

Non-trivial dynamics of Quantum Spin Ice models

—p>

Flips of 1, 2 or 3 spins are not

Non-trivial dynamics has to allowed!

satisfy Ice rules

l A A
< < i > > >
7N A A
4-spin (plaquette moves / / J
ring exchange) are allowed! 4 \,&I
—_— > » <€ <
v T 7 T
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Ice-type Models: Spin Ice

From Water Ice to Spin Ice ... to Quantum Spin Ice

tunneling between Ice-rule configurations

Quantum Spin Liquids (3D)
Resonating Valence bonds solid (2D)

spin fluctuations even at T=0.

Non-trivial dynamics of Quantum Spin Ice models

—p>

! A A
> >
7N A A
4-spin (plaquette moves / /
ring exchange) are allowed! \,&I

J
— > > <

A

Flips of 1, 2 or 3 spins are not

Non-trivial dynamics has to allowed!

satisfy Ice rules
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Ice-type Models: Spin Ice

From Water Ice to Spin Ice ... to Quantum Spin Ice

tunneling between Ice-rule configurations

Quantum Spin Liquids (3D)
Resonating Valence bonds solid (2D)

spin fluctuations even at T=0.

Non-trivial dynamics of Quantum Spin Ice models

—p>

! l A A
> > > >
N A A
4-spin (plaquette moves / / J
ring exchange) are allowed! \,&I
—

, | 1

Flips of 1, 2 or 3 spins are not

Non-trivial dynamics has to allowed!

satisfy Ice rules

Monday, 16 March 15



Ice-type Models: Spin Ice

From Water Ice to Spin Ice ... to Quantum Spin Ice

tunneling between Ice-rule configurations

Quantum Spin Liquids (3D)
Resonating Valence bonds solid (2D)

spin fluctuations even at T=0.

Non-trivial dynamics of Quantum Spin Ice models

—p>

Flips of 1, 2 or 3 spins are not

Non-trivial dynamics has to allowed!

satisfy Ice rules

l A A
> > > >
7N A A
4-spin (plaquette moves / / J
ring exchange) are allowed! A WP T
# > < -«
| 1
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Ice-type Models: Spin Ice

From Water Ice to Spin Ice ... to Quantum Spin Ice

tunneling between Ice-rule configurations

Quantum Spin Liquids (3D)
Resonating Valence bonds solid (2D)

spin fluctuations even at T=0.

Non-trivial dynamics of Quantum Spin Ice models

—p>

Flips of 1, 2 or 3 spins are not

Non-trivial dynamics has to allowed!

satisfy Ice rules

l A A
<€ > > > >
l " A A
4-spin (plaquette moves / / J
ring exchange) are allowed! A WP T
—_— € > < <«

, | 1
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Ice-type Models: Spin Ice

From Water Ice to Spin Ice ... to Quantum Spin Ice

tunneling between Ice-rule configurations

Quantum Spin Liquids (3D)
Resonating Valence bonds solid (2D)

spin fluctuations even at T=0.

Non-trivial dynamics of Quantum Spin Ice models

—p>

Flips of 1, 2 or 3 spins are not

Non-trivial dynamics has to allowed!

satisfy Ice rules

* l A A
<€ > > > >
l " A A
4-spin (plaquette moves / J
ring exchange) are allowed! A WP T
G > < <«
v # 7 T

Minimal Hamiltonian for H=.] Z S?LS._SI;FSK_
quantum Ice . 7o
j,’L,k’,EED
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Implementation using Rydberg Atoms

Step 1: impose gauge invariance via PRX 4 041037 (2014)
energy punishment - Ising interactions /-

2

Hoy=J.|>» S;

JE+

Step 2: generate dynamics in perturbation theory

Hy=J, Y SfS;

<1,7>
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Implementation using Rydberg Atoms

Step 1: impose gauge invariance via PRX 4 041037 (2014)
energy punishment - Ising interactions | /-

2
J.engineer with
Hoy =, E S]Z Rydberg atoms

(3 })*Q

Q )is' & G
- O=R0=0" t O—-ONOECED ¢
«—(pictQpe-ftom Nature-4931,-87)(2012)..

[ O
L4 B —

Step 2: generate dynamics in perturbation theory

Hy=J, Y SfS;

<1,)>
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Implementation using Rydberg Atoms

Step 1: impose gauge invariance via PRX 4 041037 (2014)
energy punishment - Ising interactions | /-
2
H B J SZ Unphysical J, eRngineer with
0= J, Z j subspace ydberg atoms

‘\)- })*Q

( ( \v v
: i t O—-OROEOED ¢
interested in e Lpnct@re ftom Nature 491, 87)(2012) .

Physical Hilbert
subspace we are

[ O
4 L e S O .

Step 2: generate dynamics in perturbation theory

Hy=J, Y SfS;

<1,)>
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Implementation using Rydberg Atoms

Step 1: impose gauge invariance via PRX 4 041037 (2014)
energy punishment - Ising interactions | /-
2
- Unphysical J.engineer with
— : R t
Hy J., g S] oot ydberg atoms
J < g 4A— m-m e~ —L
‘i e :
Physical Hilbert (L Qi .5 Igs{,: & 8. O
subspace we are — QO OROROP)) O TROEEC O

interested in e (pictQpe ftom Nature 493, 87)(2012) -

Step 2: generate dynamics in perturbation theory
H =J; E S;_ S ;o
<1,7>

e.g. tunneling in optical
lattices

A\ A\
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Implementation using Rydberg Atoms

Step 1: impose gauge invariance via PRX 4 041037 (2014)
energy punishment - Ising interactions | /-
2
H B J SZ Unphysical J, eRngineer with
0= J, Z j subspace ydberg atoms
B \—Z/)

G 2 C ¢
O—OF) (

o =

0-0-% ‘,P“
( ' (,’ ? I&- {
—O—3 @ =0F(

Physical Hilbert 6 0 o000 0 O -
subspace we are — QO OROROP)) O TROEEC O
interested in tia(pictpe-fom Natufe 497, 87 (2012) -

Step 2: generate dynamics in perturbation theory

Hy=J, Y SfS;

<1,7>
Egi.cteu:neling in optical ( J2 h
= E TSTSTST, Jo~ L
Hep =J S; j kP — 7
.. z
| 7,1,k 2el]
\ \ \- y,
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Recipe for Rydberg-Spin ice

1) step-like potentials (radial) 2) anisotropic interaction (angle)
p-states

Rydberg dressing
1 :

0.5

— =330 15

nP3 2 \ \\ LEA('

n'D
)xl 2>x|2>x 2>x

ki~ 7Z '

k, ~§
global Rydberg excitation laser

(i)
=3)d=2):13):13):

B\
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This talk: Frustrated magnetism in an ion crystal
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Motivation: From square to Kagome lattice

Balents Fisher Girvin model:
Kagome lattice
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Motivation: From square to Kagome lattice

Balents Fisher Girvin model:
Kagome lattice
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Motivation: From square to Kagome lattice

Balents Fisher Girvin model:
Kagome lattice

1)

PRB, 65, 224412 (2002). Hamiltonian

| 2S

+JL Y (S8 + he)

1€ > <i3>€O
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Motivation: From square to Kagome lattice

Balents Fisher Girvin model:
Kagome lattice

1)

PRB, 65, 224412 (2002). Hamiltonian

| 2S

+JL Y (S8 + he)

1€ > <i3>€O

Classical Ground states
> 5= 0
1€

*Similar to ice rule!
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Motivation: From square to Kagome lattice

Balents Fisher Girvin model:
Kagome lattice

| 1)

1)

PRB, 65, 224412 (2002). Hamiltonian

+JL Y (S8 + he)

<i3>€O

J| << J,

Ring exchange
_ +q— gt g
Classical Ground states Hring = Jring(51 S5 S35, + h.c)

Y 57=0

1€

*Similar to ice rule!
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Motivation: From square to Kagome lattice

Balents Fisher Girvin model:
Kagome lattice

| 1)

1)

PRB, 65, 224412 (2002). Hamiltonian

Y SZ> +JL Y (SFS7 + he)

1€ <i3>€O

J| << J,
Ring exchange

Hying = Joing (ST S5 SF S, + h.c)

* Spin Liquid phase Nat. Phys, 7, 772 (20011).

* Fractionalized Excitations
 Visons (Vortex-like excitations)

*Similar to ice rule!

 Gauge Theory
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From square to Kagome lattice

PRB, 65, 224412 2002, H1@Miltonian

> SZ> +J. Yy (SFS; +he)

1€ <1j>€QO

(Kagome lattice)

: 1 : : 2 : : 3 : : 4 : : 5 :
Q <:_—_’1> Q <:—_—:> <:::> 20 classical degenerate ground states
6 7 8 9 10

: : : : : : : : : : Classical Ground states
@@Q : : : : *Similar to ice rule!

Balents Fisher Girvin model
BFG (
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Trapped ions: 2D planar crystal

' | ——— T ,
o P TAYAYAVAVAVAVAVAVAVAVAYAYAYaVAY: S
 Startoutwith planar crysta A AATAYAA
e Hide out ions from _1_5 I l 5
spin interaction to D, state ml_' e X e e xexe e e
e Corner-sharing triangles (d) & :X X WM X
e Hexagons (e) ] I X X .
e Kagome geometry —4 Z; 4 }
e Multiple ladders (f) B "
e Random hiding fQ:x X \/ \/ \/ \/ \/ \/ Xx )
for spin glass experiments ‘1 x °‘°‘“‘“‘°‘°‘ [\ X
B B B
4§,%AVAVAVAVAVAVAVAVAVA'4'4)
L NN

A gg A

Bermudez, et al, NJP 14
093042 (2012)
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Trapped ions: 2D planar crystal

J———————— .
ol  FAAAAAAAARAAAAA A

- 4 50 4

Normal Mode spectrum: Lattice vibrations
IR AVAVAVAVAVAVAVAEN
H, =Y hwy(a}a, +1/2) o~ °A°A°A6A°A°A [\ x
n=1 I -
. < OAAAAAAA S,
Longitudinal and transversal modes | " ﬂAVAVAVAVAVAVAVAVAVA ‘
il "‘ g

A gg A
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Recipe for Quantum simulation in an ion crystal

M Atomic states as spin-1/2 states

(ground states or long lived metastable states)
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Recipe for Quantum simulation in an ion crystal

M Atomic states as spin-1/2 states

(ground states or long lived metastable statgs)

Wy, Phonon mode frequency

of mth mode ‘ T>‘2>
o D)
| 1)10)
| 1)12)
o 1)  ®™ Phonons as mediator of interactions

}10) (shared among all ions)
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Recipe for Quantum simulation in an ion crystal

M Atomic states as spin-1/2 states

(ground states or long lived metastable statgs)

| 1)[2)
1)
| 110)

1) ™ Phonons as mediator of interactions
}10) (shared among all ions)
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Recipe for Quantum simulation in an ion crystal

M Atomic states as spin-1/2 states

(ground states or long lived metastable states)

/
111I2)
ML)
| 1)10)
| 1)[2)
[ 1]1)
[ 4)]0)

M Phonons as mediator of interactions
(shared among all ions)
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Recipe for Quantum simulation in an ion crystal

M Atomic states as spin-1/2 states

(ground states or long lived metastable states)

i
1112)
{11
| 1)0)
| 1)12)
| |1)
[ 4)]0)

M Phonons as mediator of interactions
(shared among all ions)
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Recipe for Quantum simulation in an ion crystal

M Atomic states as spin-1/2 states

(ground states or long lived metastable states)

single ion qubit (spin-1/2)

i
1112)
{1 D1
| 1)0)
| 1)12)
| |1)
[ 4)]0)

M Phonons as mediator of interactions
(shared among all ions)
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Recipe for Quantum simulation in an ion crystal

M Atomic states as spin-1/2 states

(ground states or long lived metastable states)

/| 1[2)
| Hi
o)

| 1)12)
\@/M M Phonons as mediator of interactions

| 1)[2)
| DI1)
| 1)lo)
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Recipe for Quantum simulation in an ion crystal

M Atomic states as spin-1/2 states

(ground states or long lived metastable states)

| 1)[2)
| DI1)

on 1 [ 1))

/| 1[2)
| Hi
o)

| 1)12)
\@/M M Phonons as mediator of interactions
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Recipe for Quantum simulation in an ion crystal

M Atomic states as spin-1/2 states ion 2
(ground states or long lived metastable states)
| 1)[2)
' D)
on 1 | 1)10)

/| 1[2)
| Hi
o)

| 1)12)
\@/M M Phonons as mediator of interactions
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Recipe for Quantum simulation in an ion crystal

M Atomic states as spin-1/2 states ion 2
(ground states or long lived metastable states)
| 1)2)
' 1)
on 1 . | l0)

/| i2)
gl )
[ )lo)

| 1)12)
Um M Phonons as mediator of interactions

M Atom-light interactions (quantum gates)
(selective population of modes)
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Recipe for Quantum simulation in an ion crystal

M Atomic states as spin-1/2 states ion 2
(ground states or long lived metastable states)
| 1)2)
' 1)
on 1 . | l0)

/| 1[2)
| Hi
o)

| 1)12)
Um M Phonons as mediator of interactions

M Atom-light interactions (quantum gates)
(selective population of modes)

M Mode-structure determines the nature of
spin-spin interactions
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Recipe for Quantum simulation in an ion crystal

M Atomic states as spin-1/2 states ion 2
(ground states or long lived metastable states)
| 1)[2)
' D)
on 1 - | 1)10)

//| 1]2)
ARy
Do)

\v/w Phonon mediated spin-spin couplings
ROIRY
| 4)10)

( .. xLlamb-Dicke
N Q’IQJ 77;7177;]71 // params (depends on phonon

]Z o E [ eigen-vector)
L]

Yo © \_ )\)Detuning from

i<j mode m
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Our Setup: 2D planar crystal

Raman scheme for generating spin-spin
interaction between ions

(in preparation)

Phonon mediated spin-spin interactions

Lamb-Dicke Spin-spin interactions
( N i/ 77 params depends crucially on the
H = Z ijai ® o’ Ji. = Z i L nature of phonon modes!!!
i< L] — Detuning from  (We use transversal modes)
g m=1 )‘) mode m
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Single Plaquette: 7-ion crystal

[‘ ions in the qubit states)

Phonon mode spectrum (21 modes)

without pinning

20 (a) 3 g ©

E10 g’ O

..............................

(in preparation)
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Single Plaquette: 7-ion crystal

[‘ ions in the qubit states) (in preparation)
move the central ion to
state |1) (pinning ion)

Phonon mode spectrum (21 modes)

without pinning

20 (a) 3 g ©

E10 g0 " O

..............................
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Single Plaquette: 7-ion crystal

[‘ ions in the qubit states) (in preparation)

move the central ion to
state |1) (pinning ion)

Phonon mode spectrum (21 modes)

without pinning

20 (a) g ©

E10 g’ -

..............................

Monday, 16 March 15



Single Plaquette: 7-ion crystal

Hexagonal plaquette [‘ ions in the qubit states)

move the central ion to
state |1) (pinning ion)

(in preparation)

Phonon mode spectrum (21 modes)

without pinning

20 (a) 3 g ©

E10 g’ O

..............................
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Single Plaquette: 7-ion crystal

- N
Hexagonal plaquette ‘ ions in the qubit states
\ J

move the central ion to
state |1) (pinning ion)

Spin-spin interactions
depends crucially on the
nature of phonon modes!!!
(We use transversal modes)

Phonon mode spectrum (21 modes)

without pinning

20 (a) g ©

E10 g’ -

..............................

with pinning
§2O (b) 88"
o 8 f—
10 pm s ™

.....................

0 05 10 15 20 235 30
V3 [x 2n MHz]

(in preparation)
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Single Plaquette: 7-ion crystal

e D - -
Hexagonal plaquette ‘ ions in the qubit states (in preparation)
\_ J

move the central ion to
state |1) (pinning ion)

Spin-spin interactions
depends crucially on the
nature of phonon modes!!!
(We use transversal modes)

Phonon mode spectrum (21 modes)

without pinning

20 (a) 3 g ©

E10 g0 " O

b S Appearance of an isolated
- ° ’ mode in the lowest part

with pinning (transversal modes) of the
20t (b) - — spectrum when the pinning

E Lo ® Cr— relaxes the trapping
10 pm s8 ™ frequency of the central ion

.....................

0 05 10 15 20 235 30
V3 [x 2n MHz]
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Single Plaquette: 7-ion crystal

- N
Hexagonal plaquette ‘ ions in the qubit states
\ J

move the central ion to

L state |1) (pinning ion)

Spin-spin interactions
depends crucially on the

nature of phonon modes!!!
(We use transversal modes)

Phonon mode spectrum (21 modes)

without pinning

201 (a)

Si0

(in preparation)

oV = 1y — 17

PM . ¢ 8
0 0.5 1.0
with pinning
E 20 (b)
10 PM e 3
0 0.5 1.0

-0- OV

" (0., [x 2n MHz]
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Single Plaquette: 7-ion crystal

Hexagonal plaquette

-

‘ ions in the qubit states
\.

~
J

move the central ion to
L state |1) (pinning ion)

Spin-spin interactions

depends crucially on the

nature of phonon modes!!!
(We use transversal modes)

(in preparation)

wyy, = 2m X 1 MHz
w, = 2n X 3 MHz

wf =27 x 2.7 MHz
5,,,=1 = 10 kHz

- Admixture with other modes causes imperfections

Plaquette interactions

5

. (a) 3

§ = /

= 0.8

— :

gwo.6 5

S =04

S |

= 02

3 12 3 4 5 6 °

© 01 - - - .
/)

0.5
0.4

0.3
0.2
0.1

MRS |
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Two Plaquettes: 19-ion crystal

(in preparation)
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Single plaquette in a 19-ion crystal

0.08

0.06¢}

20

16

- Admixture with other modes causes imperfections

but can be controlled

(in preparation)

(b)
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Single plaquette in a 19-ion crystal

(in preparation)

(b)

0.08

20 1 0.6

0.06¢}

- Admixture with other modes causes imperfections Hexagonal pattern

(interactions localized among the six ions)
but can be controlled
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Double plaquette in a 19-ion crystal

(in preparation)

(2)0.08 @& ———————(b)20 \ 0.35
@) @)
N 4 v ' =
0.06 F/0.25
v 0.2
< £0.04 TS
v v 0.15
0.02¢ 0.1
0.05
0 © 0o o0 0 © (v) @] (v) (V) @] (v) © v vV v v 0
0 4 g8 12 16 20
l Hexagor?al pattern
(interactions localized among the six ions)
? Two different pinning lattices
Z Two modes with hexagonal plaquette character No (or negligible) inter-plaquette interactions
Z Two set of Raman fields - Admixture with other modes causes imperfections
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Double plaquette in a 19-ion crystal

™M Quantum dynamics

0.5

@

(b)

—

OO m=3
0 =2
vV m=1

0.4

-0.3

5 19
O

O1 150

0 4 8 i12 16 20

Ring-exchange

Interesting inter-plaquette
dynamics
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Double plaquette in a 19-ion crystal

: (in preparation)
Gauss’s law

006 v
(b) v

\V/ 7> Sufficiently strong quantum fluctuations
v : mix those levels

0.04; |v v v lonsetup

O BFG vvv O J\’}o <Z (ZS§>2>

L v .
0.02 - O icO
v
oV _
oV 7> G gives us the measure of states outside
Oy 2y — ' ' - - - the ground state manifold
0 0.1 0.2 0.3 0.4
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Double plaquette in a 19-ion crystal

PRB, 65, 224412 (2002). Ham i Iton ian

Some trivial dynamics

My = Zie@l S;. Z Sz> +J1 Z (SjS; + h.c.)
My = ZiEOQ S; €O <ij>eO
BFG model (Ideal case) BFG model (ion setup)

0.5 (a) ' ' ' ' ' ' '
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Double plaquette in a 19-ion crystal

PRB, 65, 224412 (2002). Ham i Iton ian

Some trivial dynamics

My = Zie@l S;. Z Sz> +J1 Z (SjS; + h.c.)
My = ZiEOQ S; €O <ij>eO
BFG model (Ideal case) BFG model (ion setup)

0.5 (a) ' ' ' ' ' ' '
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Double plaquette in a 19-ion crystal

Hamiltonian

PRB, 65, 224412 (2002).
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Hamiltonian

PRB, 65, 224412 (2002).
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Double plaquette in a 19-ion crystal
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