New perspectives in superconductors

E. Bascones

Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)

Outline

Talk I: Correlations in iron superconductors

- Introduction to iron superconductors
- Correlations in single-orbital. Cuprates
- Correlations in multiorbital systems.
 - Equivalent orbitals. The Hund metal
 - Unequivalent orbitals. Iron superconductors
- The magnetic state phase diagram
- Comparison with experiments. Iron superconductors in a (U,J_H) phase diagram

□ Talk II: A few new superconducting materials

- Superconductivity and competing phases
 - CrAs and MnP
 - Ti-oxypnictides. Superconductivity emerging from a nematic state?
- New quasi-1D superconductors
- Hydrides. A new record for high-Tc?

A few superconducting compounds

Fig: http://www.ccas-web.org/superconductivity

Superconducting families

Elements and simple compounds Nb, NbN	A15's Nb ₃ Ge	Doped semiconductors CB _x	Intercalated graphite C ₆ Ca
Hydrides (<mark>PdH</mark>)	Dichalcogenides	Chevrel phases	Magnesium
	NbSe ₂	PbMo ₆ S ₈	diborides MgB ₂
Bismuthates	Fullerenes <mark>RbCs₂C₆₀</mark>	Borocarbides	Bismuth sulfides
Ba _{1-x} K _x BiO ₃		YPd ₅ B ₃ C _{0.3}	YbO _{0.5} F _{0.5} BiS ₂
Heavy fermions and Pu	Cuprates YBa ₂ Cu ₃ O ₇	lron	Organic spcs (charge
superconductors		superconductors	transfer salts)
UPd ₂ Al ₃ , PuCoGa ₅		FeSe, LiFeAs	(BEDT-TTF) ₂ X
Strontium ruthenate Sr ₂ RuO ₄	Layered nitrides Ca(THF)HfNCI	Ferrromagnetic superconductors UGe ₂	Non centrosymmetric superconductors SrPtSi ₃
Interface superconductivity LaAlO ₃ /SrTiO ₃	Hidrated cobaltites Na _x (H ₃ O) _z CoO ₂ .yH ₂ O	Topological superconductors Cu _x (PbSe) ₅ (Bi ₂ Se ₃) ₆	Aromatic hidrocarbides K _x -Picene

Hirsch et al, Physica C 514, 1 (2015)

3d based superconductors

Group ↓Perio	o→1 d	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H																	2 He
2	3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
3	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 CI	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
6	55 Cs	56 Ba	*	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	**	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
		*	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	/1 Lu	
		**	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	

Fig:webelements.com

Wu et al, Nat. Comm. 5, 5508 (2014) Kotegawa et al, J. Phys. Soc. Jpn. 83, 093702 (2014)

E. Bascones leni@icmm.csic.es

Wu et al, Nat. Comm. 5, 5508 (2014) Kotegawa et al, J. Phys. Soc. Jpn. 83, 093702 (2014)

E. Bascones leni@icmm.csic.es

Wu et al, Nat. Comm. 5, 5508 (2014)

Kotegawa et al, Phys. Rev. Lett. 114, 117002 (2015)

CrAs

CrAs

E. Bascones leni@icmm.csic.es

ICMM 💥 CSIC

- □ Initial claims in favour of QCP from CrAs and MnP from resistivity measurements
- □ In CrAS: First order transition and phase separation at P_c from NMR, neutron diffraction and muon spectroscopy

Superconductivity in CrAs and MnP: Summary

Talk by J. Cheng next week

A=Na₂, Ba, (SrF)₂ ... Titanium oxypnictides ATi₂Pn₂O

Nominal charge +2

Titanium oxypnictides ATi_2Pn_2O A=Na₂, Ba, (SrF)₂...

Nominal charge +2

E. Bascones

leni@icmm.csic.es

Titanium oxypnictides ATi_2Pn_2O $A=Na_2$, Ba, $(SrF)_2$...

Nominal charge +2

Fig: Hosono et al, Sci. Tech. Adv. Mater. 16, 033503 (2015)

Titanium oxypnictides ATi₂Pn₂O: ordered state

- $Na_2Ti_2As_2O: T_s^{320} K$
- Na₂Ti₂Sb₂O: T_s ~120 K
- BaTi₂As₂O: T_s ~200 K

Lorenz et al, Int. J. Mod. Phys. B 28, 1430011 (2014)

Superconductivity in BaTi₂Sb₂O

Tajima et al, J. Phys. Soc. Jpn. 81, 103706 (2012)

Superconductivity in substituted BaTi₂Pn₂O

Superconductivity in substituted BaTi₂Pn₂O

Superconductivity in BaTi₂Sb₂O

Gooch et al, PRB 88, 064510 (2013) Kitagawa et al, PRB 87, 060510 (2013)

E. Bascones leni@icmm.csic.es

Small mass enhancement ~1-1.5

Small mass enhancement ~1-2

FS **BaSb₂Ti₂O** Singh , NJP 14, 123003 (2013) Na2Sb2Ti2O (Ts~120K, no SC)

- Inconmensurate CDW/SDW Q_M=(0.22,0.22,0)π/a
 Pickett, PRB 58, 4335 (1998)
- Inconmensurate CDW Q_x=(0.27,0,0)π/a or (0,0.27,0)π/a Possible second transition with Q_M
 Biani et al, Inorg. Chem. 7, 5810 (1998)

Small mass enhancement ~1-2

Na2Sb2Ti2O (Ts~120 K, no SC)

- Inconmensurate CDW/SDW Q_M=(0.22π,0.22π,0)
 Pickett, PRB 58, 4335 (1998)
- Inconmensurate CDW Q_X=(0.27π,0,0) or (0,0.27π,0) Possible second transition with Q_M Biani et al, Inorg. Chem. 7, 5810 (1998)

Commensurate SDW

Na₂Sb₂Ti₂O (Ts~120 K, no SC)

Na₂As₂Ti₂O (Ts~200 K, no SC)

FS **BaSb₂Ti₂O** Singh , NJP 14, 123003 (2013)

> μ ~0.5 μ_B Wang & Lu, JPCM 25, 365501 (2013)

Blocked checkerboard SDW

Double stripe SDW $Q_{XM} = (\pi, 0)$ or $(0, \pi)$

Fig: Hosono et al, Sci. Tech. Adv. Mater. 16, 033503 (2015)

Small mass enhancement ~1-2

BaSb₂Ti₂O (Ts~54 K, SC~1.2 K)

Double stripe SDW $Q_{XM} = (\pi, 0) \text{ or } (0, \pi)$ $\mu \sim 0.2 \mu_B$

Singh , NJP 14, 123003 (2013)

CDW Q= (π,π) Phonon anomaly

Subedi, PRB 87, 054506 (2013)

Fig: Hosono et al, Sci. Tech. Adv. Mater. 16, 033503 (2015)

Small mass enhancement ~1-2

BaSb₂Ti₂O (Ts~54 K, SC~1.2 K)

Double stripe SDW Q_{XM} =(π ,o) or (0, π) μ ~0.2 μ_B

Singh , NJP 14, 123003 (2013)

Phonon mediated SC s-wave, Tc ~5 K

Subedi, PRB 87, 054506 (2013)

Fig: Hosono et al, Sci. Tech. Adv. Mater. 16, 033503 (2015)

□ NMR/NQR in **BaTi₂Sb₂O** at Sb site

- Excludes Inconmensurate CDW/SDW correlations.
- Breaking of Tetragonal symmetry at Sb site

Kitagawa et al, PRB 87, 060510 (2013)

□ NMR/NQR in **BaTi₂Sb₂O** at Sb site

- Excludes Inconmensurate CDW/SDW correlations.
- Breaking of Tetragonal symmetry at Sb site

Kitagawa et al, PRB 87, 060510 (2013)

No superlattice peaks in high sensitivity electron diffraction

□ NMR/NQR in **BaTi₂Sb₂O** at Sb site

- Excludes Inconmensurate CDW/SDW correlations.
- Breaking of Tetragonal symmetry at Sb site

Kitagawa et al, PRB 87, 060510 (2013)

No superlattice peaks in high sensitivity electron diffraction

□ NMR/NQR in **BaTi₂Sb₂O** at Sb site

- Excludes Inconmensurate CDW/SDW correlations.
- Breaking of Tetragonal symmetry at Sb site

Kitagawa et al, PRB 87, 060510 (2013)

No superlattice peaks in high sensitivity electron diffraction

Superconductivity emerging from a nematic state?

Intra unit cell nematic state with d-wave charge ordering

K ₂ Cr ₃ As ₃	Т _с ~6.1 К		
Rb ₂ Cr ₃ As ₃	Т _с ~4.8 К		
Cs ₂ Cr ₃ As ₃	T _c ~2.2 K		

Bao et al, arXiv:1412.0067, Tang et al, arXiv:1412.2596 Tang et al, arXiv: 1501.02065

Double wall nanotubes As (outer shell) Cr (inner shell)

Quasi-1d lattice structure

Bao et al, arXiv:1412.0067

- □ Only very few quasi-1d superconducting materials
- □ Interacting 1d electronic systems : Luttinger liquids

□ Only a few quasi-1d superconducting materials

□ Interacting 1d electronic systems : Luttinger liquids

□ Very large Sommerfeld constant γ (C_e = γ T) ——→ Correlated system

 $\gamma \propto m$ *~3-4 m in K_2Cr_3As_3

Only a few quasi-1d superconducting materials

Interacting 1d electronic systems : Luttinger liquids

Kong et al, arXiv:1501.01554

Quasi-1d A₂Cr₃As₃ compounds: Fermi surface

3d Fermi pocket

Quasi-1d Fermi pockets

Large density of states

Jiang et al, arXiv:1412.1309

Magnetic tendencies

In-Out Coplanar Antiferromagnetic Ordering (ferromagnetic ordering along the chain)

Wu et al, arXiv:1412.1309

Magnetic tendencies

 J_1

In-Out Coplanar Antiferromagnetic Ordering (ferromagnetic ordering along the chain)

Idea later supported by explicit calculations,; electron-phonon superconductivity also claimed

In favour of triplet superconductivity

It seems consistent with the presence of line nodes.

Pang et al, arXiv:1501.01880

In favour of triplet superconductivity

Zhi et al, arXiv:1505.05743

Zhi et al, arXiv:1501.00713

	Ε.	Bascones	leni@icmm.csic.es
--	----	----------	-------------------

Against triplet superconductivity

Tc insensitive to impurities

Hc parallel to the chains Pauli limited.
 Hc perpendicular to the chains not Pauli limited.

Singlet pairing with spins blocked along the chain direction?

Balakirev et al, arXiv:1505.05547

Lack of inversion center: spin-triplet mixing?

Fig: http://www.ccas-web.org/superconductivity

$$T_c = \frac{\omega_{ln}}{1.2} exp\left(\frac{-1.04(1+\lambda)}{\lambda - \mu^*(1+0.62\lambda)}\right)$$

Characteristic / phonon frequency

Electron-phonon coupling constant

Coulomb pseudopotential

Large
$$\lambda$$
 + high ω_{ln} \implies High T_c

- **Large** ω_{ln} : small mass
- Large λ: as H⁺ ion lacks inner structure. strong bare electron ion interaction

 $\hfill \Box$ High Density of States. Small μ^* due to screening

Aschroft, PRL 21, 1748 (1968)

Städele & Martin, PRL 84, 6070 (2000)

Aschroft, PRL 21, 1748 (1968)

Hydrogen-rich alloys: high-Tc superconductors?

 MH_4

M: C, Si, Ge, Sn group IV

- High frequency phonons (H-ions)
- Compensated semimetal with high density of states
- Wideband (µ* favourable)
- Large electron-ion interactions (H-M)
- Low and large q- electron-phonon coupling

Aschroft, PRL 92, 187002 (2004)

Possibility to tune Tc through M substitutions

Hydrogen-rich alloys: search for high-Tc superconductors

Hydrogen-rich alloys: search for high-Tc superconductors

$Ca_m H_n$

stability of different compositions & structures as a function of pressure

Hydrogen-rich alloys: search for high-Tc superconductors

T_c ~80 K @ 160 GPa

Gao et al, PRB 84, 06411 (2011) T_c~220 K @ 150 GPa

Wang et al, PNAS 109, 6463 (2012) T_c~100 K @ 250 GPa

Li et al, PNAS 107, 15708 (2010)

Superconductivity in SiH₄ under high-pressure

Eremets et al, Science 319, 1506 (2008)

Sulfur hydrides: search for high-Tc superconductors

H₂S under pressure

P2/c (P>8,7 GPa) P2/c (8,7-29 GPa) Pm2c1 (29-65 GPa) P1 (80-158 GPa) C

Cmca (P>158 GPa)

Li et al, J. Chem. Phys. 140, 174712 (2014)

Metallic P> 130 Gpa Tc~33-60 K Metallic Tc~80 K @158 GPa

Sulfur hydrides: search for high-Tc superconductors

H₂S under pressure

P2/c (P>8,7 GPa) Pc (8,7-29 GPa) Pm2c1 (29-65 GPa) P1 (80-158 GPa) Cmca (P>158 GPa)

ICMM CSIC

E. Bascones

leni@icmm.csic.es

Drozdov, Eremets,Troyan arXiv:1412.0460 Drozdov et al, arXiv:1506.08190

E. Bascones leni@ic

leni@icmm.csic.es

Drozdov et al, arXiv:1506.08190

Drozdov, Eremets,Troyan arXiv:1412.0460 Drozdov et al, arXiv:1506.08190

E. Bascones le

leni@icmm.csic.es

E. Bascones

leni@icmm.csic.es

Stability of H₂S under pressure revisited

Duan et al, PRB 91, 180502 (2015), Bernstein et al, PRB 91, 060511 (2015), Errea et al, PRL 114, 157004 (2015)

ICMM CSIC

Duan et al, Sci. Rep. 4, 6968 (2014)

H₃S under high-pressure: Calculations revisited

Different approximations/ab-initio codes

$$T_c = \frac{\omega_{ln}}{1.2} exp\left(\frac{-1.04(1+\lambda)}{\lambda - \mu^*(1+0.62\lambda)}\right)$$

□ Large e-ph coupling: covalent bonds

Strongly anharmonic

(λ : 2.64 →1.84, Tc: 250K →194 K) Isotope efffect Tc[~]M^{-α} α: 0.5 →0.35

Errea et al PRL 114, 157004(2015), Bernstein et al, PRB 91, 060511(2015), Flores-Livas et al, arXiv:1501.06336, Akashi et al, arXiv: 1502:00936 Zhang et al, arXiv: 1502.02607, Heil-Boeri, arXiv: 1507.02522,

E. Bascones ler

leni@icmm.csic.es

Duan et al, Sci. Rep. 4, 6968 (2014)

Prospects for new high-Tc superconductors

Material	Тс	Ref.
H ₂ Br	10 K @ 240 GPa	Duan et al, arXiv: 1504.01196
PtH	16 K @ 100 GPa	Szcesniak-Zemla, arXiv 1504.01349
H ₄ I	13.7 K @ 150 GPa	Shamp & Zurek, arXiv:1507.02616
HSe	39 K @ 250 GPa	Zhang et al, arXiv:1502.02607
PoH ₄	41.1 K @ 200 GPa	Liu et al, 1503.08587
$GeH_4(H_2)_2$	80 K @ 250 GPa	J. Phys. Chem. C 116, 5225 (2012).
GaH ₃	80 K @ 160 GPa	Gao et al, PRB 84, 06411 (2011)
SiH ₄ (H ₂) ₂	100 K @ 250 GPa	Li et al, PNAS 107, 15708 (2010)
H ₄ Te	104 K @ 170 GPa	Zhong et al, 1503.00396
H ₃ Se	116 K @ 200 GPa	Zhang et al, arXiv:1502.02607
GeH ₃	140 K @ 180 GPa	Abe & Aschroft. PRB 88, 174110 (2013).
$H_{3}O_{0.5}S_{0.5}$	164 K	Heil-Boeri, arXiv:1507.02522
CaH ₆	235 K @150 GPa	Wang et al, PNAS 109, 6463 (2012)

New perspectives in superconductors

manganese phosphide

CrAs and MnP, two new superconducting with an helimagnetic parent phase and a possible non trivial relation with magnetism

□ Titanium oxypnictides, superconductivity could emerge from a nematic state

Quasi-1d A2Cr3As3

Triplet SC or Singlet with spin blocking?

 \Box H₂S under pressure Possible record of Tc Electron-phonon superconductor

E. Bascones

New perspectives in superconductors

Many other recently discovered superconductors: Zr₅Sb_{3-x}Ru_x, Ta₄Pd₃Te₁₆, doped ferromagnetic semiconductor SmN, thermoelectric CsPb_xBi_{4-x}Te₆, BiS₂ layered materials,

 Dichalcogenides: metallic NbSe₂, ... (CDW revisited, single layer), semiconducting MoS₂ ...(superconductivity in gated single layer or high pressure) WTe₂ (SC under pressure suppressing magnetoresistance)

Strong activity in iron superconductors, cuprates, fullerenes, heavy fermions

M. Capone, N. Hussey, Yakovenko talk

Superconductivity in heterosctructures

Topological superconductivity and search for Majorana Fermions

J. Alicea, E.A Kim talk

