Mott criticality studied by dilatometry under ⁴He-gas pressure on the quasi-2D organic charge-transfer salts κ-(BEDT-TTF)₂X

Rudra Sekhar Manna

Augsburg University, Germany Goethe University Frankfurt, Germany

acknowledgement

M. Lang L. Bartosch E. Gati U. Tutsch

Goethe University Frankfurt, Germany

Tohoku University, Japan

J. A. Schlueter Argonne National Laboratory, USA

R. Kato

T. Sasaki

RIKEN, Japan

outline

- organic charge-transfer salts
- phase diagrams
- spin-liquid: κ -(ET)₂Cu₂(CN)₃
- Mott criticality in κ -(ET)₂X
- valence-bond-solid: EtMe₃P[Pd(dmit)₂]₂
- summary and outlook

κ-(BEDT-TTF)₂X: charge-transfer salts

• κ -phase: "effective dimer model": 1 hole/ dimer \Rightarrow half-filled conduction band • W ~ U_{eff}: correlated π electrons

Mott criticality at the 2nd-order end-point (P₀, T₀)

Lefebvre et al., PRL 85, 5420 (00)

effect-of-frustration

t' /t	κ-(ET) ₂ Cu[N(CN) ₂]Cl	κ-(ET) ₂ Cu ₂ (CN) ₃
ext. Hückel calc. Mori <i>et al.</i> , Chem. Soc. Jpn. 72 , 179 (99) Komatsu <i>et al.</i> , JPSJ 65 , 1340 (96)	0.72	1.06
<i>ab initio calc.</i> Kandpal <i>et al.</i> , PRL 103 , 067004 (09) Nakamura <i>et al.</i> , JPSJ 78 , 083710 (09)	0.44	~ 0.8

spin-liquid - κ-(ET)₂Cu₂(CN)₃

Mott universality

 $\begin{array}{l} (\mathsf{V}_{1\text{-x}}\mathsf{Cr}_{\mathsf{x}})_2\mathsf{O}_3 \\ \text{crossover:} \ \delta, \ \beta, \ \gamma = 3, \ 0.5, \ 1 \ (\text{mean field values}) \\ \delta, \ \beta, \ \gamma = 4.81, \ 0.34, \ 1 \ (3D \ \text{lsing}) \\ \end{array} \\ \Longrightarrow \text{ liquid-gas universality (3D \ \text{lsing})}$

Limelette et al., Science 302, 89 (03)

DMFT of the Hubbard model: an order parameter for the finite temperature Mott end point

 \Rightarrow Ising universality class, similar to the liquid-vapor transition

Castellani *et al.*, PRL **43**, 1957 (79) Kotliar *et al.*, PRL **84**, 5180 (00)

controversy: κ-(ET)₂Cu[N(CN)₂]Cl

conductivity data of κ -(ET)₂Cu[N(CN)₂]CI: coupling to the energy density dominates \Rightarrow consistent with 2D Ising universality class

Papanikolaou et al., PRL 100, 026408 (08)

Mott criticality at the 2^{nd} -order end-point (P₀, T₀)

thermal expansion measurements under He-gas pressure

experimental specifications

- high-resolution capacitive dilatometer $(5 \times 10^{-2} \text{ Å})$
- temperature range 1.4 293 K
- hydrostatic pressure range 0 250 MPa (helium as a pressure transmitting medium)
- magnetic field range 0 14 T

pressure cell and dilatometer

1 dilatometer cell

2 n-InSb pressure gauge ($\Delta P = \pm 0.1 \text{ MPa}$)

3 seal

4 plug with electrical feed-throughs

5 retaining screw

Thermal expansion coefficient,

$$\alpha_i = \frac{1}{l_i} \left(\frac{\partial l_i}{\partial T}\right)_P$$

- constant-pressure condition

- ⁴He (pressure-transmitting medium): gas/ liquid phase
- pressure reservoirs: gas bottle/ compressor with micropump
 - R. S. Manna, PhD thesis (12)

R. S. Manna et al., Rev. Sci. Instrum. 83, 085111 (12)

Mott criticality at the 2nd-order end-point (P₀, T₀)

Lefebvre et al., PRL 85, 5420 (00)

κ-D8-Br at finite pressure

14

- T_g pressure independent, cf. Müller *et al.*, PRB (02) - T_{MI} (1st-order) consistent with literature

- effect of pressure on T^{*} (2nd-order)

κ-D8-Br at finite pressure

after subtracting a T-linear

consistent with 2D Ising universality class

Mott criticality at the 2nd-order end-point (P₀, T₀)

Lefebvre et al., PRL 85, 5420 (00)

κ-Cl at finite pressure

 $T(\mathbf{K})$

17

κ-Cl at finite pressure

crossover from 2D Ising ($\kappa \approx 0.5$) to mean-field ($\kappa \approx 0.3$) criticality? Zacharias *et al.*, PRL **109**, 176401 (12)

summary

• Thermal expansion measurements under ⁴He-gas pressure have been performed on κ -(ET)₂X for probing critical fluctuations.

• data of κ -D8-Br and κ -CI:

- Mott critical end point is consistent with 2D Ising universality class.

outlook

- sample-to-sample variations
- determination of $P_c \Rightarrow \kappa = (1 \beta)/(\beta + \gamma)$
- measurement in the insulating (low-P) regime \Rightarrow sign change in α !
- role of lattice degrees of freedom

$EtMe_{3}X[Pd(dmit)_{2}]_{2}(X = P/Sb)$

Itou *et al.*, Nat. Phys. **6**, 673 (10) K. Kanoda and R. Kato, Annu. Rev. Condens. Matter Phys. **2**, 167 (11)

EtMe₃X[Pd(dmit)₂]₂ – ground state properties

- strongly anisotropic lattice distortions accompanying the formation of VBS - weak in-plane α_a vs α_c anisotropy for T > T_{VBS} suggests dominant contribution from EtMe₃P cations

anomalous thermal expansion in the paramagnetic region

Assumptions: $\alpha_a = \alpha^{lat}_a + \alpha^{mag}_a$ $\alpha_c = \alpha^{lat}_c + \alpha^{mag}_c$ $\alpha^{lat}_c = A\alpha^{lat}_a$ $\alpha^{mag}_c = B\alpha^{mag}_a$

anomalous contribution at T^{α}_{max} \approx 40 K due to the short-range afm correlation, cf. T^{χ}_{max} = 70 K

R. S. Manna *et al.*, PRB 89, 045113 (14)

variation of $T_{\max}^{\chi}/T_{\max}^{\alpha} = T_{\max}^{\chi}/T_{\max}^{C}$ for low-D quantum magnets with different degree of frustration

- for 2D triangular lattice S = $\frac{1}{2}$ Heisenberg afm ~ 1
- for Cs_2CuBr_4 : J'/J = 0.74
- for κ -(ET)₂Cu₂(CN)₃: J'J = 0.64 0.74

Shimizu *et al.*, PRL **91**, 107001 (03) R. S. Manna et al., PRL 104, 016403 (10)

• for 1D uniform S = $\frac{1}{2}$ Heisenberg chain ~ 1.34, for alternating exchange variant ~ 3 and including next-nearest-neighbor interactions ~ 3.6

> Klümper, Eur. Phys. J. B 5, 677 (98) Bühler et al., PRB 64, 024428 (01)

present case: $T_{max}^{\chi}/T_{max}^{\alpha} \approx 1.7 - 2.3$ \Rightarrow suggests a more anisotropic (quasi-1D) scenario

0.0+ 0.0 k_T/J 24

1.0

0.5

 $\mathsf{T^C}_{\mathsf{max}}$

, Τ^χ_{max}

 $\mathsf{T}^{\alpha}_{\text{max}}$

κ-(ET)₂Cu₂(CN)

100 T (K)

T^xmax

150

200

0.15

 $\chi J/Ng^2\mu_{\scriptscriptstyle B}^2$

0.10

1.5

50

 χ (10⁻⁴ cm³mol⁻¹)

40

 $\alpha_b^{(10^{-6} \text{ K}^{-1})}$

0.4

C/Nk_B

f''

0.2-

lattice distortion at VBS transition

- distinct and strongly anisotropic second-order phase transition into the low-T VBS phase at 25 $\rm K$

- upon cooling *c*-axis (in-plane) contracts, *a*-axis (in-plane) expands while the dominant effect is along the *b*-axis (out-of-plane) which expands

 \Rightarrow pressure dependency comes from the out-of-plane component as the in-plane pressure effects cancel each other out (- 4.2 K/100 MPa) ²⁵

summary

- valence-bond-solid, $EtMe_3P[Pd(dmit)_2]_2$
 - An anomalous contribution at $T^{\alpha}_{max}\approx 40$ K is found and assigned to the short-range afm correlations.
 - $T_{max}^{\chi}/T_{max}^{\alpha} \approx 1.7$ 2.3 seems incompatible with quasi-2D triangular lattice (~ 1), rather compatible with a quasi-1D more anisotropic scenario.

outlook

- perform similar experiments for the spin-liquid (dmit-Sb) compound
- study the Mott criticality in dmit-salts vs ET-based compounds ?!

Thank you for your attention !

closer to P_0 : occurrence of double-peak structure, interference of another phase transition (intrinsic) or bicrystal (extrinsic)?

coupling to the lattice degrees of freedom

Zacharias et al., PRL 109, 176401 (12)

Approaching (P₀,T₀): crossover to mean-field criticality (κ_{MF} = 0.33)

 κ -(d8-ET)₂Cu[N(CN)₂]Cl

 κ -(d8-ET)₂Cu[N(CN)₂]Br

sample-to-sample dependency

29

high-resolution dilatometry

30 mm

resolution: $\Delta I / I \sim 10^{-10}$ (for I = 10 mm)

Thermal expansion coefficient,
$$\alpha_i = \frac{1}{l_i} (\frac{\partial l_i}{\partial T})_p$$

experimental limitation

Langer, J. Phys. Chem. Solids **21**, 122 (61)

F. Pobell, *Matter and Methods at Low Temperatures*, Springer

Phase diagrams

Lefebvre et al., PRL 85, 5420 (00)

 κ -(ET)₂Cu₂(CN)₃

no long-range magnetic order down to 32 mK

Kurosaki *et al.*, PRL **95**, 177001 (05) Shimizu *et al.*, PRL **91**, 107001 (03)

low-energy excitations

'gapless spinons with a Fermi surface'

Yamashita et al., Nat. Phys. 4, 459 (08)

Specific heat

Thermal conductivity

'spin gap of Δ = 0.46 K ~ J/500'

Yamashita *et al.*, Nat. Phys. **5**, 44 (09) 33

low-energy excitations: EtMe₃Sb[Pd(dmit)₂]₂

Specific heat

Thermal conductivity

Yamashita et al., Nat. Commun. 2, 275 (11)

Yamashita et al., Science 328, 1246 (10)

Exponent	$Ising_2$	$Ising_3$	XY ₃	$\operatorname{Heisenberg}_3$
α	$0(\log)$	0.110(1)	-0.015	-0.10
β	1/8	0.3265(3)	0.35	0.36
γ	7/4	1.2372(5)	1.32	1.39
δ	15	4.789(2)	4.78	5.11

 $C(t) \propto |t|^{-\alpha}$ $m(t) \propto (-t)^{\beta}, t \le 0$ $\chi(t) \propto |t|^{-\gamma}$

C (t) = sp. Heat m(t) = spontaneous magnetization $\chi(t)$ = mag. Susceptibility m(h) = critical isotherm

 $m(h) \propto |h|^{1/\delta} sgn(h), t = 0$

Kagawa *et al*., Nature **436**, 534 (05)

36

- Lattice coupling changes the critical properties of the electronic system drastically so that eventually Landau mean-field behavior (corresponding to $m_f = 0.33$) prevails close to the Mott critical end point.

- κ -(BEDT-TTF)₂X systems yields a width of the Landau critical regime $\Delta T_0/T_0$ of about 8%, which is experimentally accessible the flattening of the preliminary α_{max} vs (p - p₀) data might indicate such a crossover behavior.

Zacharias et al., PRL 109, 176401 (12)

Crossover from 2D Ising ($\kappa \approx 0.5$) to mean-field ($\kappa \approx 0.3$) criticality? Zacharias *et al.*, PRL **109**, 176401 (12)

spin-liquid - κ-(ET)₂Cu₂(CN)₃

