Frustration-driven multi magnon condensates and their excitations

Oleg Starykh, University of Utah, USA

Current trends in frustrated magnetism, ICTP and Jawaharlal Nehru University, New Delhi, India, Feb 9-13, 2015

Collaborators

Leon Balents, KITP, UCSB Andrey Chubukov, Univ of Minnesota

not today but closely related findings: spin-current state at the tip of 1/3 magnetization plateau, spontaneous generation of orbiting spin currents (ask me for details after the talk :))

Condensed Matter Physics at the University of Utah

Scanning Probe Microscopy Nano-optics Low Temperature Transport xotic Matter and High Pressure Spin electronics Organic Semiconductors NMR and MRI

University

Strongly Correlated Electron Physics Topological insulators Frustrated magnetism Superconductivity

Life at (and near) University of Utah

Outline

- Frustrated magnetism (brief intro)
- emergence of composite orders from competing interactions
- Nematic vs SDW in LiCuVO₄
 - ✓ spin nematic: "magnon superconductor"
 - ✓ collinear SDW: "magnon charge density wave"
- Volborthite kagome antiferromagnet
- experimental status magnetization plateau
- Nematic, SDW and *more*
- Field theory of the Lifshitz point
- Conclusions

Emergent Ising order parameters

PHYSICAL REVIEW B 85, 174404 (2012)

Ising order: spin chirality

$$\chi = \sum_{\text{triangle}} \vec{S}_i \times \vec{S}_j$$

FIG. 2. The two different minimum energy configurations with magnetic wave vectors $\vec{Q} = (Q, Q)$ and $\vec{Q}^* = (Q, -Q)$ with $Q = 2\pi/3$, corresponding to $J_3/J_1 = 0.5$.

Ising nematic in collinear spin system

VOLUME 64, NUMBER 1

PHYSICAL REVIEW LETTERS

1 JANUARY 1990

Ising Transition in Frustrated Heisenberg Models

P. Chandra

Corporate Research Science Laboratories, Exxon Research and Engineering Company, Annandale, New Jersey 08801

P. Coleman and A. I. Larkin^(a) Serin Physics Laboratory, Rutgers University, P.O. Box 849, Piscataway, New Jersey 08854

$$\sigma = \vec{N}_1 \cdot \vec{N}_2 = \pm 1$$

VOLUME 91 NUMBER 17	PHYSICAL	REVIEW	LETTERS	week ending
VULUME 71. INUMBER 17				Z4 UCTUBER Z003

Ising Transition Driven by Frustration in a 2D Classical Model with Continuous Symmetry

Cédric Weber,^{1,2} Luca Capriotti,³ Grégoire Misguich,⁴ Federico Becca,⁵ Maged Elhajal,¹ and Frédéric Mila¹

FIG. 4. Monte Carlo results for the critical temperature T_c as a function of the frustrating ratio J_2/J_1 . The line is an extrapolation of the large J_2 data down to $J_2 = 0$ (see text).

Outline

- Frustrated magnetism (brief intro)
- emergence of composite orders from competing interactions
- Nematic vs SDW in LiCuVO₄
 - ✓ spin nematic: "magnon superconductor"
 - ✓ collinear SDW: "magnon charge density wave"
- Volborthite kagome antiferromagnet
- experimental status magnetization plateau
- Nematic, SDW and *more*
- Field theory of the Lifshitz point
- Conclusions

LiCuVO₄ : magnon superconductor?

High-field analysis: condensate of bound magnon pairs $\langle S^+ \rangle = 0$ $\langle S^+ S^+ \rangle \neq 0$

Ferromagnetic $J_1 < o$ produces attraction in real space

Fig. 1: (Color online) Energy-field diagram for a frustrated quantum magnet close to the saturation field. Dot-dashed lines show lowest one- and two-magnon states. Solid lines represent the ground-state energy for the one-magnon (spin-cone) and the two-magnon (spin-nematic) condensate.

Fig. 2: (Color online) Two-dimensional array of copper ions in LiCuVO₄ with principal exchange couplings.

Chubukov 1991 Kecke et al 2007 Kuzian and Drechsler 2007 Hikihara et al 2008 Sudan et al 2009 Zhitomirsky and Tsunetsugu 2010

Magnon binding

1-magnon

2-magnon bound state

Hidden order

No dipolar order
$$\langle S_i^+
angle = 0$$

 $\langle S_i^+ S_j^-
angle \sim e^{-|i-j|/\xi}$ S^z=1 gap

$$\langle S_i^+ S_{i+a}^+ \rangle \neq 0$$

Magnetic quadrupole moment nematic Symmetry breaking U(1) \rightarrow Z₂ director can think of a fluctuating fan state

LiCuVO₄: NMR lineshape - collinear SDW along **B**

 $-g\mu_{B}S$

FIG. 2. Field dependence of the incommensurate wave vector k_{ic} for applied magnetic fields $\mathbf{H} \parallel \mathbf{c}$ in LiCuVO₄. The open symbols

Evidence of a Bond-Nematic Phase in LiCuVO₄

M. Mourigal,^{1,2} M. Enderle,¹ B. Fåk,³ R. K. Kremer,⁴ J. M. Law,^{4,*} A. Schneidewind,⁵ A. Hiess,^{1,†} and A. Prokofiev^{6,7}

FIG. 3 (color online). Polarized cross sections measured at T = 70 mK for the magnetic reflections $\mathbf{Q} = (1, k_{\text{IC}}, 0)$ with $\mathbf{H} \| \mathbf{c}$ [left panels, (a)–(c)] and $\mathbf{Q} = (0, -k_{\text{IC}}, 1)$ with $\mathbf{H} \| \mathbf{a}$ [right panels, (d)–(f)].

No true condensation [U(1) breaking] in d=1.

Inter-chain interaction is crucial for establishing symmetry breaking in d=2.

Sato et al 2013 Starykh and Balents 2014

Need to study weakly coupled "superconducting" chains

Inter-chain interaction $H_{\text{inter-chain}} = \sum_{y} \int dx \ \vec{S}_{y} \cdot \vec{S}_{y+1} \sim \sum_{y} \int dx \ S_{y}^{+} S_{y+1}^{-} + S_{y}^{z} S_{y+1}^{z}$

Superconducting analogy: single-particle (magnon) tunneling between magnon superconductors is strongly suppressed at low energy (below the single-particle gap)

$$H_{\text{inter}}^{\perp} = \sum_{y} \int dx \ J' \langle S_y^+(x) S_{y+1}^-(x+1) \rangle_{\text{nematic ground state}} \to 0$$

Superconducting analogy: fluctuations generate two-magnon (*Josephson coupling*) tunneling between chains. They are generically weak, $\sim J_1(J'/J_1)^2 << J'$, but responsible for a true **two-dimensional nematic order**

$$H_{\text{nem}} \sim (J'^2/J_1) \sum_y \int dx \, \left[T_y^+(x) T_{y+1}^-(x) + \text{h.c.} \right]_{T_y^+(x) \sim S_y^-(x) S_y^-(x+1)}$$

At the same time, density-density inter-chain interaction does not experience any suppression. It drives the system toward a **two-dimensional collinear SDW order**.

$$S_y^z = M - 2n_{\text{pair}} = M - \tilde{A}_1 e^{i\frac{\sqrt{2\pi}}{\beta}\varphi_y^+(x)} e^{ik_{\text{sdw}}x}$$
$$H_{\text{inter-chain}}^z = H_{\text{sdw}} \sim J' \sum_y S_y^z S_{y+1}^z \sim J' \sum_y \int dx \cos\left[\frac{\sqrt{2\pi}}{\beta}(\varphi_y^+ - \varphi_{y+1}^+)\right]$$

Away from the saturation, **SDW** is more relevant [and stronger, via $J' >> (J')^2/J_1$] than the **nematic interaction**: **coupled** 1d **nematic chains order in a** 2d **SDW state.**

Simple scaling

$$H_{\rm nem} \sim (J'^2/J_1) \sum_y \int dx \ [T_y^+(x)T_{y+1}^-(x) + \text{h.c.}]$$

- describes kinetic energy of magnon pairs, linear in magnon pair density n_{pair}

$$H_{\text{inter-chain}}^{z} = H_{\text{sdw}} \sim J' \sum_{y} S_{y}^{z} S_{y+1}^{z} \sim J' \sum_{y} \int dx \cos\left[\frac{\sqrt{2\pi}}{\beta} (\varphi_{y}^{+} - \varphi_{y+1}^{+})\right]$$

• describes potential energy of interaction between magnon pairs on neighboring chains, quadratic in magnon pair density η_{pair}

• Competition
$$\frac{(J')^2}{J_1} n_{\text{pair}} \sim J' n_{\text{pair}}^2$$
, hence $n_{\text{pair}}^* \sim J'/J_1$

- Hence:
- Spin Nematic *near saturation*, for n_{pair} < n^{*}_{pair}
- SDW for $n_{pair} > n_{pair}^*$

T=0 schematic phase diagram of weakly coupled **nematic** spin chains

Excitations (via spin-spin correlation functions)

• 2d SDW
$$\langle S^{z}(\mathbf{r}) \rangle = M + \operatorname{Re}\left(\Phi e^{i\mathbf{k}_{\operatorname{sdw}}\cdot\mathbf{r}}\right)$$

- preserves U(1) [with respect to magnetic field] -> hence NO transverse spin waves
- breaks translational symmetry -> longitudinal phason mode at $k_{sdw} = \pi(1-2M)$ and k=0

Excitations (via spin-spin correlation functions)

• 2d Spin Nematic $\langle S^+(r)S^+(r')\rangle \sim \Psi \neq 0$

- breaks U(1) but $\Delta S=1$ excitations are gapped (magnon superconductor) $\langle S^+(\mathbf{r}) \rangle = 0$
- gapless density fluctuations at k=0

Intermediate Summary

- Interesting magnetically ordered states: SDW and Spin Nematic
 - Gapped $\Delta S=1$ excitations (no usual spin waves!)
 - Linearly-dispersing *phason* mode with $\Delta S=0$ in **2d** SDW
 - SDW naturally sensitive to structural disorder
 - Linearly-dispersing *magnon density* waves in 2d
 Spin Nematic
 - analogy with superconductor/charge density wave competition

Outline

- Frustrated magnetism (brief intro)
- emergence of composite orders from competing interactions
- Nematic vs SDW in LiCuVO₄
 - ✓ spin nematic: "magnon superconductor"
 - ✓ collinear SDW: "magnon charge density wave"
- Volborthite kagome antiferromagnet
- experimental status magnetization plateau
- Nematic, SDW and *more*
- Field theory of the Lifshitz point
- Conclusions

Volborthite

Volborthite's timeline

Formula: $Cu_3(V_2O_7)(OH)_2 \cdot 2H_2O$

System: Monoclinic

Hardness: 3½

Name: Named after Alexander von Volborth (1800-1876), Russian paleontologist, who first noted the mineral.

Colour: Olive-green, ...

A secondary mineral found in the oxidized zones of vanadium-bearing hydrothermal deposits.

At least two different monoclinic space-group variants (C2/m, C2/c) seem to be stable at ambient temperature.

Visually similar to vésigniéite.

time = material quality

2014: huge plateau!

H. Ishikawa...M.Takigawa...Z.Hiroi, unpublished, 2014

High-field magnetization

more different *MH* curves in a pile of 50 large "thick" arrowhead-shaped crystals ^{30 days growth}

Huge 1/3 plateau!

further optical meas. @ Takeyama lab It survives over 120 T!

Kagome plateau or ferrimagnetic state?

coupled to lattice, but already distorted

high-field mag. meas. @ Tokunaga & Kindo labs

Frustrated ferromagnetism

PHYSICAL REVIEW B 82, 104434 (2010)

Coupled frustrated quantum spin- $\frac{1}{2}$ chains with orbital order in volborthite Cu₃V₂O₇(OH)₂·2H₂O

O. Janson,^{1,*} J. Richter,² P. Sindzingre,³ and H. Rosner^{1,†} ¹Max-Planck-Institut für Chemische Physik fester Stoffe, D-01187 Dresden, Germany ²Institut für Theoretische Physik, Universität Magdeburg, D-39016 Magdeburg, Germany ³Laboratoire de Physique Théorique de la Matière Condensée, Univ. P. & M. Curie, Paris, France (Received 9 August 2010; published 30 September 2010)

Ferrimagnetic state

PHYSICAL REVIEW B 82, 104434 (2010)

Coupled frustrated quantum spin- $\frac{1}{2}$ chains with orbital order in volborthite Cu₃V₂O₇(OH)₂·2H₂O

O. Janson,^{1,*} J. Richter,² P. Sindzingre,³ and H. Rosner^{1,†} ¹Max-Planck-Institut für Chemische Physik fester Stoffe, D-01187 Dresden, Germany ²Institut für Theoretische Physik, Universität Magdeburg, D-39016 Magdeburg, Germany ³Laboratoire de Physique Théorique de la Matière Condensée, Univ. P. & M. Curie, Paris, France (Received 9 August 2010; published 30 September 2010)

 $J_1 < 0, J_2 > 0, J' > 0$

Spin chain redux

Frustrated ferromagnetic chain

Quasi-1d nematic

Hikihara *et al*, 2008 Sudan *et al*, 2009

Multipolar phases

Frustrated ferromagnetic chain

Hikihara *et al*, 2008

Is it an infinite progression?

A QCP parent?

Frustrated ferromagnetic chain

Lifshitz Point

- Unusual QCP: order-to-order transition
- Effective action $NL\sigma M$

$$S = \int dx d\tau \{ is \mathcal{A}_B[\hat{m}] + \delta |\partial_x \hat{m}|^2 + K |\partial_x^2 \hat{m}|^2 + u |\partial_x \hat{m}|^4 - h \hat{m}_z \}$$

Berry tunes two symmetry
$$\mathcal{A}_B = \frac{\hat{m}_1 \partial_\tau \hat{m}_2 - \hat{m}_2 \partial_\tau \hat{m}_1}{1 + \hat{m}_3} \text{ phase } OCP \text{ allowed interactions}$$

term at O(q⁴)

All properties near Lifshitz point obey "one parameter universality" dependent upon u/K ratio

Lifshitz Point

$$S = \int dx d\tau \left\{ is \mathcal{A}_B[\hat{m}] + \delta |\partial_x \hat{m}|^2 + K |\partial_x^2 \hat{m}|^2 + u |\partial_x \hat{m}|^4 - h \hat{m}_z \right\}$$

 Intuition: behavior near the Lifshitz point should be semi-classical, since "close" to FM state which is classical

$$x \to \sqrt{\frac{K}{|\delta|}} x \qquad \tau \to \frac{K}{\delta^2} \tau$$

 $S = \sqrt{\frac{K}{\delta}} \int dx d\tau \left\{ is \mathcal{A}_B[\hat{m}] + \operatorname{sgn}(\delta) |\partial_x \hat{m}|^2 + |\partial_x^2 \hat{m}|^2 + v |\partial_x \hat{m}|^4 - \bar{h} \hat{m}_z \right\}$

 $v = \frac{u}{K}$ $\overline{h} = \frac{hK}{\delta^2}$

Large parameter: saddle point!

1

Saddle point

 $S = \sqrt{\frac{K}{\lambda}} \int dx d\tau \left\{ is \mathcal{A}_B[\hat{m}] + \operatorname{sgn}(\delta) |\partial_x \hat{m}|^2 + |\partial_x^2 \hat{m}|^2 + v |\partial_x \hat{m}|^4 - \bar{h} \hat{m}_z \right\}$ v derives from quantum fluctuations By a spin wave analysis, one finds v ~ -3/(2S) < 0hfirst order $h_c = \frac{\delta^2}{8K\sqrt{|v|}(1-\sqrt{|v|})}$ $-1 < v < -\frac{1}{4}$ FM local instability of FM state (1-magnon condensation) IC cone

Phase diagram

Frustrated ferromagnetic chain

First order metamagnetic transition near Lifshitz point

Higher dimensions?

Hikihara et al, 2008

d > 1

 $S = \int dx d^{d-1}y d\tau \left\{ is \mathcal{A}_B[\hat{m}] + \delta |\partial_x \hat{m}|^2 + c |\partial_y \hat{m}|^2 + K |\partial_x^2 \hat{m}|^2 + u |\partial_x \hat{m}|^4 - h \hat{m}_z \right\}$

• Rescaling:

$$x \to \sqrt{\frac{K}{|\delta|}} x \qquad au \to \frac{K}{\delta^2} au \quad y \to \frac{\sqrt{cK}}{\delta} y$$

 $S = \frac{\sqrt{K^{d}c^{d-1}}}{\delta^{d-1/2}} \int dx d^{d-1}y d\tau \{ is \mathcal{A}_{B}[\hat{m}] + \operatorname{sgn}(\delta) |\partial_{x}\hat{m}|^{2} + |\partial_{x}^{2}\hat{m}|^{2} + |\partial_{y}\hat{m}|^{2} + v|\partial_{x}\hat{m}|^{4} - \bar{h}\hat{m}_{z} \}$

.: Similar theory applies in d>1, and very similar conclusions apply

Phase diagram

multipolar phases from QCP?

Origin of multipolar phases

First order transition: partially polarized state *coexists* with plateau one

With enough quantum fluctuations, "bubbles" of partially polarized phase may become many-magnon bound states and form multipolar phases

Origin of multipolar phases

First order transition: partially polarized state *coexists* with plateau one

With enough quantum fluctuations, "bubbles" of partially polarized phase may become many-magnon bound states and form multipolar phases

Summary

- Spin chains keep showing up in unexpected places
 - ✓ Nematic physics of frustrated ferromagnets
 - ✓ Explored Lifshitz point as a "parent" for multipolar states and metamagnetism

Quasi-1d nematic

1d J₁-J₂ chain

H FM "dominant" SN "dominant" SDW SDW₂ J'/J c.f. J'/J ~ 0.1 in LiCuVO₄

True nematic occurs in narrow range near FM state

O. Starykh + LB, 2013

Quasi-1d nematic

SN

J′/J

1d J₁-J₂ chain

"dominant" SN

"dominant" SDW

SDW₂

q = 1/4 - M/2

2001: a QSL?

smooth thermodynamics

no spontaneous fields

2009: Impurity ordering at 1K? Fermionic QSL?

spinons?

c.f. herbertsmithite:

 $x_{imp} \sim 5\%$

2009: Impurity ordering at 1K? Fermionic QSL?

2012: Ordering transitions! Not a QSL

Amazing how much sample quality matters!

Frustrated ferromagnetism

PHYSICAL REVIEW B 82, 104434 (2010)

Coupled frustrated quantum spin- $\frac{1}{2}$ chains with orbital order in volborthite Cu₃V₂O₇(OH)₂·2H₂O

O. Janson,^{1,*} J. Richter,² P. Sindzingre,³ and H. Rosner^{1,†} ¹Max-Planck-Institut für Chemische Physik fester Stoffe, D-01187 Dresden, Germany ²Institut für Theoretische Physik, Universität Magdeburg, D-39016 Magdeburg, Germany ³Laboratoire de Physique Théorique de la Matière Condensée, Univ. P. & M. Curie, Paris, France (Received 9 August 2010; published 30 September 2010)

Prospects of observing novel quantum liquids

Quasi-1d nematic

1d J₁-J₂ chain

Interchain coupling

~ J' $\phi_y \phi_{y+1} + (J')^2 / J \Psi_y \Psi_{y+1}$ extra suppression of spinnematic order in quasi-1d limit

Nematic chain

S^z-S^z (SDW) channel: in-chain J₁< o gaps out relative mode $\varphi_y^- = (\varphi_{y,\text{odd}} - \varphi_{y,\text{even}})/\sqrt{2}$ $H_{\text{intra-chain}} = \sum \int dx J_1 \sin[\pi M] \cos\left[\frac{\sqrt{8\pi}}{\beta}\varphi_y^{-}\right] \text{ local pair formation}$ y, even J_1 -J₂ chain $\langle S^+ \rangle = 0$ quantum-disordered, $S_y^+(x) \sim (-1)^x A_3 e^{i\frac{\beta}{\sqrt{2}}\theta_y^+(x)} e^{i(-1)^x\frac{\beta}{\sqrt{2}}\theta_y^-(x)}$ decays *exponentially*: $S^{z} = 1$ excitations are gapped Standard (in 1d) power-law decay: critical nematic spin correlations, $T_y^+ = S_y^+(x)S_y^+(x+1) \sim e^{i\sqrt{2}\beta\theta_y^+(x)}$ but U(1) *is preserved* $\langle T^+ \rangle = \langle S^+ S^+ \rangle \to 0$

Physical picture: 1d magnon "superconductor"

Kolezhuk, Vekua (2005); Hikihara et al. (2008); Sato, Hikihara, Momoi (2013)

2d commensurate SDW (such as 1/3 magnetization plateau)

0.45

Cs₂CuBr₄

T = 0.4 K

vanishing spectral weight as $k_x \rightarrow 0$ (anisotropic)

$$\chi_{2d}^{zz}(k_x,k_y,\omega) = \frac{vk_x^2/\beta^2}{v^2k_x^2 + v_{\perp}^2k_y^2 - \omega^2},$$

phason (longitudinal) $\chi_{2d}^{zz}(q,\pi+q_y,\omega) \sim \frac{Z_{zz;2d}}{(v^2q^2+v_{\perp}^2q_y^2)-\omega^2}$

Single crystals of volborthite

H. Yoshida's crystal

- 1. natural leaf crystals, long time ago
- 2. low-quality polycrystalline samples by precipitation, 2001
- 3. high-quality polycrystalline samples by hydrothermal annealing, 2009
- 4. small single crystals, 2012
- 5. large arrowhead-shaped crystals, 2013

mn

Spin nematic redux

Frustrated ferromagnetic chain

