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Plan of the talk 
 

1. Models for Organic Magnetism 

2. Model Hamiltonian for Conjugated Carbon Systems 

3. Density Matrix Renormalization Group (DMRG) Method 
 

4. Determining Spin of the ground state 
 

5. Results for fused ring systems  



Why	
  is	
  Molecular	
  Magne1sm	
  a	
  Challenge	
  
	
  	
  

ü 	
  	
  Hund’s	
  rule	
  weakly	
  obeyed	
  due	
  to	
  spread	
  of	
  MOs.	
  
	
  

ü 	
  	
  Degenerate	
  MOs	
  not	
  usually	
  found	
  in	
  molecules.	
  
	
  

ü 	
  	
  Unpaired	
  spins	
  make	
  molecules	
  very	
  reac1ve.	
  
	
  	
  

ü 	
  	
  Three	
  theore1cal	
  models	
  suggest	
  ways	
  of	
  	
  designing	
  	
  
	
  	
  	
  	
  	
  molecular	
  magnets.	
  	
  

	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Two	
  are	
  due	
  to	
  McConnell.	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Third	
  due	
  to	
  Mataga	
  and	
  Ovchinnikov.	
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McConnel Mechanism 
(1967) 
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Does not work as (i) phase space for singlet delocalization  
is bigger and (ii) in the crystal molecular degeneracy lifted. 

B. Sinha and S. R,  Phys. Rev. B 48, 16410 (1993). 



Mataga Ovchinnikov Models 
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S. R, B. Sinha and I.D.L. Albert, Phys. Rev. B 42, 9088 (1990).  

The high spin ground state is not stable to Peierls’ type  
of distortions. 

Mataga  1968 
Ovchinnikov 1978 



Mataga Polymers (1968) 



McConnell’s second mechanism (1963) 
 
In a molecule with two radicals, if opposite spin densities 
are aligned on top of each other, the radical spins will 
have parallel alignment. 
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Bhabadyuti Sinha and S. R, Chem. Phys. Lett., 182, 180 (1991).  



Magnetism observed in γ-para nitropheny nitronyl nitroxide 
(γ-NPNN) in 1991  

γ-NPNN TC =0.65K	
   TC =35.5K 



Frustrated Systems 
 

Is it possible to use frustration in organic systems  
to obtain high spin ground state? 

 
It is known in molecular magnetism that frustration  
leads to intermediate spin ground state eg Mn12Ac 

And Fe8 high nuclearity complexes. 
 

It is also known that frustration leads to lower spin gaps. 
 

Can we use the same principle in organic systems?  
 

Is it possible to build systems with large frustration  
leading to high spin ground state?  



If we introduce geometric frustration in the rings, then  
spin gaps are expected to decrease. 
 
Question: Can we lower the spin gap further if we fuse  
five and seven members alternately? 
 
 
 
 
 
 
 
 
 
 
The primary unit in such a systems is azulene which  
 consists of fused seven and five membered rings 



Properties of Azulene in Hückel  
or Noninteracting Model 

This system will have a dipole moment as the Hückel 
4n+2 rule for aromatic stability favors a positive charge  
on the seven membered ring and a negative charge on 
the five membered ring. 
 
Question: Can we simultaneously have a large dipole 
moment and a high spin ground state in larger systems?  



Modeling	
  Conjugated	
  Carbon	
  Systems	
  	
  
Interac1ng	
  One-­‐Band	
  Models	
  

Ø  Explicit electron – electron interactions essential 
for realistic modeling 

[ij|kl] = ∫φi
*(1) φj(1) (e2/r12) φk

*(2) φl(2) d3r1d3r2 

This model requires further simplification to enable  
routine solvability.    

HFull	
  =	
  Ho	
  +	
  ½	
  Σ	
  [ij|kl]	
  (EijEkl	
  –	
  δjkEil)	
  ijkl	
  

Eij = Σ a†
i,σaj,σ	



              
σ 

Ηo = Σ tij (aiσ
 ajσ + H.c.) + Σ αi ni 

† 

<ij> i 

Ø   One-band tight binding model 



Zero Differential Overlap (ZDO) Approximation 

[ij|kl] = [ij|kl]δij δkl 

[ij|kl] = ∫φi
*(1) φj(1) (e2/r12) φk

*(2) φl(2) d3r1d3r2 



Ø 	
  Hückel	
  model	
  +	
  on-­‐site	
  repulsions	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  [ii|jj]	
  =	
  0	
  for	
  i	
  ≠	
  j	
  ;	
  	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  [ii|jj]	
  =	
  Ui	
  for	
  i=j	
  

Hubbard Model (1964) 

∧ ∧ 
HHub	
  =	
  Ho	
  +	
  Σ	
  Ui	
  ni	
  (ni	
  -­‐	
  1)/2	
  i 

∧ ∧ 

Ø   In large U/t limit, Hubbard model gives antiferromagnetic 
     Heisenberg Spin-1/2 model 



Pariser-Parr-Pople (PPP) Model (1953) 

               zi are local chemical potentials. 

Ø  Ohno parametrization: 
  
              V(rij) = { [ 2 / ( Ui + Uj ) ]2 + rij

2 }-1/2 
 
 
Ø  Mataga-Nishimoto parametrization:  
 
              V(rij) = { [ 2 / ( Ui + Uj ) ] + rij   }-1 

[ii|jj] parametrized by V( rij )    
 
           HPPP = HHub + Σ V(rij) (ni - zi) (nj -  zj) i>j	
  



The Hamiltonian for N carbon atoms spans a Fock 
space of dimensionality 4N.  
 
Routine Exact Diagonalization of the Hamiltonian  
matrix is viable for N ≤ 18 sites (# of triplets for 
18 sites and 18 electrons is 901,931,939). 
 
For larger systems, one needs approximate methods. 
 
For quasi-one-dimensional models, most accurate 
method is the density matrix renormalization group 
(DMRG) method. 
 
We have shown that the method is highly accurate  
for PPP models, even though it is a long-range  
Interacting model. 
  
                          J. Phys. Cond. Matt. doi:10.1088/0953-8984/24/11/115601 









Implementation of DMRG Method 
Ø   Diagonalize a small system of say 4 sites with two on the  
     left and two on the right 
                     ●  ●  ●  ●    {|L>} = {|   >, |    >, |   >, |    >} 
                    1       2     2’    1’ 
 
        H = S1⋅ S2 + S2⋅ S2’ + S2’⋅ S1’       |ψG> =  Σ Σ CLR|L>|R> 
                                                                      L   R 

      The summations run over the Fock space dimension L 

 
Ø   Renormalization procedure for left block 
           Construct density matrix         ρL,L’  =  ΣR CLR CL’R 

                 Diagonalize density matrix     ρ |µλ > = µλ |µλ >,  
           Construct renormalization matrix 

                                   OL = [µ1 µ2 · · · µm]  is L x m; m < L 

Ø    Repeat this for the right block                                   



Ø   HL = OL HLOL
† ; HL is the unrenormalized L x L left-block 

     Hamiltonian matrix, and HL is renormalized m x m  
     left-block Hamiltonian matrix. 

Ø   Similarly, necessary matrices of site operator of left block  
     are renormalized. 
 
Ø   The process is repeated for right-block operators with OR 
 
Ø   The system is augmented by adding two new sites 

●	
  	
  ●	
  	
  ●	
   ●	
  	
  ●	
  	
  ●	
  
1       2      3       3’    2’     1’ 

Ø   The Hamiltonian of the augmented system is given by 

3 3 2 3 3 2tot L RH H H s s s s s sʹ′ ʹ′ ʹ′= + + ⋅ + ⋅ + ⋅% % % %



Ø  Hamiltonian matrix elements in fixed DMEV Fock space 
    basis 

Ø   Obtain desired eigenstate of augmented system   

Ø   New left and right density matrices of the new eigenstate 

Ø   New renormalized left and right block matrices  

Ø   Add two new sites and continue iteration 
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 Finite system DMRG 

After reaching final system size, sweep through the 
system like a zipper   

While sweeping in any direction (left/right), increase  
corresponding block length by 1-site, and reduce the 
other block length by 1-site 

If the goal is a system of 2N sites, density matrices  
employed enroute were those of smaller systems. 

The DMRG space constructed would not be the  best 

This can be remedied by resorting to finite DMRG 
 technique 





The DMRG Technique - Summary 

Ø  DMRG method involves iteratively building a large system 
    starting from a small system. 
 
Ø  The eigenstate of superblock consisting of system and  
    surroundings is used to build density matrix of system. 
 
Ø  Dominant  eigenstates (∼ 103) of  the density matrix are  
    used to span the Fock space of the system. 
 
Ø  The superblock size is increased by adding new sites. 

Ø  Very accurate for one and quasi-one dimensional systems  
    such as Hubbard, Heisenberg spin chains and polymers 

S.R. White (1992) 









DMRG Studies of Fused Azulenes 



Topological representation of fused azulenes 

infinite DMRG scheme for building fused azulene 



Finite DMRG build up 
of the fused azulene 
structure  



The DMRG results were compared against noninteracting 
model results and a cut-off of m=400 was used in all 
Calculations. 



Ground state energy per site shows smooth extrapolation 
To the thermodynamic limit 



Determining spin of the ground state  
DMRG calculations are carried out in a given MS sector 
 
We calculate lowest eigenvalue in the MS =0 space 
 
    The spin of the state can be S = 0, 1, 2, . . . . 
 
We also calculate the lowest eigenvalue in the MS =1 space 
  
     if Elowest (MS = 0)  <  Elowest (MS = 1), ground state spin is 0 
 
     if Elowest (MS = 0)  =  Elowest (MS = 1), ground state spin is ≥ 1 
 
We calculate the lowest eigenvalue in the MS =2 space 
  
     if Elowest (MS = 0)  =  Elowest (MS = 1) <  Elowest (MS = 2), then 
     the ground state spin is 1 



We	
  studied	
  spin	
  gaps,	
  Δn	
  =	
  Elowest	
  (MS	
  =	
  0)-­‐Elowest	
  (MS	
  =	
  n),	
  

	
  for	
  fused	
  systems	
  with	
  different	
  sizes	
  



Phys. Rev. B Rapid Communications (2012) DOI:10.1103/PhysRevB.86.180403 



oligoacenes 

The result also holds for 
large U/t =20 as well as for 
spin – ½  antiferromagnetic 
Heisenberg model. 
 
The spin model shows many  
more crossovers as we 
can study larger systems. 
 

Phys. Rev. B Rapid Communications (2012) DOI:10.1103/PhysRevB.86.180403 

Oligoacene 





Spin densities in the ground state of the ring in the 
triplet states  

The spin densities are smeared over the ring 

The bond orders  
in the ground state are nearly uniform in the interior. 
Implies Peierls’ distortion is not favored.  



Is the high spin ground state due to degenerate 
Partially Occupied Molecular Orbitals (flat band 
ferromagnetism)? 

Energies of MOs near the Fermi level as a function of size 



Do we need extended range frustration for the ground  
state spin to cascade with systems size? 
 
DMRG studies on polyazulenes yield singlet ground state  
at  all system sizes with spin gap extrapolating to ~1.08 eV. 

All-trans polyazulene 



Ground state charge  
density in the rings.  
Seven site rings are  
positively charged 
and five site rings are  
negatively charged 

Dipole moment in the  
ground state as a  
function of oligomer  
size. 



Charge gap EC = Limit E(N,P+) + E(N,P-) – 2 E(N,P) 
                             N→ ∞ 
 
Measures the energy for disproportionation of   
two long neutral chains into two well separated  
oppositely charged chains 

Ec = 0.4 eV 



Carbon Nano Ribbons 



Spin Gaps in the Systems 
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