First-principles dynamical mean-field perspective on electron correlation and magnetism in oxide heterostructures

Frank Lechermann

I. Insitute for Theoretical Physics, University of Hamburg, Germany

The investigation of oxide heterostructures provides the possibility for exploring novel composite materials beyond nature's original conception (see [1] for a recent review). Emerging electronic phases within the interface region between e.g. bulk compounds of band- and/or Mott-insulating character pose a formidable problem beyond the scope of either conventional density functional theory (DFT) or minimal model-Hamiltonian approaches. By means of the charge self-consistent combination of DFT with dynamical mean-field theory (DMFT) an advanced realistic many-body methodology is available that may tackle this challenge. In this talk the theoretical framework will be presented and the application to intricate heterostructure problems discussed.

I thereby mainly focus on two concrete problems. First, the δ -doping of distortedperovskite Mott-insulating titanates with a single SrO layer along the [001] direction gives rise to a rich correlated electronic structure [2]. From a realistic superlattice study, layer- and temperature-dependent multi-orbital metal-insulator transitions are revealed. Furthermore, breaking the spin symmetry in δ -doped GdTiO₃ results in blocks of ferromagnetic itinerant and ferromagnetic Mottinsulating layers which are coupled antiferromagnetically. Second, DFT+DMFT insight [3] into the metallic state and the key mechanism for itinerant ferromagnetism at the band-band insulating LaAlO₃/SrTiO₃ interface will be provided. [1] J. Chakhalian, J. W. Freeland, A. J. Millis, C. Panagopoulos and J. M. Rondinelli, RMP 86, 1189 (2014) [2] F. Lechermann and M. Obermeyer, arXiv:1411.1637 (2014) [3] F. Lechermann, L. Boehnke, D. Grieger and C. Piefke, PRB 90, 085125 (2014)