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Hybridization picture.  

Mott Phil Mag, 30,403,1974

kEf

E(k)

unitary operator with an associated quantum number, the “Kramers index”K (25). The Kramers

index, K = (−1)2J of a quantum state of total angular momentum J defines the phase factor

acquired by its wavefunction after two successive time-reversals, Θ2|ψ⟩ = K|ψ⟩ = |ψ2π⟩. An

integer spin state |α⟩ is unchanged by a 2π rotation, so |α2π⟩ = +|α⟩ and K = 1. However,

conduction electrons with half-integer spin states, |kσ⟩, where k is momentum and σ is the spin

component, change sign, |kσ2π⟩ = −|kσ⟩, so K = −1.

While conventional magnetism breaks time-reversal symmetry, it is invariant under dou-

ble reversals Θ2 so the Kramers index is conserved. However in URu2Si2, the hybridization

between integer and half-integer spin states requires a quasiparticle mixing term of the form

H = (|kσ⟩Vσα(k)⟨α| + H.c) in the low energy fixed point Hamiltonian that does not conserve

the Kramers index. After two successive time-reversals

|kσ⟩Vσα(k)⟨α| → |kσ2π⟩V 2π
σα (k)⟨α2π| = −|kσ⟩V 2π

σα (k)⟨α|. (1)

Since the microscopic Hamiltonian is time-reversal invariant, it follows that Vσα(k) = −V 2π
σα (k);

the hybridization thus breaks time-reversal symmetry in a fundamentally new way, playing the

role of an order parameter that, like a spinor, reverses under 2π rotations. The resulting “hastatic

(Latin: spear) order”, is a state of matter that breaks both single and double time-reversal sym-

metry and is thus distinct from conventional magnetism.

Indirect support for time-reversal symmetry-breaking in the hidden order phase of URu2Si2 is

provided by recent magnetometry measurements that indicate the development of an anisotropic

basal-plane spin susceptibility, χxy, at the hidden order transition (16). As noted elsewhere (9),

χxy is a conduction electron response to scattering off the hidden order (c.f. Fig. 2.), leading to

a scattering matrix of the form

t(k) = (σx + σy)d(k) (2)

where d(k) is the scattering amplitude. This scattering matrix has been linked to a spin nematic

4

Maple + Wohlleben, 1972

Allen and Martin, 1979

“In SmB6 and high-pressure SmS a very small gap separates occupied from 
unoccupied states, this in our view being due to hybridization of 4f and 4d 
bands.” Mott 1974
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FIG. 1. The electrical resistivity p as a function of tem-
perature (a) and inverse temperature (b). (b) Q = 1 bar,
Q = 24 kbar, = 25 kbar, = 33 kbar, A = 45 kbar, and
A = 53 kbar. The solid lines in (b) are fits by the function
[p(T)] ' = [po(P)] ' + (p„,(P) exp[A(P)/k&T]) ', described
in the text.
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FIG. 2. The pressure dependences of the activation gap 5 (a)
and residual carrier density no = I/R (T =H0) (b). Dashed line
indicates approximate pressure for disappearance of A. Solid
lines are guides for the eye.

linearly -0.5 K/kbar from its ambient pressure value of
41 K. Above 45 kbar, the resistivity is metallic and it is
no longer possible to extract an activation gap.
Our measurements indicate a gap instability at a critical

pressure P,. between 45 and 53 kbar, in disagreement with
the conclusions of previous workers [5,6], who found
that 5 vanished continuously near 60 kbar. In one of
these studies [5] the sample was of demonstrably lower
quality than our own, with a significantly smaller ambient
pressure 6 = 33 K and a much smaller po —10 mA cm,
both symptomatic of Sm vacancies or defects introduced
in powdering [8]. Our measurements suggest that the gap
instability is a feature only of the highest quality samples,
as P,. increases markedly with reduced sample quality,
passing out of our experimental pressure window of
180 kbar for po ~ 0.1 A cm. We further believe that the
simple activation fits used to determine 6 in both earlier
experiments were overly weighted by the temperature
independent resistivity below -3.5 K, particularly near
P, . Figure 1(b) demonstrates that near P, the range
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FIG. 3. The absolute value of the Hall constant RH of SmB6
as a function of inverse temperature.

of temperatures over which simple activation fits are
linear becomes increasingly limited and problematic to
define with increased pressure. In contrast, our parallel
resistor formulation provides uniformly good fits over this
pressure range, and consequently yield a more accurate
determination of A.
Since there is no evidence in SmB6 for a discontinuous

structural change at or below 60 kbar [9], the sudden dis-
appearance of 5 suggests that it is not a simple hybridiza-
tion gap, for in that case the insulator-metal transition
occurs by band crossing and the gap is suppressed con-
tinuously to zero. A valence instability can be similarly
discounted, as high pressure x-ray absorption measure-
ments [10] find that the Sm valence increases smoothly
from +2.6 to +2.75 between 1 bar and 60 kbar.
We have used Hall effect measurements to study the

evolution of the camers in the vicinity of P, The Hall
constant RH is plotted as a function of 1/T in Fig. 3 for
pressures ranging from 1 bar to 66 kbar. We find that
RH is negative for temperatures T between 1.2 and 40 K
and at all pressures, as well as independent of magnetic
fields as large as 18 T. As has been previously noted at
1 bar [11], RH is both large and extremely temperature
dependent with a maximum at 4 K, at each pressure
becoming temperature independent below -3 K. It has
been proposed [12] that this temperature dependence
for RH is characteristic of Kondo lattices, rejecting
a crossover from high temperature incoherent to low
temperature coherent skew scattering. However, similar
maxima in RH(T) occur in doped semiconductors as in-
gap impurity states dominate intrinsic activated processes
with reduced temperature [13].
We do not address the full temperature dependence

of RH here, instead limiting our discussion to the

1630
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conduc-vity(
Plateau
Cooley, Aronson, et al. 1995
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The,rise,of,Topology.
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von Klitzing, Dorda & Pepper (1980)

Integer Quantum Hall

23

FIG. 20 (a)-(d) Energy and momentum dependence of the local den-
sity of states for the Bi2Se3 family of materials on the [111] surface.
A warmer color represents a higher local density of states. Red re-
gions indicate bulk energy bands and blue regions indicate a bulk
energy gap. The surface states can be clearly seen around Γ point
as red lines dispersing inside the bulk gap. (e) Spin polarization of
the surface states on the top surface, where the z direction is the sur-
face normal, pointing outwards. Adapted from Zhang et al., 2009
and Liu et al., 2010.

there is a key difference between the surface state theory for
3D topological insulators and graphene or any 2D Dirac sys-
tem, which is the number of Dirac cones. Graphene has four
Dirac cones at low energies, due to spin and valley degener-
acy. The valley degeneracy occurs because the Dirac cones
are not in the vicinity of k = 0 but rather near the two Bril-
louin zone cornersK and K̄. This is generic for a purely 2D
system: only an even number of Dirac cones can exist in a TR
invariant system. In other words, a single 2D Dirac cone with-
out TR symmetry breaking can only exist on the surface of a
topological insulator, which is also an alternative way to un-
derstand its topological robustness. As long as TR symmetry
is preserved, the surface state cannot be gapped out because
no purely 2D system can provide a single Dirac cone. Such a
surface state is a “holographic metal” which is 2D but deter-
mined by the 3D bulk topological property.
In this section we discussed the surface states of an insula-

tor surrounded by vacuum. This formalism can be straightfor-

wardly generalized to the interface states between two insu-
lators (Fradkin et al., 1986; Volkov and Pankratov, 1985). In
these pioneering works, the interface states between PbTe and
SnTe were investigated. The interface states consist of four
Dirac cones. Therefore, they are topologically trivial and not
generally stable under TR invariant perturbations. The surface
states of topological insulators are also similar to the domain
wall fermions of lattice gauge theory (Kaplan, 1992). In fact,
domain wall fermions are precisely introduced to avoid the
fermion doubling problem on the lattice, which is similar to
the concept of a single Dirac cone on the surface of a topolog-
ical insulator.
The helical spin texture described by the single Dirac cone

equation (34) leads to a general relation between charge cur-
rent density j(x) and spin density S(x) on the surface of the
topological insulator (Raghu et al., 2010):

j(x) = v[ψ†(x)σψ(x)× ẑ] = vS(x)× ẑ. (35)

In particular, the plasmon mode on the surface generally car-
ries spin (Burkov and Hawthorn, 2010; Raghu et al., 2010).

C. Crossover from three dimensions to two dimensions

From the discussion above, one can see that the models
describing 2D and 2D topological insulators are quite simi-
lar. Both systems are described by lattice Dirac-type Hamil-
tonians. In particular, when inversion symmetry is present,
the topologically nontrivial phase in both models is charac-
terized by a band inversion between two states of opposite
parity. Therefore, it is natural to study the relation between
these two topological states of matter. One natural question
is whether a thin film of 3D topological insulator, viewed as
a 2D system, is a trivial insulator or a QSH insulator. Be-
sides theoretical interest, this problem is also relevant to ex-
periments, especially in the Bi2Se3 family of materials. In-
deed, these materials are layered and can be easily grown as
thin films either by MBE (Li et al., 2010, 2009; Zhang et al.,
2009), catalyst-free vapor-solid growth (Kong et al., 2010),
or by mechanical exfoliation (Hong et al., 2010; Shahil et al.,
2010; Teweldebrhan et al., 2010). Several theoretical works
studied thin films of the Bi2Se3 family of topological insu-
lators (Linder et al., 2009; Liu et al., 2010; Lu et al., 2010).
Interestingly, thin films of proper thicknesses are predicted to
form a QSH insulator (Liu et al., 2010; Lu et al., 2010), which
may constitute an approach for simpler realizations of the 2D
QSH effect.
Such a crossover from 3D to 2D topological insulators can

be studied from two points of view, either from the bulk states
of the 3D topological insulator or from the surface states.
We first consider the bulk states. A thin film of 3D topo-
logical insulator is described by restricting the bulk model
(31) to a QW with thickness d, outside which there is an in-
finite barrier describing the vacuum. To establish the con-
nection between the 2D BHZ model (2) and the 3D topo-
logical insulator model (31), we start from the special case

Qi,and,Zhang,,Rev.,Mod,Phys,(2010).

Z2 Topological Insulators

BERRY,CONNECTION,
Thouless,et,al,,(1982)

�ak = i
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n=1,2N
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FIG. &. The potential in the one-dimensional lattice.
(+) A periodic potential. (b) The potential corresponding
to Goodwin's "tight binding" approximation.

from the surface, The difference between the
two surface waves is one of symmetry y: The type
of crystal envisaged here possesses a center of
symmetry and the wave functions are therefore
either symmetrical or antisymmetrical, depend-
ing upon whether they have the same or opposite
signs on the two edges of the crystal.
The equations for the boundary curves of

Fig, 2 are similar to those met with by applying
Slater's method of finding three-dimensiona1
wave functions. ' The wave function in an in-
dividual cell is expanded in terms of two func-
tions g and u which are symmetrical and anti-
symmetrical about the center of the cell. If the
wave function is required to be of the form
/=exp (ikx)s(x) where v(x) has the period "a"
of the lattice, one finds by a familiar process that

tan' (ka/2) =—(g'/g) /(u'/u),
where g and I are the values at the edge of the
cell of the functions g and I and g' and u' are
corresponding derivatives. The allowed band's of
energies occur where only one of the ratios (g'/g)
and (u'/u) is negative; the forbidden regions
occur where neither or both are negative. Certain
crossings of the curves of Fig. 1 are possible;
these may occur between g'/g= ~ and u'/u=0
and between g'/g=0 and u'/u= ~; no other
crossings are possible. It is, therefore, seen that
all possibilities for the occurrence of surface
states are represented in Fig. 2.

7 J. C. Slater, Phys. Rev. 45, 794 (1934).

In Goodwin's work surface states have been
found to occur for the case of "tight binding"—
that is, the case of large lattice constant and
uncrossed bands. Goodwin's states arise from his
use of a potential which is more realistic than
ours; his potential is shown in Fig. 1(b). We see
that it is periodic except for the outer edges of
the end cells, where it is somewhat higher than
in the other cells. If we make his potential
periodic as indicated by the dotted lines, then the
diagram for the states will be as in Fig. ~. If we
now correct the energies of these wave functions
by taking as a perturbation the difference be-
tween the periodic potential and Goodv in's, we
hnd that two of the wave functions acquire
energies above the boundary curves. These two
functions will be surface states having wave
functions damped towards the interior of the
crystal. The origin of.. these states is essentially
different from the origin of the states occurring
after the bands have crossed. They will always
lie near the band from which they originate. If
we had used Goodwin's potential, we should
have found these surface states lying just above
each energy band in both the case of uncrossed
and crossed bands. In the case of crossed bands
there would then be four surface states. Goodwin,
following the treatment of Maue, has also con-
sidered the case of almost free electrons. He uses a"'

periodic potential without edge effects in the end
cells. The surface states he obtains in this way
are of the same type as ours, and in Appendix 5
we show that the conditions under which he
obtains them are equivalent to the crossing of

I

I

ap

FIG. 2. Energy spectrum for a one-dimensional lattice with
eight atoms.
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Dirac cone surface states.

Figure 3

Showing (a) topologically trivial band insulator with Z
2

= +1 (b) band-crossing of even and odd
parity states at an odd number of high symmetry points leads to a topological insulator with
Z
2

= �1. Each band crossing generates a Dirac cone of spin-momentum locked surface states.

2.1. Topology meets strong correlation

In 2010, Maxim Dzero, Kai Sun, Victor Galitski and Piers Coleman (16) proposed that

Kondo insulators can form strongly interacting versions of the Z
2

topological insulator.

The key points motivating this idea were that:

• The spin orbit coupling of f-electrons in a Kondo insulator, of the order of 0.5eV, is

much larger than the characteristic 10meV gap of a Kondo insulator, making these

essentially infinite spin orbit coupled systems, ideal candidates for spin-orbit driven

topological order.

• f-states are odd-parity, whereas the predominantly d-band conduction bands that

hybridize with them are even parity, so that each time there is a band-crossing between

the two, the Z
2

index changes sign, leading to a topological insulator.

The TKI proposal provides an appealing potential resolution of a long-standing mystery

in the Kondo insulator SmB
6

, which for more than thirty years, had been known to exhibit

a low temperature resistivity plateau (54, 55) (see Fig. 7), which could be naturally under-

stood as a consequence of topologically protected surface states (16, 56). In 2012, teams at

the University of Michigan (17) and the University of California, Irvine (18), confirmed the

existence of robust surface states in SmB
6

. Most recently 2014 (57) Xu et al. have detected

the spin-polarized structure of the surface states in these materials that tentatively confirm

their topological character (see discussion in section 4.2).

8 Maxim Dzero et al.

Band Crossing of odd and even parity states  
Yields a Z2 Topological Insulator (Fu, Kane, Mele, 2007)
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much larger than the characteristic 10meV gap of a Kondo insulator, making these
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2

index changes sign, leading to a topological insulator.
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in the Kondo insulator SmB
6

, which for more than thirty years, had been known to exhibit

a low temperature resistivity plateau (54, 55) (see Fig. 7), which could be naturally under-

stood as a consequence of topologically protected surface states (16, 56). In 2012, teams at

the University of Michigan (17) and the University of California, Irvine (18), confirmed the
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6
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existence of robust surface states in SmB
6

. Most recently 2014 (57) Xu et al. have detected

the spin-polarized structure of the surface states in these materials that tentatively confirm

their topological character (see discussion in section 4.2).
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FIG. 25 ARPES data for the dispersion of the surface states of
Bi2Se3, along directions (a) Γ̄ − M̄ and (b) Γ̄ − K̄ in the surface
Brillioun zone. Spin-resolved ARPES data is shown along Γ̄−M̄ for
a fixed energy in (d), from which the spin polarization in momentum
space (c) can be extracted. From Xia et al., 2009 and Hsieh et al.,
2009.

moving to the forefront of research on topological insulators
due to the large bulk gap and the simplicity of the surface
state spectrum.
Although the simple model (101) captures most of the

surface state physics of these systems, experiments report
a hexagonal surface state Fermi surface [Fig. 26], while
Eq. (101) only describes a circular Fermi surface sufficiently
close to the Dirac point. However, such a hexagonal warping
effect can be easily taken into account by including an addi-
tional term in the surface Hamiltonian which is cubic in k (Fu,
2009). The surface Hamiltonian for Bi2Te3 can be written

H(k) = E0(k)+ vk(kxσ
y − kyσ

x)+
λ

2
(k3+ + k3−)σ

z , (46)

whereE0(k) = k2/(2m∗) breaks the particle-hole symmetry,
the Dirac velocity vk = v(1 + αk2) acquires a quadratic de-
pendence on k, and λ parameterizes the amount of hexagonal
warping (Fu, 2009).
In addition to its usefulness for studying bulk crystalline

samples, ARPES has also been used to characterize the thin
films of Bi2Se3 and Bi2Te3 (Li et al., 2009; Sakamoto et al.,
2010; Zhang et al., 2009). The thin films were grown to initi-
ate a study of the crossover (Liu et al., 2010) from a 3D topo-
logical insulator to a 2D QSH state (Sec. III.C). In Fig. 27,
ARPES spectra are shown for several thicknesses of a Bi 2Se3
thin film, which show the evolution of the surface states.

FIG. 26 ARPES measurement of (a) shape of the Fermi surface and
(b) band dispersion along theK−Γ−K direction, for Bi2Te3 nom-
inally doped with 0.67% Sn. From Chen et al., 2009.

FIG. 27 ARPES data for Bi2Se3 thin films of thickness (a) 1QL (b)
2QL (c) 3QL (d) 5QL (e) 6QL, measured at room temperature (QL
stands for quintuple layer). From Zhang et al., 2009.

3. Scanning tunneling microscopy

In addition to the ARPES characterization of 3D topolog-
ical insulators, scanning tunneling microscopy (STM) and
scanning tunneling spectroscopy (STS) provide another kind
of surface-sensitive technique to probe the topological sur-
face states. A set of materials have been investigated in
STM/STS experiments: Bi1−xSbx (Roushan et al., 2009),
Bi2Te3 (Alpichshev et al., 2010; Zhang et al., 2009), and
Sb (Gomes et al., 2009). (Although Sb is topologically non-
trivial, it is a semi-metal instead of an insulator.) The compar-
ison between STM/STS and ARPES was first performed for
Bi2Te3 (Alpichshev et al., 2010), where it was found that the
integrated density of states obtained from ARPES [Fig. 28(a)]
agrees well with the differential conductance dI/dV obtained
from STS measurements [Fig. 28(b)]. From such a compar-
ison, different characteristic energies (EF , EA, EB , EC and
ED in Fig. 28) can be easily and unambiguously identified.
Besides the linear Dirac dispersion which has already been

well established by ARPES experiments, STM/STS can pro-
vide further information about the topological nature of the
surface states, such as the interference patterns of impuri-
ties or edges (Alpichshev et al., 2010; Gomes et al., 2009;
Roushan et al., 2009; Zhang et al., 2009). When there are
impurities on the surface of a topological insulator, the sur-
face states will be scattered and form an interference pat-
tern around the impurities. Fourier transforming the inter-

31

FIG. 25 ARPES data for the dispersion of the surface states of
Bi2Se3, along directions (a) Γ̄ − M̄ and (b) Γ̄ − K̄ in the surface
Brillioun zone. Spin-resolved ARPES data is shown along Γ̄−M̄ for
a fixed energy in (d), from which the spin polarization in momentum
space (c) can be extracted. From Xia et al., 2009 and Hsieh et al.,
2009.

moving to the forefront of research on topological insulators
due to the large bulk gap and the simplicity of the surface
state spectrum.
Although the simple model (101) captures most of the

surface state physics of these systems, experiments report
a hexagonal surface state Fermi surface [Fig. 26], while
Eq. (101) only describes a circular Fermi surface sufficiently
close to the Dirac point. However, such a hexagonal warping
effect can be easily taken into account by including an addi-
tional term in the surface Hamiltonian which is cubic in k (Fu,
2009). The surface Hamiltonian for Bi2Te3 can be written

H(k) = E0(k)+ vk(kxσ
y − kyσ

x)+
λ

2
(k3+ + k3−)σ

z , (46)

whereE0(k) = k2/(2m∗) breaks the particle-hole symmetry,
the Dirac velocity vk = v(1 + αk2) acquires a quadratic de-
pendence on k, and λ parameterizes the amount of hexagonal
warping (Fu, 2009).
In addition to its usefulness for studying bulk crystalline

samples, ARPES has also been used to characterize the thin
films of Bi2Se3 and Bi2Te3 (Li et al., 2009; Sakamoto et al.,
2010; Zhang et al., 2009). The thin films were grown to initi-
ate a study of the crossover (Liu et al., 2010) from a 3D topo-
logical insulator to a 2D QSH state (Sec. III.C). In Fig. 27,
ARPES spectra are shown for several thicknesses of a Bi 2Se3
thin film, which show the evolution of the surface states.

FIG. 26 ARPES measurement of (a) shape of the Fermi surface and
(b) band dispersion along theK−Γ−K direction, for Bi2Te3 nom-
inally doped with 0.67% Sn. From Chen et al., 2009.

FIG. 27 ARPES data for Bi2Se3 thin films of thickness (a) 1QL (b)
2QL (c) 3QL (d) 5QL (e) 6QL, measured at room temperature (QL
stands for quintuple layer). From Zhang et al., 2009.

3. Scanning tunneling microscopy

In addition to the ARPES characterization of 3D topolog-
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of surface-sensitive technique to probe the topological sur-
face states. A set of materials have been investigated in
STM/STS experiments: Bi1−xSbx (Roushan et al., 2009),
Bi2Te3 (Alpichshev et al., 2010; Zhang et al., 2009), and
Sb (Gomes et al., 2009). (Although Sb is topologically non-
trivial, it is a semi-metal instead of an insulator.) The compar-
ison between STM/STS and ARPES was first performed for
Bi2Te3 (Alpichshev et al., 2010), where it was found that the
integrated density of states obtained from ARPES [Fig. 28(a)]
agrees well with the differential conductance dI/dV obtained
from STS measurements [Fig. 28(b)]. From such a compar-
ison, different characteristic energies (EF , EA, EB , EC and
ED in Fig. 28) can be easily and unambiguously identified.
Besides the linear Dirac dispersion which has already been

well established by ARPES experiments, STM/STS can pro-
vide further information about the topological nature of the
surface states, such as the interference patterns of impuri-
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Figure 4

(a) If we ignore the e↵ects of topology in a conventional Kondo insulator, the interaction can be
turned on adiabatically. When the interactions are turned on, the lower band is pushed into the
upper band. Two bands of the same parity will always repel one-another and will not cross when
the interactions are turned on. (b) When interactions are turned on in a topological insulator,
they can lead to band-crossing and a topological phase transition. Here, interactions cause an
f-band to push up into a d-band. Since the two bands have opposite parity, they do not hybridize
at the high symmetry point so band-crossing occurs, leading to a topological phase transition.

hybridization vanishes high symmetry points, and this opens up the possibility that interac-

tions will induce band-crossing, changing the topology of the ground-state. For example, let

us assume that in the non-interacting limit, the ALM Hamiltonian is topologically trivial,

with a completely filled band of f-states (See Fig. 4 b). For a system with time-reversal

and inversion symmetry, the Z
2

topological invariant ⌫ = 0, 1 is determined by the parity

operator eigenvalues (15). For the ALM and taking into account (19) it is simply given by

Z
2

= (�1)⌫ =
8Y

m=1

sign[✏
c

(k
m

)� ✏
f

(k
m

)], (20)

where k
m

is a momentum at one of the eight high-symmetry points of the 3D Brillouin zone

and ✏
c,f

(k) is the dispersion of the conduction and the f -electrons correspondingly. As we

switch the interaction U
f

adiabatically the conduction d-band and f-bands will renormalize,

with the f-level moving upwards relative to the conduction bands due to their stronger
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FIG. 1. The electrical resistivity p as a function of tem-
perature (a) and inverse temperature (b). (b) Q = 1 bar,
Q = 24 kbar, = 25 kbar, = 33 kbar, A = 45 kbar, and
A = 53 kbar. The solid lines in (b) are fits by the function
[p(T)] ' = [po(P)] ' + (p„,(P) exp[A(P)/k&T]) ', described
in the text.
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FIG. 2. The pressure dependences of the activation gap 5 (a)
and residual carrier density no = I/R (T =H0) (b). Dashed line
indicates approximate pressure for disappearance of A. Solid
lines are guides for the eye.

linearly -0.5 K/kbar from its ambient pressure value of
41 K. Above 45 kbar, the resistivity is metallic and it is
no longer possible to extract an activation gap.
Our measurements indicate a gap instability at a critical

pressure P,. between 45 and 53 kbar, in disagreement with
the conclusions of previous workers [5,6], who found
that 5 vanished continuously near 60 kbar. In one of
these studies [5] the sample was of demonstrably lower
quality than our own, with a significantly smaller ambient
pressure 6 = 33 K and a much smaller po —10 mA cm,
both symptomatic of Sm vacancies or defects introduced
in powdering [8]. Our measurements suggest that the gap
instability is a feature only of the highest quality samples,
as P,. increases markedly with reduced sample quality,
passing out of our experimental pressure window of
180 kbar for po ~ 0.1 A cm. We further believe that the
simple activation fits used to determine 6 in both earlier
experiments were overly weighted by the temperature
independent resistivity below -3.5 K, particularly near
P, . Figure 1(b) demonstrates that near P, the range

10
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10

10
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e

~ Q5 kbar

(3
10E 33 kbar
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10-
45 kbar

B3 kbar
60 kbar

-4 '5 66 kbar
10 I I ( I

0.0 0.2 0.4 0.6 0.8 1.0
&/r (K')

FIG. 3. The absolute value of the Hall constant RH of SmB6
as a function of inverse temperature.

of temperatures over which simple activation fits are
linear becomes increasingly limited and problematic to
define with increased pressure. In contrast, our parallel
resistor formulation provides uniformly good fits over this
pressure range, and consequently yield a more accurate
determination of A.
Since there is no evidence in SmB6 for a discontinuous

structural change at or below 60 kbar [9], the sudden dis-
appearance of 5 suggests that it is not a simple hybridiza-
tion gap, for in that case the insulator-metal transition
occurs by band crossing and the gap is suppressed con-
tinuously to zero. A valence instability can be similarly
discounted, as high pressure x-ray absorption measure-
ments [10] find that the Sm valence increases smoothly
from +2.6 to +2.75 between 1 bar and 60 kbar.
We have used Hall effect measurements to study the

evolution of the camers in the vicinity of P, The Hall
constant RH is plotted as a function of 1/T in Fig. 3 for
pressures ranging from 1 bar to 66 kbar. We find that
RH is negative for temperatures T between 1.2 and 40 K
and at all pressures, as well as independent of magnetic
fields as large as 18 T. As has been previously noted at
1 bar [11], RH is both large and extremely temperature
dependent with a maximum at 4 K, at each pressure
becoming temperature independent below -3 K. It has
been proposed [12] that this temperature dependence
for RH is characteristic of Kondo lattices, rejecting
a crossover from high temperature incoherent to low
temperature coherent skew scattering. However, similar
maxima in RH(T) occur in doped semiconductors as in-
gap impurity states dominate intrinsic activated processes
with reduced temperature [13].
We do not address the full temperature dependence

of RH here, instead limiting our discussion to the
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Extremal cross-sectional areas and effective masses of the Fermi surface of LaB& in the (100) and (110) planes
have been measured using the de Haas-van Alphen (dHvA) effect. In addition, measurements of the field
dependence of the magnetoresistance in the (100) plane have also been performed which show the existence of
open orbits in certain directions and suggest the presence of magnetic breakdown. Much of the dHvA data are
consistent with a set of nearly spherical ellipsoids located at the points X of the Brillouin zone and connected
by necks which intersect the I M line; magnetic breakdown across the necks must be postulated to explain the
remaining data. The proposed Fermi surface is consistent with the discrete variational band-structure
calculations of Walch et al.

I. INTRODUCTION
The metal hexaborides of the type RB, form

systems of considerable physical interest. These
compounds are extremely hard, a fact that re-
sults from a strongly covalently bonded cage of
boron atoms that surrounds the metal ion. t They
are chemically and thermally quite stable. In ad-
dition the low work function of 2. 7 eV makes them
of potential interest as electron emitters. They
may also have interesting superconducting prop-
erties. The crystal structure is simple cubic and
is shown in Fig. l.
The fact that these materials form with near

perfect stoichiometry and are available with suf-
ficient purity permits the fabrication of crystals
with the relatively long low-temperature relaxa-
tion times required for de Haas-van Alphen (dHvA}
or magnetoresistance studies of Fermi-surface
properties. A preliminary account of our studies
has appeared earlier '3; an independent investiga-
tion has also been published recently. 4

temperature by reducing the power. The alumi-
num was leached out using a saturated solution of
sodium hydroxide leaving small faceted purple
clusters of single crystals. These were separated
into individual crystallites by treating with HNO3.
The single-crystal sample used in this investiga-
tion weighed -200 p,g and had a resistivity ratio
of about 200. It has been reported that larger
crystals with a comparable residual-resistivity
ratio may be prepared using the floating zone tech-
nique under a pressurized argon atmosphere. 4

II. EXPERIMENT

A. Crystal preparation

The single crystals used in this investigation
were grown at the University of California at La
Jolla. ' Lanthanum and boron in approximately
the 1:6 atomic ratio were dissolved in an alumi-
num flux. The crucible, containing -98%Al and
2% La-8 mixture, was heated to approximately
1500 'C under an inert argon atmosphere in a re-
sistance furnace. The temperature was then re-
duced at a rate of 25'C/h to the solidification FIG. 1. Crystal structure of LaB6.
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Three crossings: THREE DIRAC CONES

ON SURFACE. 20

at the � point. Away from the � point, the e
g

orbitals split into two Kramers doublets,

the lower one dipping down at the X point, where it dives through the the 4f bands.

Hybridization between the two bands forces 4f states from the valence to the conduction

band, forming heavy 4f electron band pockets at the X points. Once the d-band crosses

through the f-band at the three X points, so long as there are no other crossings, the

resulting non-interacting band-structure is innevitably topological, independently of the

details of the f-multiplets (See Fig. ??).

Figure 6

Schematic illustration of the band-crossing between d- and f- states at the X point in SmB
6

. (a)
Bands uncrossed. The filled 4f6 band of f-electrons is a conventional insulator. (b) Bands crossed:
the d-band cuts beneath the f-band at the X-point, displacing an odd parity f-state from the
valence band to the conduction band. The resulting (�1)3 sign reversal in the Z

2

index gives rise
to a topological insulator.

Infact, in the cubic environment, the six J = 5/2 4f orbitals of the Samarium split into

a �
7

doublet and a �
8

quartet. LDA studies (? ? ) suggest that the physics of the 4f

orbitals is governed by valence fluctuations involving electrons of the �
8

quartet and the

conduction e
g

states, e� + 4f5(�(↵)

8

) ⌦ 4f6. The �(↵)

8

(↵ = 1, 2) quartet consists of the

following combination of orbitals: |�(1)

8

i =
q

5

6

��± 5

2

↵
+
q

1

6

��⌥ 3

2

↵
, |�(2)

8

i =
��± 1

2

↵
. This then

leads to a simple physical picture in which the �
8

quartet of f -states hybridizes with an e
g

quartet of d-states to form a Kondo insulator.

In 2011, Takimoto (? ) introduced a tight-binding model for SmB
6

in which the

hopping amplitudes in the Hamiltonian (??) are non-zero for nearest- and next-nearest-

neighbors, while hybridization involves the nearest-neighbor overlap integrals only. The

values of the hopping amplitudes were adjusted to fit the LDA band structure results, while

the e↵ect of interactions between the f -electrons is modelled as a renormalization of the bare

f -energy level and the hybridization. In Takimoto’s model, a singlet d-like orbital inverts

with an f -like orbital at the X point of the bulk Brillouin zone, while the remaining two

bands remain inert. This band inversion at the X points implies the existence of three Dirac

cones on the surface: one at the surface � point and two at the X points. Interestingly,

the corresponding Fermi velocities for the electrons at the � point are the same, while the

Fermi velocities at the X are strongly anisotropic. (? )
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at the � point. Away from the � point, the e
g

orbitals split into two Kramers doublets,

the lower one dipping down at the X point, where it dives through the the 4f bands.

Hybridization between the two bands forces 4f states from the valence to the conduction

band, forming heavy 4f electron band pockets at the X points. Once the d-band crosses

through the f-band at the three X points, so long as there are no other crossings, the

resulting non-interacting band-structure is innevitably topological, independently of the

details of the f-multiplets (See Fig. ??).

Figure 6

Schematic illustration of the band-crossing between d- and f- states at the X point in SmB
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Bands uncrossed. The filled 4f6 band of f-electrons is a conventional insulator. (b) Bands crossed:
the d-band cuts beneath the f-band at the X-point, displacing an odd parity f-state from the
valence band to the conduction band. The resulting (�1)3 sign reversal in the Z
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index gives rise
to a topological insulator.

Infact, in the cubic environment, the six J = 5/2 4f orbitals of the Samarium split into
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doublet and a �
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In 2011, Takimoto (? ) introduced a tight-binding model for SmB
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in which the

hopping amplitudes in the Hamiltonian (??) are non-zero for nearest- and next-nearest-

neighbors, while hybridization involves the nearest-neighbor overlap integrals only. The

values of the hopping amplitudes were adjusted to fit the LDA band structure results, while

the e↵ect of interactions between the f -electrons is modelled as a renormalization of the bare

f -energy level and the hybridization. In Takimoto’s model, a singlet d-like orbital inverts

with an f -like orbital at the X point of the bulk Brillouin zone, while the remaining two

bands remain inert. This band inversion at the X points implies the existence of three Dirac

cones on the surface: one at the surface � point and two at the X points. Interestingly,

the corresponding Fermi velocities for the electrons at the � point are the same, while the
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Dirac cone surface states.

Figure 3

Showing (a) topologically trivial band insulator with Z
2

= +1 (b) band-crossing of even and odd
parity states at an odd number of high symmetry points leads to a topological insulator with
Z
2

= �1. Each band crossing generates a Dirac cone of spin-momentum locked surface states.

2.1. Topology meets strong correlation

In 2010, Maxim Dzero, Kai Sun, Victor Galitski and Piers Coleman (16) proposed that

Kondo insulators can form strongly interacting versions of the Z
2

topological insulator.

The key points motivating this idea were that:

• The spin orbit coupling of f-electrons in a Kondo insulator, of the order of 0.5eV, is

much larger than the characteristic 10meV gap of a Kondo insulator, making these

essentially infinite spin orbit coupled systems, ideal candidates for spin-orbit driven

topological order.

• f-states are odd-parity, whereas the predominantly d-band conduction bands that

hybridize with them are even parity, so that each time there is a band-crossing between

the two, the Z
2

index changes sign, leading to a topological insulator.

The TKI proposal provides an appealing potential resolution of a long-standing mystery

in the Kondo insulator SmB
6

, which for more than thirty years, had been known to exhibit

a low temperature resistivity plateau (54, 55) (see Fig. 7), which could be naturally under-

stood as a consequence of topologically protected surface states (16, 56). In 2012, teams at

the University of Michigan (17) and the University of California, Irvine (18), confirmed the

existence of robust surface states in SmB
6

. Most recently 2014 (57) Xu et al. have detected

the spin-polarized structure of the surface states in these materials that tentatively confirm

their topological character (see discussion in section 4.2).

8 Maxim Dzero et al.
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X
V��(k) = Vsk · ����



22

Strip,CalculaQon.

Chapter 18. c⃝Piers Coleman 2014

the surface, these lines intersect with the surface high symmetry point Γ′. Moreoever, for momenta running

along these normals to the surface, the problem reduces to the Shockley chain (Fig.18.11 (a)).

From this reasoning, we deduce that topologically protected Kramer’s doublet’s can form at kx = 0 or π on

the surface. Now although there is time reversal symmetry at the edge, there is no inversion symmetry (since

inversion maps one edge to the opposite one), so at a finite surface momentum (kx ! 0 the doublet splits into

an “up” and “down” band propagating in opposite directions. Along an edge that runs in the direction n̂, the

edge-state Hamiltonian takes the form

H(k) ∼ kṼ(n̂ · σ⃗). (18.194)

giving rise to counter-dispersing “helical” edge states in which the component of the spin in the direction of

motion is +1. (n · σ⃗ = ±1) (Fig. 18.11 (b)). The formation of these helical edge states is a natural conse-

quence of the topological twist in the Hamiltonian and the underlying valence band wavefuction. The two

dimensional version of Z2 topological insulators is also called the “spin Hall effect”, because it contains two

time-reversed copies of the edge states produced in the quantum Hall effect.

Example 18.7: Calculation of surface states on a strip. One of the simplest ways to examine topo-
logical surface states is by numerically diagonalizing the Hamiltonian on a strip of width W. Consider
the case of a two dimensional model.

a) Show that the mean-field Hamiltonian for a 2D Kondo insulator with periodic boundary conditions
can be block-diagonal diagonalized as follows

HMF =
∑

k

(
ψ†k↑h(k)ψk↑ + ψ

†
k↓h
∗(k)ψk↓

)
(18.195)

where ψ†kσ = (c†kσ, f †k−σ) combines a conduction and f-electron with oppsite spins and

h(k) =

(
ϵk Ṽ(sx − isy)

Ṽ(sx + isy) ϵ f k

)
. (18.196)

is a two dimensional Hamiltonian

b) Suppose we Fourier transform in the y-direction, so that the Hamiltonian has a tight binding form in
the transerse direction, but maintains its momentum-space structure in the x-direction. Show that the
one-particle Hamiltonian can be written in the form

H jl(kx) =
1

W

∑

ky=
2πn
L

exp
[
iky( j − l)

]
h(kx, ky) = a(k)δ jl + bδ j,l−1 + bTδ j,l+1 (18.197)

where

a(kx) =

(
−2tcx − µ V sx

V sx 2tcx + λ

)
, b =

(
−t −V/2

V/2 t f

)
(18.198)
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H(k) ∼ kṼ(n̂ · σ⃗). (18.194)

giving rise to counter-dispersing “helical” edge states in which the component of the spin in the direction of

motion is +1. (n · σ⃗ = ±1) (Fig. 18.11 (b)). The formation of these helical edge states is a natural conse-

quence of the topological twist in the Hamiltonian and the underlying valence band wavefuction. The two

dimensional version of Z2 topological insulators is also called the “spin Hall effect”, because it contains two

time-reversed copies of the edge states produced in the quantum Hall effect.

Example 18.7: Calculation of surface states on a strip. One of the simplest ways to examine topo-
logical surface states is by numerically diagonalizing the Hamiltonian on a strip of width W. Consider
the case of a two dimensional model.

a) Show that the mean-field Hamiltonian for a 2D Kondo insulator with periodic boundary conditions
can be block-diagonal diagonalized as follows

HMF =
∑

k

(
ψ†k↑h(k)ψk↑ + ψ

†
k↓h
∗(k)ψk↓

)
(18.195)

where ψ†kσ = (c†kσ, f †k−σ) combines a conduction and f-electron with oppsite spins and

h(k) =

(
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H(k) ∼ kṼ(n̂ · σ⃗). (18.194)

giving rise to counter-dispersing “helical” edge states in which the component of the spin in the direction of

motion is +1. (n · σ⃗ = ±1) (Fig. 18.11 (b)). The formation of these helical edge states is a natural conse-

quence of the topological twist in the Hamiltonian and the underlying valence band wavefuction. The two

dimensional version of Z2 topological insulators is also called the “spin Hall effect”, because it contains two

time-reversed copies of the edge states produced in the quantum Hall effect.

Example 18.7: Calculation of surface states on a strip. One of the simplest ways to examine topo-
logical surface states is by numerically diagonalizing the Hamiltonian on a strip of width W. Consider
the case of a two dimensional model.

a) Show that the mean-field Hamiltonian for a 2D Kondo insulator with periodic boundary conditions
can be block-diagonal diagonalized as follows

HMF =
∑

k

(
ψ†k↑h(k)ψk↑ + ψ

†
k↓h
∗(k)ψk↓

)
(18.195)

where ψ†kσ = (c†kσ, f †k−σ) combines a conduction and f-electron with oppsite spins and

h(k) =

(
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Ṽ(sx + isy) ϵ f k

)
. (18.196)

is a two dimensional Hamiltonian

b) Suppose we Fourier transform in the y-direction, so that the Hamiltonian has a tight binding form in
the transerse direction, but maintains its momentum-space structure in the x-direction. Show that the
one-particle Hamiltonian can be written in the form

H jl(kx) =
1

W

∑

ky=
2πn
L

exp
[
iky( j − l)

]
h(kx, ky) = a(k)δ jl + bδ j,l−1 + bTδ j,l+1 (18.197)

where

a(kx) =

(
−2tcx − µ V sx

V sx 2tcx + λ

)
, b =

(
−t −V/2

V/2 t f

)
(18.198)

724

Go to mathematica notebook

file:///coleman/wpr/book/figschap18/simpletki.nb


23

(a) 

(b) 

Figure 10

(a), Adapted from Ref. (? ), calculated electronic structure of SmB
6

for the first Brillouin zone
of the (001) surface (inset). The blue lines are bulk energy levels and the red lines are surface
states, showing three Direct cones. (b), Adapted from (? ), topology of the Fermi surface
measured by ARPES, consistent qualitatively with the theoretical calculation (? ). The left
figure is a temperature evolution of the ARPES spectral intensity, showing the onset of the in-gap
(surface) state at low temperatures.

Parallel ARPES studies on SmB
6

were carried out by Zhu et al. (? ) and Denlinger

et al. (? ) respectively. In Ref. (? ), Zhu et al. propose an alternative explanation for

the conducting surface state, suggesting that it originates from boron dangling bonds on

the (001) crystal surface, i.e. that it is a non-topological polar surface. In (? ) Denlinger

et al. found high ARPES intensity at the H points, where the momentum-location of the

H-point along the �-M direction coincided with the polar metallic surface state claimed by

Zhu et al. (? ). However, Denlinger et al. (? ), found that the H-point is gapped at low

T temperature, suggesting that the polar surface state found by Zhu et al. (? ) is in fact

insulating and hence unrelated to the metallic surface state. Due to the limited resolution,

it is somewhat hard to judge which scenario is correct at the moment. However, the (001)

polar metallic surface picture by Zhu et al. (? ) seems to contradict available transport

experiments that showed the existence of surface metallic conduction on both (001) and

(011) surfaces. The latter surface is not polar and therefore can not host a polar metallic

surface state.

Finally we mention the current status of spin-polarized ARPES measurements. In

20 Maxim Dzero et al.

F. Lu, et al.,  Phys. Rev. Lett. 110:096401 (2013)
Gutzwiller + DFT
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 Is SmB6 a topological Kondo insulator?



SmB6   Surface Conductivity 
Bulk Insulator

Surface Conductivity

Robustness/Sensitivity to potential/magnetic  scattering.

5 

from one side cannot distinguish between these scenarios. However, we can explore other 

measurement configurations using contacts from both sides; specifically, we can make a 

vertical measurement RVert by passing current from one front-side contact to the back-side 

contact directly opposite, and measuring the voltage using a different set of opposing front-

side and back-side contacts. We can also make a hybrid measurement RHyb by passing current 

through two front-side contacts as in the lateral measurement, but measuring the voltage on 

two back-side contacts. These configurations are illustrated in Fig. 3. 

If the plateau is a bulk transport phenomenon, the resistance will be proportional to 

the resistivity for all three measurement configurations, each with a different proportionality 

constant. In other words, the temperature dependences of RLat, RVert, and RHyb normalized to 

their respective room temperature values are expected to be identical. However, if the plateau 

is due to surface conduction, these three four-terminal resistances behave dramatically 

differently as a function of temperature. We performed Finite Element Analysis simulations 

of the electric potential in these two configurations on a rectangular slab with dimensions 

similar to our real sample and a resolution of 10 µm in each direction.  Cross-sections of the 

slab at the contact positions are instructive for understanding our experiment design, and are 

shown in Fig. 3. 

4 

bulk and surface resistivities can be suppressed or exaggerated depending on the position of 

the current and voltage leads. 

 

Figure 2 – Arrhenius Plot of Lateral measurement data – A log plot of 
resistivity ρMeasured (solid grey line) vs inverse temperature. A linear model of 
the plateau resistivity ρPlateau (dash-dot line) is removed from ρMeasured to 
extrapolate the bulk resistivity to 3 K. A linear fit (dashed line) yields an 
activation energy of 3.47 meV. 

When we perform conventional four-terminal resistance measurements, just using the 

contacts on the front surface of the sample, we obtain data shown in Fig. 2, which is 

consistent with previous measurements of SmB6
[3, 5], featuring a Kondo-insulator-like 

increase in resistivity with decreasing temperature, but with a weakly temperature-dependent 

plateau at low temperatures. We can model the measured conductivity as having two 

independent contributions: σMeasured = σInsulator + σPlateau. We then extract σInsulator down to 3 K. 

A linear fit of the Arrhenius plot gives us an activation energy of 3.47 meV, which is 

consistent with previously published measurements of SmB6 
[3, 5]. 
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Figure 3 – Current flow and equipotential diagrams – A cross-section of 
the sample along the electrical contacts. Arrows indicate current direction, 
green lines indicate equipotentials. a, Current passes vertically through the 
bulk, far away from the voltage contacts. b, The bulk in a becomes insulating, 
forcing the current to flow around the edge. The surface potential is indicated 
by the thickness of the orange region. c, Current passes laterally through the 
bulk, and the front-side and back-side voltages are measured at similar 
equipotentials. d, The bulk in c becomes insulating, isolating the back-side 
contacts from the majority current flow. 

In the vertical configuration at high temperature, nearly all the current will flow 

vertically directly through the sample if the bulk is conductive, as shown in Fig. 3a. Because 

the voltage contacts are located far away from the current, there is virtually no current near 

the voltage contacts, and RVert is unmeasurably small. For this reason, such a configuration is 

never used to measure an ordinary sample. Even though the resistivity increases significantly 

at low temperatures, the current will continue to flow in this configuration as long as the bulk 

is conductive. However, if the material becomes a surface-conductor at low temperatures, the 

entire current will be forced to flow around the long dimensions of the sample (Fig. 3b). In 

this case, the voltage contacts are very close to the current contacts, compared to the total 

current path around the edges; thus, RVert will become very large. Meanwhile, in the lateral 

configuration shown in Fig. 3c, RHyb should be nearly identical to RLat at high temperatures 6 
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Figure 5 – Experimentally-obtained resistances as a function of 
temperature – A log-log plot of RLat (solid), RVert (dash-dot), and RHyb 
(dotted) as a function of temperature. Inset, a linear plot of RLat and RHyb, 
exaggerating the divergence between them between 3 and 5 K. 

Our experiments prove unambiguously that as temperature is reduced, the system 

turns from a 3D bulk conductor into a 2D surface conductor with an insulating bulk. 

Although these measurements do not directly probe the topological nature of material, which 

requires spin-resolved techniques, it is worthwhile to point out that in all existing literature on 

SmB6, the residual resistivity always exists, regardless of the quality of the sample and the 

surface. The robustness of the surface transport strongly suggests that the surface state in 

SmB6 should have some topological nature. Among all the available theories, only the 

topological-Kondo-insulator theory[9] predicts the phenomena we observed. In principle, in-

gap surface states can also exist in topologically trivial insulators. However, in contrast to 

topological surface states, the surface state in a trivial insulator is not topologically protected. 

These “accidental surface states” are much more vulnerable to disorder on the surface than 

topological surface states. First, the existence of accidental surface states relies on the quality 

of the surface, which varies from sample to sample. Second, even if a particular surface 

supports some accidental surface states at the chemical potential, these surface states are 

typically localized by surface disorder and thus cannot contribute to transport due to 

Anderson localization[26]. However, the existence of topological surface states is guaranteed 
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or bulk) and Ey is the transverse electric field. The Hall voltage Vxy

is found to be linear with B (Fig. 1(c) (d)) at small fields at all
temperatures, but becomes significantly nonlinear for larger fields
around 5 K, indicating a temperature regime of multichannel con-
duction. At high (20 K) or low (2 K) temperatures, the extreme
linearity of the Hall effect indicates single channel conduction,
either from the bulk or surface. For the simplest case of one
surface conduction channel (top and bottom surfaces combined)
and one bulk channel with Hall coefficients RHS, RHB and
resistivity rS, rB respectively, the Hall resistance Rxy at magnetic
field B is Rxy~ RHSr2

BzRHBr2
Sd

! "
BzRHSRHB RHSdzRHBð ÞB3# $%

rSdzrBð Þ2z RHSdzRHBð Þ2B2
# $

. Nonlinearity is expected at large
B, but at small fields it simplifies to Rxy

%
B~ RHSr2

BzRHBr2
Sd

! "%

rSdzrBð Þ2, which indeed gives thickness-independent Rxy/B 5
RHS if the surface channel dominates (i.e. rB ? rSd). From B ,
1 T data we extract the value Rxy/B at various temperatures T.
Representative results in sample S1 are plotted in Fig. 1(a) for d
5 120, 270, and 320 mm respectively, showing clearly that while at
high temperatures Rxy/B differ at different d, they converge to a
same universal value of 0.3 V/T below 4 Kelvin, consistent with
surface conduction. Since more than one surface channels may
exist, as predicted by theory28,29, it is difficult to quantitatively
extract the surface carrier density and mobility at this stage.
Replotting the Hall resistance ratios Rxy(d1)/Rxy(d2) in Fig. 1(b),
we found these ratios to be equal to d2/d1 at high T and become
unity at low T, proving the crossover from 3D to 2D Hall effects
when T is lowered. The temperature dependence is well described
by a two-channel (bulk and surface) conduction model in which
the bulk carrier density decreases exponentially with temperature
with an activation gap D 5 38 K. Using this simple model, we

could reproduce the curious ‘‘peak’’ in Rxy/B at 4 K (solid lines in
Fig. 1(a)), which lacks31 a good explanation until now. Low tem-
perature surface-dominated conduction would also give rise to a
longitudinal resistance Rxx that is independent of sample thick-
ness, which we have demonstrated recently32.

Surface dominated conduction could also be demonstrated at zero
magnetic field with so-called ‘‘non-local’’ transport in the spirit of
nonlocal transport experiments performed in QH10,11 and QSH12,13

states that have served as evidence8,9 for the existence of the topo-
logical edge states that are one-dimensional analogues to the surface
state in a TI. The highly metallic surface conduction in a TI would
necessarily invalidate Ohm’s law and introduce large nonlocal vol-
tages, which we have indeed found in SmB6 samples. Fig. 2(a) shows a
schematic of the nonlocal measurement in sample S4. Current I16

flows between current leads 1 and 6 at the center on opposite faces of
the crystal. Contacts 2 and 3 are located close to contact 1 for the
detection of ‘‘local’’ voltage V23. Contacts 4 and 5 are put near the
sample edge far away from the current leads to detect ‘‘nonlocal’’
voltage V45. As shown in the inset in Fig. 2(b), in the case of bulk
conduction, current will concentrate in the bulk near the current
leads 1 and 6, resulting in negligibly small nonlocal voltage (V45 =
V23). If surface conduction dominates, however, current will be
forced to flow between contacts 1 and 6 via the surface, making
V45 larger. Fig. 2(a) shows as a function of temperature the measured
V45 and V23 divided by I16, both agreeing qualitatively with our finite
element simulations (Supplementary Information) incorporating
the aforementioned simple model. The ratio V45/V23 is replotted in
Fig. 2(b). At low temperature, when surface conduction dominates,
the nonlocal voltage V45 becomes large and even surpasses the local
voltage V23. Above T 5 5 K, when bulk conduction dominates, the
magnitude of V45/V23 is very small. The negative sign of V45/V23 is

Figure 1 | Surface Hall effect. (a), Markers, Hall resistances Rxy divided by magnetic field B versus temperature T at three different thicknesses
d in a wedge shaped sample S1. Lines are simulations using a two conduction channel model (see text). Left inset, picture of the crystal before wiring. Right
inset, measurement schematic. (b), Markers, ratios between Hall resistances Rxy at different d, showing the transition from bulk to surface conduction as
temperature is lowered. Lines are calculated from simulations as in (a). (c), Rxy versus B at various T for d 5 120 mm, showing nonlinearity at around 5 K.
(d), Rxy/B normalized to small field values to demonstrate the nonlinearity.
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Hall constant derives from the Surface.

Large Vertical Resistance indicates
conductivity is from the surface.
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FIG. 1: Crystal structure and sample characterization of SmB6. (a) Crystal structure

of SmB6. Sm ions and B6 octahedron are located at the corner and centre of the cubic lattice

structure. (b) The bulk and surface Brillouin zones of SmB6. High-symmetry points are marked.

(c) Resistivity versus temperature for SmB6. (d) and (e) Synchrotron-based ARPES experimental

results: Dispersion mapping along M � X � M cut in (d) and X � � � X cut in (e). Dispersive

Sm 5d band and non-dispersive flat Sm 4f bands are observed. The integrated energy distribution

curves (EDC) are also plotted to highlight the flat bands of Sm 4f .

Neupane)et)al.))Nature)Commnunications)4,)(2013).
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FIG. 3: Fermi surface and dispersion maps of SmB6. (a) Fermi surface plot of SmB6

measured by 7 eV LASER source at temperature of 7 K. A small � pocket and a large X pocket

are observed. A big elliptical and a small circular shaped black dash lines around X and � points

are guide for the eyes. Inset shows a schematic plot of Fermi surface in the first Brillouin zone. (b)

Electronic dispersion map (left) and its energy distribution curves (EDCs) for � pocket. (c) same

as (b) for X band. (d) Comparison of integrated EDC for � and X band. A gap value of about 15

meV is observed in both cases.

Xu,)PRB)88,)121102)(2013)

Neupane)et)al.))Nature)Commnunications)4,)(2013).

Odd number (3) of Surface FS (ARPES, dHVA, STM). 

d-band crossing at X points
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linearly polarized light (l-pol). In contrast to the spectra at ESR
(Fig. 3h,i), the spin-resolved MDCs at EHB show negligible
difference, indicating that the photoelectrons from the spin-
degenerate bulk d-states are not spin polarized. Therefore, we
conclude that the spin signal at ESR is dominated by the surface
states, which provides compelling evidence that SmB6 is the first
realization of a TKI.

Discussion
Figure 4 schematically summarizes our main experimental
finding of the spin structure of the surface bands of SmB6. For
simplicity, we consider the situation without folding bands. The
spin orientations of the electrons in the in-gap surface b-band,
which is located between the strongly localized bulk f states and
the chemical potential, are locked to their momenta; namely, at
opposite momenta (k and -k), the surface states have opposite
spins. This anti-clockwise spin texture for the surface band in
SmB6 shows a great similarity to other 3D TIs (Bi2Se3, Bi2Te3,
etc.), which each has a FS from a single pocket centred at the
!Gpoint in the SBZ27,28. Extensive ARPES studies have shown that
SmB6 has a surface FS formed by three electron pockets with
Kramers points located around the SBZ centre and
boundary7,16,17. The revealed spin texture, together with the
odd number of pockets, is consistent with the metallic states at
the surface of SmB6 being non-trivial topological surface states,
and the findings here strongly support recent theoretical
predictions that SmB6 is a TKI4–6. A crucial and so far
unresolved problem for the real-world implementation of TIs is
that most 3D TI candidates are not bulk-insulating4,29. On the
other hand, SmB6 is a mixed valence Kondo insulator. Owing to
the hybridization of the nearly localized 4f bands with the

dispersive conduction band, a band gap opens near the chemical
potential at low temperature, leading the system in to a good bulk
insulator4,30–32. Thus, the direct identification of SmB6 as a TKI is
a significant advance in realizing a topological quantum state of
matter in which the metallic edge states, protected by TRS, are
located on a true bulk insulator. It is also worthwhile to mention
that the metallic TSS formed by the electron pockets at low
temperatures can provide a natural explanation for the
longstanding puzzle that the resistivity in SmB6 saturates to a
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of the dots. The black dashed lines indicate the first SBZ. (b) Low-energy excitations near EF along the high symmetry line !M-!X- !M, measured with photon
energy hn¼ 30 eV and Cþ polarization. The location in the kx–ky plane is indicated by C4 in a. (c) Spin polarization measured at hn¼ 30 eV along
the x direction for the surface states at ESR (10 meV above EF). The location in the kx–ky plane is indicated by C1 in a. (d) Analogous to c, but for C2, where
the spin polarization direction is along y. (e) Analogous to c, but measured at hn¼ 26 eV for C3, where the spin polarization direction is along x. (f)
Analogous to c, but for C4, where the spin polarization direction is along y. For (c–f), the photon polarization is Cþ . (g) Same as f, but with C– photon
polarization. (h) Measured spin-resolved intensity along the y direction for the surface states at ESR, measured at hn¼ 30 eV with linear light polarization.
The red and blue symbols are the intensity of spin-up and spin-down states, respectively. The location in the kx–ky plane is indicated by C4 in a. (i) Spin
polarization along the y direction for the surface states at the ESR. (j,k) Same as h,i but for the bulk states at higher binding energy illustrated by EHB in b.
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Figure 4 | Schematic of the spin-polarized surface state dispersion in the

TKI SmB6. The blue and green curved surfaces centred at the !G and !X
points represent the a- and b-bands, respectively. The plane sitting below
represents the bulk f states. The spin polarizations of the b-band are
indicated with red arrows. The shape and size of the a-band are from refs
7,17. The blue dashed lines indicate the first SBZ.
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b- and b0-states located at k and -k have opposite spin
polarizations, consistent with the behaviour of a spin-split
Kramers pair, in accordance with TRS.

Spin polarization of the TSS along high symmetry lines. To
determine the spin texture of the FS pockets, we have carried out
SARPES measurements along the cuts C1–C4, as indicated in
Fig. 3a, using Cþ polarized light and photon energies of hn¼ 26
and 30 eV. For both photon energies, a consistent spin texture
was obtained. As shown in Fig. 3c, the spin polarization (MDC at
ESR) measured with hn¼ 30 eV along C1 is essentially the same as
that in Fig. 2d taken with hn¼ 26 eV. Figure 3d shows the spin
polarization along C2 (perpendicular to C1). Similar to the
observation along C1, the b- and b0-bands are spin polarized, but
now along the y direction. At the two kF points on cut C3 (C4),
the spin polarizations of the b-band are opposite along the x (y)
direction (Fig. 3e,f). The determined spin texture is summarized
in Fig. 3a with spin polarizations marked by arrows. The mea-
sured spin texture, wherein the spin polarization is locked to
the momentum, is fully consistent with TSS in the sense that it
obeys both TRS and the crystal symmetry. This is further sup-
ported by the fact that the folded band b0 has the same
spin texture as the original band b, as expected from a simple
Umklapp mechanism22.

Photon polarization-dependent SARPES results. It has been
shown that a spin polarization signal can also appear in the
photoemission process from states that possess no net spin
polarization23. This so-called photoemission effect is discussed,
for instance, for the core-level photoelectrons from non-magnetic
solids24, the bulk valence bands of TIs25, as well as the bulk f
states of SmB6 (ref. 26). In contrast to the intrinsic spin signal
from the spin-polarized initial states, the non-intrinsic spin signal

caused by the photoemission effect depends on the incident
photon energy and polarization. For example, the non-intrinsic
spin polarization of the f states in SmB6 caused by the photo-
emission effect changes direction when the photon polarization
changes from Cþ to left-hand circularly polarized light (C-), and
vanishes with linear polarization (l-pol)26. The consistent
momentum-locked spin texture obtained with different photon
energies (Figs 2 and 3) in our experiments provides evidence that
the observed spin polarizations are intrinsic to the spin-polarized
initial states. To rule out the possibility that the detected spin
texture results from the polarization of the incident light, we
conducted spin-resolved measurements using incident light with
all available polarizations. Figure 3f,g,i shows the results along C4
detected by using Cþ , C# and linear polarizations of the
incident light. The same spin polarizations from differently
polarized light give further confidence that the observed spin
polarizations reflect the intrinsic spin structure of the initial
states.

No spin polarization of the bulk states. As any spin polarization
of the bulk f states caused by a photoemission effect should be
vanish with linearly polarized light26, the results obtained with
the linearly polarized light (Fig. 3h,i) further indicate that the spin
polarization originates from the surface b-band, and not from
contamination of the bulk f states due to the limited energy
resolution used in SAPRES measurements. To further exclude
contamination from the bulk d states as an origin of the observed
spin polarizations of the MDCs studied at ESR, we performed
measurements at a higher binding energy (EHB as illustrated in
Fig. 3b), where the bulk d states dominate the photoemission
intensity. Figure 3j,k shows the spin-resolved MDC intensity Imk

and the spin polarization spectra along the y direction, taken with
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Figure 2 | Spin polarization of topological Dirac surface states along the !X-!C-!X direction. (a) FS map of SmB6. (b) Low energy excitations near EF along
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Surface Kondo Breakdown And The Light Surface States In Topological Kondo

Insulators

Victor Alexandrov1, Onur Erten1, Piers Coleman1,2
1Center for Materials Theory, Rutgers University, Piscataway, New Jersey, 08854, USA

2Department of Physics, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK

Motivated by the recent experimental puzzles on the exceptionally light surface states of SmB6,
we study the e↵ects of surface Kondo breakdown for topological Kondo insulators. We present both
numerical and analytic results where we show that the decoupling of the local moments on the
surface gives rise to uncompensated topologically protected surface states with a large Fermi surface
and high velocity. We show that the large Fermi surface is due to Clogston-Anderson compensation
theorem and high velocity is tied to the conduction electron dispersion. Uncompensated surface
states are highly durable against the e↵ects of surface magnetism and decreasing thickness of the
sample, which makes SmB6 a perfect candidate for applications.

Introduction: Kondo insulator is a class of strongly cor-
related systems where the insulating gap opens at low
temperatures due to the hybridization between local mo-
ments and conduction electrons[1]. SmB6, one of the
first known examples of Kondo insulators has been of in-
terest due to its intriguing transport properties: the gap
starts developing around T

K

' 50K, however the resis-
tivity saturates below a few Kelvin instead of diverging
toward absolute zero[2, 3]. The origin of the low temper-
ature conductivity stayed controversial and it was mainly
ascribed to mid-gap states[4]. Recent breakthroughs on
topological phases in condensed matter lead to new the-
oretical works which suggested that the robust resistivity
plateau in SmB6 can be explained by topologically pro-
tected surface states of a topological Kondo insulator[5–
7]. There is indeed an increasing evidence from transport
experiments[8–11] that the conductivity is coming from
surface states. Moreover, surface states have been seen in
angle-resolved photoemission spectroscopy (ARPES)[12–
15] and spin polarization is observed in spin-ARPES[16].

Due to its polar crystal structure, SmB6 tend to have
disordered surfaces that would counter the polar catas-
trophe by creating defects and rearrangements which
have been probed by scanning tunneling microscopy
experiments[17, 18]. Given such disordered surfaces, the
observation of quantum oscillations up to high fields (12
T) stays as a mystery[19]. Maybe an even more intrigu-
ing puzzle is the exceptionally light surface states ob-
served in both quantum oscisllations[19] and ARPES[11–
16] experiments since the existing theories predict heavy
quasiparticles[5, 6]. These observations raise an impor-
tant question: How can topological Kondo insulators have
light surface states? (Needs paraphrasing)

We address this question in the context of surface
Kondo breakdown where the Kondo e↵ect shuts o↵ on
the surface layer, resulting in a change of valence of Sm
on the surface as shown in Fig 1(b) and (c). Change of
Sm valence has indeed been observed by x-ray absorp-
tion spectroscopy experiments[20]. Our main results are
the following: (i) The surface states are no longer com-
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FIG. 1: (a) Two dimensional schematic of the model pre-
sented on the xy plane. Due to the opposite parity of the
orbitals, onsite hybridization vanishes, and the nearest neigh-
bor local moment and conduction electron can hybridize with
a spin dependent p-wave form factor, �(k)��0 as in eq. 1.,
schematic of a Kondo insulator without (b) and with (c)
surface Kondo breakdown and the respective surface states.
Without surface Kondo breakdown, surface states are heavy,
on contrary with surface Kondo breakdown the Dirac point
shifts in the valence band and the surface states become
lighter.

pensated, they have more conduction electron character
than local moment; (ii) the removal of the local moment
leads to a large Fermi surface according to Luttenger sum
rule

A
FS

(2⇡)d�1
= n

c

(1)

where A
FS

is the area of the Fermi surface of the surface
states and d = 2, 3 is the dimensionality and n

c

is the
conduction electron density in the bulk; (iii) the domi-
nant conduction electron character gives rise to an extra
k2 dispersion leading to light surface states (see Fig. 1(b)
and (c))
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where t
f

local moment hopping and r(�) and p(�) are
functions that depend on the phase shift �, as defined
later. (iv) Dirac point sinks in the valence band, leading
to an unusual protection of surface states against decreas-
ing thickness and surface magnetism.

ARPES:    vs~ 220-300 meVA
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Motivated by the observation of light surface states of SmB6, we examine the e↵ects of surface
Kondo breakdown in topological Kondo insulators. We present both numerical and analytic results
which show that the decoupling of the localized moments at the surface disturbs the compensation
between light and heavy electrons and dopes the Dirac cone. Dispersion of these uncompensated
surface states are dominated by inter-site hopping, which leads to a much lighter quasiparticles.
These surface states are also highly durable against the e↵ects of surface magnetism and decreasing
thickness of the sample, which makes SmB6 a perfect candidate for applications.

Introduction: Kondo insulators are a class of strongly
correlated electron material in which the development
of an insulating gap is driven by a co-operative screen-
ing of local moments by conduction electrons[1] at low
temperatures. The first Kondo insulator, SmB6, dis-
covered more than 40 years ago, has attracted renewed
interest dut to its intriguing transport properties: al-
though its insulating gap develops around T

K

' 50K,
the resistivity saturates below a few Kelvin[2, 3]. This
resistivity plateau was originally ascribed to mid-gap
states[4], but the discovery of topological insulators led
to a new proposal, identifying it with conducting surface
states of a topological Kondo insulator [5–8]. Subsequent
experiments[9–12] have confirmed that the plateau con-
ductivity derives from surface states, which have been
resolved by angle-resolved photoemission spectroscopy
(ARPES)[13–16]. Recent spin-ARPES experiments have
also confirmed the helicoidal spin polarization expected
from topologically protected Dirac cones[17].

Yet despite this initial success, one mystery remains:
both quantum oscillations[18] and ARPES[12–17] stud-
ies show that the surface quasiparticles are exceptionally
light with Fermi velocity, v

s

, ranging from 220 meVÅ[14]
to 300 meVÅ[13]. On the other hand, existing theories[5–
8] predict surface v

s

⇠ 30�50 meVÅ which are about an
order of magnitude heavier than observed in experiments.

Here we resolve this paradox by taking account of the
interplay between the surface and the Kondo e↵ect. The
essence of the idea is as follows. The lower co-ordination
of the Sm atoms at the surface causes a dramatic re-
duction in their Kondo temperature leading to a break-
down of the Kondo e↵ect. Surface “Kondo breakdown”
of this form is expected to give rise to a shift in the va-
lence of the surface Sm ions towards the higher entropy,
4f5 (3+) configuration of the unquenched moments, an
e↵ect which is corroborated by X-ray absorption spec-
troscopy [19]. One of the important e↵ects of surface
“Kondo breakdown” is the liberation of a large number
of carriers, previously bound inside Kondo singlets (see
Fig1(b) and (c)). For the purpose of electron counting,
decoupling of local moments can be thought as change
of f valance. These carriers then go into the protected
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FIG. 1: (a) Two dimensional schematic of the model pre-
sented on the xy plane. Due to the opposite parity of the
orbitals, onsite hybridization vanishes, and the nearest neigh-
bor local moment and conduction electron can hybridize with
a spin dependent p-wave form factor, �(k)��0 as in eq. 1.,
schematic of a Kondo insulator without (b) and with (c)
surface Kondo breakdown and the respective surface states.
Without surface Kondo breakdown, surface states are heavy,
on contrary with surface Kondo breakdown the Dirac point
shifts in the valence band and the surface states become
lighter.

surface states, forming a large Fermi surface according to
the Luttenger sum rule

AFS/(2⇡)
2 = �n

f

(1)

where A
FS

is the total Fermi surface area of the spin-
polarized surface states, �n

f

is the change the f valence,
i. e. for Sm 4f5.6+ ! 4f6+, �n

f

= 0.4.
A detailed analysis shows that the dispersion of the

surface states contains a large quadratic (k2) term which
dominates the dispersion of the highly doped surface
states,

E(k
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) = E0 +
p
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r(�)k? + t
f

p(�)k2?, (2)

where t
f

is the e↵ective f- hopping, while r(�) and
p(�) are functions that depend on the surface scattering
phase shift �, as defined later. The large increase in the
Fermi wavevector created by unbound surface conduction
electrons, leads to a substantial increase in the velocity,
giving rise to light surface states. It also has the e↵ect
of sinking the the Dirac point of the surface states into

Breakdown of Kondo effect at surface causes surface Dirac cones to dope,
submerging the Dirac point and considerably enhancing the Fermi velocity.
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Motivated by the recent experimental puzzles on the exceptionally light surface states of SmB6,
we study the e↵ects of surface Kondo breakdown for topological Kondo insulators. We present both
numerical and analytic results where we show that the decoupling of the local moments on the
surface gives rise to uncompensated topologically protected surface states with a large Fermi surface
and high velocity. We show that the large Fermi surface is due to Clogston-Anderson compensation
theorem and high velocity is tied to the conduction electron dispersion. Uncompensated surface
states are highly durable against the e↵ects of surface magnetism and decreasing thickness of the
sample, which makes SmB6 a perfect candidate for applications.

Introduction: Kondo insulator is a class of strongly cor-
related systems where the insulating gap opens at low
temperatures due to the hybridization between local mo-
ments and conduction electrons[1]. SmB6, one of the
first known examples of Kondo insulators has been of in-
terest due to its intriguing transport properties: the gap
starts developing around T

K

' 50K, however the resis-
tivity saturates below a few Kelvin instead of diverging
toward absolute zero[2, 3]. The origin of the low temper-
ature conductivity stayed controversial and it was mainly
ascribed to mid-gap states[4]. Recent breakthroughs on
topological phases in condensed matter lead to new the-
oretical works which suggested that the robust resistivity
plateau in SmB6 can be explained by topologically pro-
tected surface states of a topological Kondo insulator[5–
7]. There is indeed an increasing evidence from transport
experiments[8–11] that the conductivity is coming from
surface states. Moreover, surface states have been seen in
angle-resolved photoemission spectroscopy (ARPES)[12–
15] and spin polarization is observed in spin-ARPES[16].

Due to its polar crystal structure, SmB6 tend to have
disordered surfaces that would counter the polar catas-
trophe by creating defects and rearrangements which
have been probed by scanning tunneling microscopy
experiments[17, 18]. Given such disordered surfaces, the
observation of quantum oscillations up to high fields (12
T) stays as a mystery[19]. Maybe an even more intrigu-
ing puzzle is the exceptionally light surface states ob-
served in both quantum oscisllations[19] and ARPES[11–
16] experiments since the existing theories predict heavy
quasiparticles[5, 6]. These observations raise an impor-
tant question: How can topological Kondo insulators have
light surface states? (Needs paraphrasing)

We address this question in the context of surface
Kondo breakdown where the Kondo e↵ect shuts o↵ on
the surface layer, resulting in a change of valence of Sm
on the surface as shown in Fig 1(b) and (c). Change of
Sm valence has indeed been observed by x-ray absorp-
tion spectroscopy experiments[20]. Our main results are
the following: (i) The surface states are no longer com-
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FIG. 1: (a) Two dimensional schematic of the model pre-
sented on the xy plane. Due to the opposite parity of the
orbitals, onsite hybridization vanishes, and the nearest neigh-
bor local moment and conduction electron can hybridize with
a spin dependent p-wave form factor, �(k)��0 as in eq. 1.,
schematic of a Kondo insulator without (b) and with (c)
surface Kondo breakdown and the respective surface states.
Without surface Kondo breakdown, surface states are heavy,
on contrary with surface Kondo breakdown the Dirac point
shifts in the valence band and the surface states become
lighter.

pensated, they have more conduction electron character
than local moment; (ii) the removal of the local moment
leads to a large Fermi surface according to Luttenger sum
rule

A
FS

(2⇡)d�1
= n

c

(1)

where A
FS

is the area of the Fermi surface of the surface
states and d = 2, 3 is the dimensionality and n

c

is the
conduction electron density in the bulk; (iii) the domi-
nant conduction electron character gives rise to an extra
k2 dispersion leading to light surface states (see Fig. 1(b)
and (c))
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where t
f

local moment hopping and r(�) and p(�) are
functions that depend on the phase shift �, as defined
later. (iv) Dirac point sinks in the valence band, leading
to an unusual protection of surface states against decreas-
ing thickness and surface magnetism.

Theory:      vs~ 30-50 meVA
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Motivated by the recent experimental puzzles on the exceptionally light surface states of SmB6,
we study the e↵ects of surface Kondo breakdown for topological Kondo insulators. We present both
numerical and analytic results where we show that the decoupling of the local moments on the
surface gives rise to uncompensated topologically protected surface states with a large Fermi surface
and high velocity. We show that the large Fermi surface is due to Clogston-Anderson compensation
theorem and high velocity is tied to the conduction electron dispersion. Uncompensated surface
states are highly durable against the e↵ects of surface magnetism and decreasing thickness of the
sample, which makes SmB6 a perfect candidate for applications.

Introduction: Kondo insulator is a class of strongly cor-
related systems where the insulating gap opens at low
temperatures due to the hybridization between local mo-
ments and conduction electrons[1]. SmB6, one of the
first known examples of Kondo insulators has been of in-
terest due to its intriguing transport properties: the gap
starts developing around T

K

' 50K, however the resis-
tivity saturates below a few Kelvin instead of diverging
toward absolute zero[2, 3]. The origin of the low temper-
ature conductivity stayed controversial and it was mainly
ascribed to mid-gap states[4]. Recent breakthroughs on
topological phases in condensed matter lead to new the-
oretical works which suggested that the robust resistivity
plateau in SmB6 can be explained by topologically pro-
tected surface states of a topological Kondo insulator[5–
7]. There is indeed an increasing evidence from transport
experiments[8–11] that the conductivity is coming from
surface states. Moreover, surface states have been seen in
angle-resolved photoemission spectroscopy (ARPES)[12–
15] and spin polarization is observed in spin-ARPES[16].

Due to its polar crystal structure, SmB6 tend to have
disordered surfaces that would counter the polar catas-
trophe by creating defects and rearrangements which
have been probed by scanning tunneling microscopy
experiments[17, 18]. Given such disordered surfaces, the
observation of quantum oscillations up to high fields (12
T) stays as a mystery[19]. Maybe an even more intrigu-
ing puzzle is the exceptionally light surface states ob-
served in both quantum oscisllations[19] and ARPES[11–
16] experiments since the existing theories predict heavy
quasiparticles[5, 6]. These observations raise an impor-
tant question: How can topological Kondo insulators have
light surface states? (Needs paraphrasing)

We address this question in the context of surface
Kondo breakdown where the Kondo e↵ect shuts o↵ on
the surface layer, resulting in a change of valence of Sm
on the surface as shown in Fig 1(b) and (c). Change of
Sm valence has indeed been observed by x-ray absorp-
tion spectroscopy experiments[20]. Our main results are
the following: (i) The surface states are no longer com-
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FIG. 1: (a) Two dimensional schematic of the model pre-
sented on the xy plane. Due to the opposite parity of the
orbitals, onsite hybridization vanishes, and the nearest neigh-
bor local moment and conduction electron can hybridize with
a spin dependent p-wave form factor, �(k)��0 as in eq. 1.,
schematic of a Kondo insulator without (b) and with (c)
surface Kondo breakdown and the respective surface states.
Without surface Kondo breakdown, surface states are heavy,
on contrary with surface Kondo breakdown the Dirac point
shifts in the valence band and the surface states become
lighter.

pensated, they have more conduction electron character
than local moment; (ii) the removal of the local moment
leads to a large Fermi surface according to Luttenger sum
rule

A
FS

(2⇡)d�1
= n

c

(1)

where A
FS

is the area of the Fermi surface of the surface
states and d = 2, 3 is the dimensionality and n

c

is the
conduction electron density in the bulk; (iii) the domi-
nant conduction electron character gives rise to an extra
k2 dispersion leading to light surface states (see Fig. 1(b)
and (c))
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where t
f

local moment hopping and r(�) and p(�) are
functions that depend on the phase shift �, as defined
later. (iv) Dirac point sinks in the valence band, leading
to an unusual protection of surface states against decreas-
ing thickness and surface magnetism.

Kondo Breakdown at surface.
Lower co-ordination
at surface dramatically
suppresses the Kondo
temperature
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Motivated by the observation of light surface states of SmB6, we examine the e↵ects of surface
Kondo breakdown in topological Kondo insulators. We present both numerical and analytic results
which show that the decoupling of the localized moments at the surface disturbs the compensation
between light and heavy electrons and dopes the Dirac cone. Dispersion of these uncompensated
surface states are dominated by inter-site hopping, which leads to a much lighter quasiparticles.
These surface states are also highly durable against the e↵ects of surface magnetism and decreasing
thickness of the sample, which makes SmB6 a perfect candidate for applications.

Introduction: Kondo insulators are a class of strongly
correlated electron material in which the development
of an insulating gap is driven by a co-operative screen-
ing of local moments by conduction electrons[1] at low
temperatures. The first Kondo insulator, SmB6, dis-
covered more than 40 years ago, has attracted renewed
interest dut to its intriguing transport properties: al-
though its insulating gap develops around T

K

' 50K,
the resistivity saturates below a few Kelvin[2, 3]. This
resistivity plateau was originally ascribed to mid-gap
states[4], but the discovery of topological insulators led
to a new proposal, identifying it with conducting surface
states of a topological Kondo insulator [5–8]. Subsequent
experiments[9–12] have confirmed that the plateau con-
ductivity derives from surface states, which have been
resolved by angle-resolved photoemission spectroscopy
(ARPES)[13–16]. Recent spin-ARPES experiments have
also confirmed the helicoidal spin polarization expected
from topologically protected Dirac cones[17].

Yet despite this initial success, one mystery remains:
both quantum oscillations[18] and ARPES[12–17] stud-
ies show that the surface quasiparticles are exceptionally
light with Fermi velocity, v

s

, ranging from 220 meVÅ[14]
to 300 meVÅ[13]. On the other hand, existing theories[5–
8] predict surface v

s

⇠ 30�50 meVÅ which are about an
order of magnitude heavier than observed in experiments.

Here we resolve this paradox by taking account of the
interplay between the surface and the Kondo e↵ect. The
essence of the idea is as follows. The lower co-ordination
of the Sm atoms at the surface causes a dramatic re-
duction in their Kondo temperature leading to a break-
down of the Kondo e↵ect. Surface “Kondo breakdown”
of this form is expected to give rise to a shift in the va-
lence of the surface Sm ions towards the higher entropy,
4f5 (3+) configuration of the unquenched moments, an
e↵ect which is corroborated by X-ray absorption spec-
troscopy [19]. One of the important e↵ects of surface
“Kondo breakdown” is the liberation of a large number
of carriers, previously bound inside Kondo singlets (see
Fig1(b) and (c)). For the purpose of electron counting,
decoupling of local moments can be thought as change
of f valance. These carriers then go into the protected
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FIG. 1: (a) Two dimensional schematic of the model pre-
sented on the xy plane. Due to the opposite parity of the
orbitals, onsite hybridization vanishes, and the nearest neigh-
bor local moment and conduction electron can hybridize with
a spin dependent p-wave form factor, �(k)��0 as in eq. 1.,
schematic of a Kondo insulator without (b) and with (c)
surface Kondo breakdown and the respective surface states.
Without surface Kondo breakdown, surface states are heavy,
on contrary with surface Kondo breakdown the Dirac point
shifts in the valence band and the surface states become
lighter.

surface states, forming a large Fermi surface according to
the Luttenger sum rule

AFS/(2⇡)
2 = �n

f

(1)

where A
FS

is the total Fermi surface area of the spin-
polarized surface states, �n

f

is the change the f valence,
i. e. for Sm 4f5.6+ ! 4f6+, �n

f

= 0.4.
A detailed analysis shows that the dispersion of the

surface states contains a large quadratic (k2) term which
dominates the dispersion of the highly doped surface
states,
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where t
f

is the e↵ective f- hopping, while r(�) and
p(�) are functions that depend on the surface scattering
phase shift �, as defined later. The large increase in the
Fermi wavevector created by unbound surface conduction
electrons, leads to a substantial increase in the velocity,
giving rise to light surface states. It also has the e↵ect
of sinking the the Dirac point of the surface states into
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Motivated by the recent experimental puzzles on the exceptionally light surface states of SmB6,
we study the e↵ects of surface Kondo breakdown for topological Kondo insulators. We present both
numerical and analytic results where we show that the decoupling of the local moments on the
surface gives rise to uncompensated topologically protected surface states with a large Fermi surface
and high velocity. We show that the large Fermi surface is due to Clogston-Anderson compensation
theorem and high velocity is tied to the conduction electron dispersion. Uncompensated surface
states are highly durable against the e↵ects of surface magnetism and decreasing thickness of the
sample, which makes SmB6 a perfect candidate for applications.

Introduction: Kondo insulator is a class of strongly cor-
related systems where the insulating gap opens at low
temperatures due to the hybridization between local mo-
ments and conduction electrons[1]. SmB6, one of the
first known examples of Kondo insulators has been of in-
terest due to its intriguing transport properties: the gap
starts developing around T

K

' 50K, however the resis-
tivity saturates below a few Kelvin instead of diverging
toward absolute zero[2, 3]. The origin of the low temper-
ature conductivity stayed controversial and it was mainly
ascribed to mid-gap states[4]. Recent breakthroughs on
topological phases in condensed matter lead to new the-
oretical works which suggested that the robust resistivity
plateau in SmB6 can be explained by topologically pro-
tected surface states of a topological Kondo insulator[5–
7]. There is indeed an increasing evidence from transport
experiments[8–11] that the conductivity is coming from
surface states. Moreover, surface states have been seen in
angle-resolved photoemission spectroscopy (ARPES)[12–
15] and spin polarization is observed in spin-ARPES[16].

Due to its polar crystal structure, SmB6 tend to have
disordered surfaces that would counter the polar catas-
trophe by creating defects and rearrangements which
have been probed by scanning tunneling microscopy
experiments[17, 18]. Given such disordered surfaces, the
observation of quantum oscillations up to high fields (12
T) stays as a mystery[19]. Maybe an even more intrigu-
ing puzzle is the exceptionally light surface states ob-
served in both quantum oscisllations[19] and ARPES[11–
16] experiments since the existing theories predict heavy
quasiparticles[5, 6]. These observations raise an impor-
tant question: How can topological Kondo insulators have
light surface states? (Needs paraphrasing)

We address this question in the context of surface
Kondo breakdown where the Kondo e↵ect shuts o↵ on
the surface layer, resulting in a change of valence of Sm
on the surface as shown in Fig 1(b) and (c). Change of
Sm valence has indeed been observed by x-ray absorp-
tion spectroscopy experiments[20]. Our main results are
the following: (i) The surface states are no longer com-
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FIG. 1: (a) Two dimensional schematic of the model pre-
sented on the xy plane. Due to the opposite parity of the
orbitals, onsite hybridization vanishes, and the nearest neigh-
bor local moment and conduction electron can hybridize with
a spin dependent p-wave form factor, �(k)��0 as in eq. 1.,
schematic of a Kondo insulator without (b) and with (c)
surface Kondo breakdown and the respective surface states.
Without surface Kondo breakdown, surface states are heavy,
on contrary with surface Kondo breakdown the Dirac point
shifts in the valence band and the surface states become
lighter.

pensated, they have more conduction electron character
than local moment; (ii) the removal of the local moment
leads to a large Fermi surface according to Luttenger sum
rule

A
FS

(2⇡)d�1
= n

c

(1)

where A
FS

is the area of the Fermi surface of the surface
states and d = 2, 3 is the dimensionality and n

c

is the
conduction electron density in the bulk; (iii) the domi-
nant conduction electron character gives rise to an extra
k2 dispersion leading to light surface states (see Fig. 1(b)
and (c))
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where t
f

local moment hopping and r(�) and p(�) are
functions that depend on the phase shift �, as defined
later. (iv) Dirac point sinks in the valence band, leading
to an unusual protection of surface states against decreas-
ing thickness and surface magnetism.

Kondo Breakdown at surface.
2

(b)(a)

FIG. 2: Slab calculation for topological Kondo insulator: (a) for the uniform solution, (b) surface Kondo breakdown: surface
local moments decouples from the rest of the system. Notice the large Fermi surface with high velocity quasiparticles in the
case of the surface Kondo breakdown.

the valence band, leading to an unusual protection of
surface states against decreasing thickness and surface
magnetism.
Model: In order to study surface Kondo breakdown,
we introduce the simplest lattice model for topological
Kondo insulators, based on the hybridization of local-
ized, spin-orbit coupled p states with s-like conduction
electrons. This model captures all the essential physics
of SmB6 where the actual hybridization takes place be-
tween f and d states. We start with the periodic Ander-
son model:

H =
X
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where c†(f†) are conduction electron (local moment) cre-
ation operators. ✏

k

are the conduction electron dis-
persion, Ṽ and ✏̃

fk

are the unnormalized hybridization
and local moment dispersion; �(k)

��

0 is the form factor,
�
��

0 = [�
x

sin(k
x

a) + �
y

sin(k
y

a) + �
z

sin(k
z

a)] (From
now on we work units of a = 1). U is the onsite Coulomb
repulsion on the f sites. The standard procedure is to in-
troduce slave-bosons which project out the double occu-
pancy on the f sites and do a saddle point approximation
which gives rise to the mean-field equations[20].
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where V and ✏
fk

are the normalized hybridization and
f dispersion, (i.e. V = Ṽ b where b is the slave-boson
amplitude.). � is the e↵ective chemical potential for the
f electrons that would satisfy n

f

= (1 � b2) on average
at the mean-field level. Fig. 1(a) shows the schematic of
our model. We have used the simplified nearest neighbor
dispersion ✏

k

= �2t
P

i

cos k
i

and then f dispersion be-
comes ✏

f

= �↵✏
k

, where ↵ is a ratio ↵ = t
f

/t. Note that

the Kondo hybridization is only between nearest neigh-
bor c�f electrons since the onsite hybridization vanishes
due to the orthogonality of the orbitals. Band crossing
between odd and even parity bands leads to a topological
band structure[21, 22] giving rise to topological surface
states.
In order to solve for the surface states, we linearize

H
MF

following Volovik’s [23] approach. We consider the
main surface e↵ect to be scattering among low energy
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sponding energy for the Dirac point is E0 = �/(↵ + 1).
To obtain the energy dispersion for the surface states we
project the full Hamiltonian HMF onto the solution of
H0: He↵ = h ±|HMF| ±i leading to
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where k? =
q
k2
x

+ k2
y

. Since ↵ ⌧ 1, the surface states

are composed of heavy quasiparticles. Also note that the
quadratic k2 term vanishes completely what else can

we say here.
Surface Kondo breakdown: The Kondo temperature of
the surface is much smaller than bulk Kondo temperature
due to smaller coordination number on the surface. As a
result, the bulk forms singlets with conduction electrons,
leaving unquenched, decoupled local moments on the sur-
face. This e↵ect also known as ”Kondo band bending”
has been recently explored in 1D[24]. In one dimensions,

Local moments on the surface form a 2D Kondo lattice 
with spin-orbit locked conduction bands. 

Surface Kondo physics?  Magnetism, QCP even 
superconductivity.

V. Alexandrov, P. Coleman, O. Erten,  

Phys. Rev. Lett. 114:177202 2015.

Breakdown of Kondo effect at surface causes surface Dirac cones to dope,
submerging the Dirac point and considerably enhancing the Fermi velocity.
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monitored in situ by a superconducting Pb manometer. The
resistivity was measured in four probe arrangement, with
current kept low enough to avoid self-heating of the sample.
The received resistivity data as a function of temperature,

for various pressure values, are plotted in Fig. 1. The ob-
served temperature dependence of the resistivity below 40
kbar exhibits an increase as the temperature is lowered from
70 to 3 K, indicating a gap structure in the density of states.
Below 3 K a saturation is observed. To derive more informa-
tion about the influence of pressure on the gap structure and
about the carrier kinetics below 70 K, the local activation
energy W(T)!d! ln "(T)#/d(1/kBT) !derivative of the ln "(T)
vs 1/kBT dependence# as a function of temperature was de-
termined from the above data by means of a standard nu-
merical derivative analysis, see Fig. 2. At ambient pressure
and in the temperature range between 70 and 15 K the resis-
tivity dependence is characterized by an activation energy
with a value of about 5.9 meV. This value can be attributed
to intrinsic semiconductorlike conductivity of the form
"(T)$exp(Eg/2kBT), where Eg%11.8 meV corresponds to
the width of the hybridization gap. Between 15 and 3 K a
second pronounced activation energy appears. Its value is
Ed%5.6 meV, and represents the distance between the bot-
tom of the conduction band and the in-gap states that are
formed within this energy gap. Below about 3 K the local
activation energy decreases rapidly to values lower than the
available thermal energy kBT implying that the residual con-
ductivity of SmB6 is of nonactivated &metalliclike' nature.
The fact that Eg and Ed do not clearly level off is most
probably connected with the pseudogap structure of the en-
ergy gap. With increasing pressure &see Fig. 2' the local ac-

tivation energy maxima become lower, the structures are
broadened and shifted to lower temperatures, reflecting a
gradual suppression of the gap &pseudogap' width in the den-
sity of states. For pressures of 38 kbar and 40 kbar the acti-
vation energy forms only one broad maximum, thus making
it difficult to distinguish between Eg and Ed . In this case we
consider these activation energies to have merged, i.e., Eg/2
! Ed . Since for p!40 kbar Eg and Ed are very close to
zero &they seem to disappear together', we estimate the criti-
cal pressure pcr , where the semiconductorlike conductivity
and the local activation energies disappear, to be about 40
kbar. The inferred (Eg , Ed) vs p phase diagram is shown in
Fig. 3, a continuous suppression of the gap in SmB6 with
increasing pressure can be observed. Equivalent Eg and Ed
pressure dependencies can be obtained from the slopes of an
Ahrenius plot !i.e., from the ln "(T) vs 1/kBT plot#.
Particularly interesting are the results of the analysis of

the low temperature and pressure induced metallic phase.
Here, at the lowest temperatures and for p(pcr resistivity
does not follow a characteristic Fermi liquid behavior "(T)
!"0"AT2, with "0 being the residual resistivity. Instead, it
appears to be well described by a power law "(T)!"0
"ATn and 1)n)2. For pressure p!40 kbar n%1, for p
!54 kbar n%1.56, for p!60 kbar n%1.9 and for p
!70 kbar n%2 &Fig. 4'. Although the temperature range in
which these dependencies are observed is relatively narrow,
the manifestation of this kind of dependence at all successive
pressures between 40 and 70 kbar shows strong indications
for a non-Fermi-liquid behavior.
For p!60 kbar and p!70 kbar, where the exponent n is

very close or equal to 2, the coefficient A appears to have a
magnitude of 0.052 and 0.044 *+ cmK#2, respectively.
These values are lower than those deduced by Cooley et al.6
According to the Kadowaki and Woods plot21 the corre-
sponding electronic specific heat coefficient , should have a
value of about 60 mJmol#1 K#2, which shows that high
pressure metallic SmB6 exhibits properties similar to that of
a normal Kondo lattice: A coherent Fermi liquid behavior
with a moderate enhancement of the quasiparticle mass at
low temperatures and the "(T)$#ln(T) resistivity depen-
dence at higher temperatures &between 50 and 300 K'. It is

FIG. 1. Temperature dependent electrical resistivity "(T) for
various values of applied pressure. The insulator to metal transition
sets in at pcr%40 kbar.

FIG. 2. Temperature dependence of the local activation energy
W of SmB6, calculated for various pressures from the resistivity
data in Fig. 1.

BRIEF REPORTS PHYSICAL REVIEW B 67, 172406 &2003'
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S. Gabani et al, PRB 67, 172406 (2003)
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also interesting to note that the derived ! value is compa-
rable to the enhanced electronic specific heat coefficient ob-
served in heat capacity measurements at very low
temperatures.13 Moreover, despite of limited data, it can be
seen that the characteristic energy scale for quasiparticle in-
teractions in the Fermi liquid T* "1/!A increases, and the
mass enhancement m*/me"!A correspondingly decreases
as p is driven beyond 60 kbar.
The above behavior of #(T) near the critical point pcr

reminds of that observed e.g., in antiferromagnetic f-electron
systems such as CePd2Si2 $Ref. 22% and of that in the Mott
insulator BaVS3,23 a compound that is dominated by antifer-
romagnetic spin-spin interactions at lowest temperatures.
It should be noted that non-Fermi-liquid behavior is often

found experimentally near a magnetically ordered $ferromag-
netic or antiferromagnetic% state in the phase diagram, indi-
cating that non-Fermi-liquid behavior in those systems may
be linked to a magnetic instability that arises at T!0. The
transition from a magnetically ordered to a non-Fermi-liquid
state is driven by a control parameter other than temperature,
e.g., external pressure, doping or magnetic field at absolute
zero, by quantum-mechanical fluctuations. The control pa-
rameter thus tunes a system at the zero temperature boundary
from an ordered ground state towards a nonordered state
crossing a quantum critical point $see, e.g., Refs. 24,25%. In

the case of SmB6 the overall appearance of the susceptibility
curve2,9 shows that the ground state is formed by the non-
magnetic 7F0 state of Sm2" (4 f 6) and by the nonmagnetic
7H2 state in which the 5d1 electrons are coupled to the 4 f 5
electrons of the Sm3" configuration $only with increasing
temperature electrons are transferred from ground state to
excited magnetic energy levels%. Thus, in this compound, un-
der the influence of external pressure at T → 0, a transition
from an insulating to a Fermi-liquid behavior, characterized
by an enhanced electronic density of states at EF and also
most probably by enhanced Pauli paramagnetism, is ob-
served. The non-Fermi-liquid-like behavior in between both
of these regimes would then be a consequence of a pressure
driven crossover from a non-magnetic to a magnetic state.
This behavior, together with the dependence of Eg(p), if the
width of the energy gap is taken as an order parameter, re-
sembles very much the case of a pressure induced insulator
$semiconductor% to metal transition through a quantum criti-
cal point as it was observed in BaVS3.23 To prove the pres-
ence of a quantum critical point in SmB6, however, further
pressure experiments $above all at lower temperatures% are
needed. Moreover, one should keep in mind that deviations
from the T2 behavior at pcr may originate from residues of
the former gap or pseudogap structure in the density of states
as well. To resolve a T2 dependence in #(T) requires an
energy independent density of states at the Fermi level
which, however, seems not to be found at the critical pres-
sure.

FIG. 3. Pressure dependence of the activation energies Eg $re-
lated to the width of the hybridization gap% and Ed $related to the
excitations between the in-gap states and the bottom of the conduc-
tion band%. The dashed lines are guides for the eye.

FIG. 4. Temperature dependent resistivity at $a% p!40 kbar, $b%
p!54 kbar, $c% p!60 kbar, and $d% p!70 kbar. The dashed lines
are least squares fits $see text%.
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The analysis of the NFS spectra was performed with the
package MOTIF [22].

Figure 1 shows some selected 149Sm NFS spectra col-
lected for pressures up to 26 GPa at temperatures of 200 K
(left panel) and 3 K (right panel). At 200 K for all pressures
one observes spectra characteristic of unsplit nuclear lev-
els; i.e., quadrupole or magnetic interactions are absent as
expected for Sm ions in a nonmagnetic (either paramag-
netic or diamagnetic) state and in a cubic symmetry. The
same type of spectra is measured in the whole pressure
range between 0 and 26 GPa for temperatures higher than
!50–100 K. At lower temperatures the spectral shape
changes in a more or less pronounced way depending on
pressure. One can distinguish three pressure regimes. For
p < 6 GPa combined hyperfine interactions with ex-
tremely broad distributions are present at the 149Sm nuclei.
For p > 10 GPa a clear quantum beat structure appears at
low temperatures (see Fig. 1) indicating that the nuclear
levels are split by well defined hyperfine interactions. An
intermediate regime, with probably the coexistence of the
low-pressure and high-pressure phases, is found for 6<
p< 10 GPa.

The graphs in Figs. 2(a) and 2(b) show the pressure and
volume dependence of the average values of Bhf and !EQ

as determined from the fits of the spectra measured at 3 K

[23]. The volume dependence on pressure at 3 K has been
determined by powder x-ray diffraction measurements
performed along with the NFS and yields an ambient
pressure bulk modulus B0 " 138#10$ GPa. At ambient
pressure we obtain Bhf " 33#20$ T and !EQ "
%0:1#1$ mm=s. The distribution of the hyperfine parame-
ters shows that approximately 70% of the Sm nuclei feel
zero hyperfine interactions, while for the remaining 30%
the magnetic hyperfine field varies in the range between 40
and 170 T. Although this model supposes the magnetic
moments at the Sm ions to be static, our suggestion is
that slow fluctuations (with a period !> 10%8 s) are
present, which appear as almost static on the time scale
of the NFS measurements. The values of Bhf and !EQ stay
almost unchanged up to a pressure of 5.3 GPa and then
increase rapidly to reach values of 246(10) T and
%1:3#1$ mm=s, respectively, at 9.7 GPa. At the same
time the widths of the distributions of the hyperfine
parameters decrease considerably. For a further increase
of the pressure up to 26 GPa only a slight variation of
both Bhf and !EQ is observed. At this pressure we find

FIG. 1. The 149Sm NFS spectra of SmB6 at T " 200 K (left)
and T " 3 K (right) for some selected pressures. The dots
represent experimental data points, while the lines are fits.

FIG. 2. Pressure and volume dependence of (a) the average
magnetic hyperfine field Bhf at 3 K, (b) the average electric
quadrupole interaction !EQ at 3 K, and (c) the ordering tem-
perature Tm as determined by NFS (full circles) and specific heat
(full triangles).
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III. Magnetic Fluctuations

of flight spectrometer at the SNS with incident energies
and elastic energy resolution, respectively, of (50, 2),
(80, 2), and (100, 3) meV [29–31]. Intensity was scaled
to absolute units for the differential scattering cross section
by normalizing to acoustic phonons and Bragg peaks [32].
Figure 1 shows the Q dependence of the inelastic

scattering intensity, integrated from 12 to 16 meV.
Visible at the R point is the intensity maximum previously
associated with an intermediate-radius exciton [33], which
reflects the mixed valence state of Sm. The small angle
scattering capabilities of SEQUOIA now bring a strong
peak at the X point into view, which is replicated at
X þ G ¼ ð12 10Þ. The intensity is greatly diminished
beyond the first Brillouin zone, indicating that the asso-
ciated spin density extends beyond the 4f orbital (Fig. 4).
Figure 2 shows theQ-dependent spectrum of the neutron

scattering intensity along high-symmetry paths though the
Brillouin zone. Intensity is confined to regions near the X
and R points where the mode energy is minimal. The
overall bandwidth of the resonance is less than 2 meV.
Figure 3 provides a quantitative overview of the resonant
mode. All peaks in energy transfer are resolution limited
[dashed line in (c)], indicating a long-lived collective mode
that is isolated from the electron-hole pair continuum. The
oscillator strength halfway between X and R falls to less
than 20% of peak values without significant broadening
[Figs. 2(b) and 3(b)]. This confinement in momentum space

contrasts with a conventional crystal field exciton for which
the oscillator strength is Q independent [34].
When the magnetic ion forms a simple Bravais lattice,

as for SmB6, Bloch’s theorem implies Iðqþ GÞ ¼
IðqÞ × jFðqþ GÞj2, where the form factor FðQÞ ¼
hj0iþ ð1 − ð2=gÞÞhj2i, and hjni¼

R∞
0 dr2r2½ρðrÞ&2jnðqrÞ.

Here, ρðrÞ is the radial density, jn is the nth spherical
Bessel function, and g is the Landé factor [35]. We compare

FIG. 1 (color online). Energy integrated neutron scattering intensity (a),(b),(d) in high symmetry planes. (a) 154Sm11B6 at 5 K.
(b) La11B6 at 5 K. (c) Feynman diagrams illustrating the slave-boson treatment of f-electron repulsion within f-d hybridized bands as
described in the main text. (d) Q dependence of χ0ðQÞjFðQÞj2, where χ0ðQÞ is the Lindhardt susceptibility for the band structure in
(e) and FðQÞ is the 5d electron form factor. (e) Phenomenological band structure within the (hk0) plane. Translation from X toM shows
the change in band character. Inset: schematic representation of pseudonesting vectors. (f) Smallest unique portion of the Brillouin zone.

FIG. 2 (color online). Neutron scattering cross section for
SmB6 at 5 K along high symmetry directions (inset) (a) from
the Γ point and (b) around the Brillouin zone edges. Dashed line
shows the dispersion of a slave-boson-mediated exciton.
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shows the dispersion of a slave-boson-mediated exciton.
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of flight spectrometer at the SNS with incident energies
and elastic energy resolution, respectively, of (50, 2),
(80, 2), and (100, 3) meV [29–31]. Intensity was scaled
to absolute units for the differential scattering cross section
by normalizing to acoustic phonons and Bragg peaks [32].
Figure 1 shows the Q dependence of the inelastic

scattering intensity, integrated from 12 to 16 meV.
Visible at the R point is the intensity maximum previously
associated with an intermediate-radius exciton [33], which
reflects the mixed valence state of Sm. The small angle
scattering capabilities of SEQUOIA now bring a strong
peak at the X point into view, which is replicated at
X þ G ¼ ð12 10Þ. The intensity is greatly diminished
beyond the first Brillouin zone, indicating that the asso-
ciated spin density extends beyond the 4f orbital (Fig. 4).
Figure 2 shows theQ-dependent spectrum of the neutron

scattering intensity along high-symmetry paths though the
Brillouin zone. Intensity is confined to regions near the X
and R points where the mode energy is minimal. The
overall bandwidth of the resonance is less than 2 meV.
Figure 3 provides a quantitative overview of the resonant
mode. All peaks in energy transfer are resolution limited
[dashed line in (c)], indicating a long-lived collective mode
that is isolated from the electron-hole pair continuum. The
oscillator strength halfway between X and R falls to less
than 20% of peak values without significant broadening
[Figs. 2(b) and 3(b)]. This confinement in momentum space

contrasts with a conventional crystal field exciton for which
the oscillator strength is Q independent [34].
When the magnetic ion forms a simple Bravais lattice,

as for SmB6, Bloch’s theorem implies Iðqþ GÞ ¼
IðqÞ × jFðqþ GÞj2, where the form factor FðQÞ ¼
hj0iþ ð1 − ð2=gÞÞhj2i, and hjni¼

R∞
0 dr2r2½ρðrÞ&2jnðqrÞ.

Here, ρðrÞ is the radial density, jn is the nth spherical
Bessel function, and g is the Landé factor [35]. We compare
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(e) and FðQÞ is the 5d electron form factor. (e) Phenomenological band structure within the (hk0) plane. Translation from X toM shows
the change in band character. Inset: schematic representation of pseudonesting vectors. (f) Smallest unique portion of the Brillouin zone.
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SmB6 at 5 K along high symmetry directions (inset) (a) from
the Γ point and (b) around the Brillouin zone edges. Dashed line
shows the dispersion of a slave-boson-mediated exciton.
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systems where the field sweep rate is almost 107 tesla! shot, data are collected every 10 ns by fast digitizing
oscilloscopes (Tektronix model 602).sec, three orders of magnitude greater than in the

60 T magnet.
Because the nature of the flux compressor 3. RESULTS AND DISCUSSIONexcludes reversing the sample current polarity in a

second pulse, the removal of the extrinsic electro- Shown in Fig. 1 is the magnetoresistance of
SmB6 at 4 K in fields up to 145 T. The dotted line ismotive pickup from the data is done by estimating

the open loop area of the measurement circuit from the result from the flux compression experiment, and
the solid line is the result from the 60 T pulsed mag-the data and subtracting it. In addition digital filters

are used to remove noise at frequencies that coincide net. The data from each experiment have been nor-
malized only by the zero field resistivity. Below 20 Twith ringing in the transmission lines from the capaci-

tor bank to the generator. there is no flux compression data because noise from
the transmission line at low fields is too large toThe samples (typically four per shot) are

mounted inside a double-walled Pyrex tube. Low remove. As the field increases from zero, we observe
a negative quadratic field dependence of the resis-temperature in the flux compression systems is

obtained by pumping liquid helium through a small tivity to approximately 30 T. Between 30 and 85 T the
resistivity continues to decrease, but at a rate slowerorifice in the Pyrex tube just upstream of the sample.

The temperature is monitored with a calibrated car- than H2. Above 100 T the resistivity is quadratic and
increases at a rate of ≈1B10−3 Ω cm!T2.bon resistor located just downstream of the samples.

In addition, the resistivity of SmB6 is strongly tem- The negative H2 magnetoresistance at low field
is caused by the fact that the gap closes as H2 [14].perature dependent between 3–40 K so the sample

itself functioned as a thermometer before the field This is significant because Zeeman splitting of the
band edge states would close the gap linearly withpulse.

The field is determined from the signal obtained field. In this sample, the gap is 40 K and is closing
at a rate of 5B10−3 K!T2 below 30 T suggesting gapby a calibrated coil that is next to the samples, but

outside the Pyrex tube. The field homogeneity in the closure at 86 T. This is in good agreement with the
field at which there is a minimum in the magnetore-region containing the samples and the calibrated coil

has been measured to be within 1% [13]. During the sistance. Once the gap is closed, questions arise about

Fig. 1. The magnetoresistance of SmB6 at 4 K in
fields up to 145 T. The solid line is the result of an
experiment in a 60 T pulsed magnet. The dotted line
is the result of an experiment in an explosive driven
flux compression system.

Cooley et al, 1999

T

P
50K
Gap opens

0.3-4K 
plateau

4GPa
QCP?

?

L=5, S=5/2, J=5/2, g~0.2-0.3
Field effect is ORBITALHc

>160T?

IV. Field effect

H

AFM?



IV. Field effect

7

( c ) ( d )

( b )( a )

FIG. 2: (color online) Quantum oscillation pattern observed
by torque magnetometry. (a) The oscillatory magnetic torque
s plotted as a function of 1/µ

0

H. ⌧osc is taken after sub-
tracting a polynomial background. (b) The two main os-
cillation peaks are also observed in the Fast Fourier Trans-
form (FFT) transformations of both oscillatory torque ⌧osc
as well as the derivative d⌧

dB
. (c) The temperature depen-

dence of the normalized oscillatory ⌧osc and ⌧ 0
osc yield the

e↵ective mass m = 0.074me for the low frequency ↵ pocket
and m = 0.101me for the high frequency � pocket. (d) At 1.6
K, the oscillating amplitude is tracked as a function of field H,
generally known as the Dingle plot. For the low frequency ↵
pocket, the Dingle temperature TD = 22 K. For the � pocket,
TD is found to be 24 K.

2D fluctuations: 
G. Li et al, Science 346, 1208 (2014). 
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2D surface states: 
G. Li et al, Science 346, 1208 (2014). 

Tan et al, Science (2015). 

Figure 2: (A) Fourier transforms of magnetic torque from which a polynomial background
has been subtracted, revealing multiple quantum oscillatory frequencies ranging from 50 T to
15,000 T. Field ranges for analysis have been chosen that best capture the observed oscillations,
with the highest frequencies only appearing in the higher field ranges. (B) The periodicity in
inverse magnetic field is shown by plotting the maxima and minima corresponding to the dom-
inant low frequency oscillations as a function of inverse magnetic field; the linear dependence
signals Landau quantisation.
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Figure 3: (A) Angular dependence of the quantum oscillation frequencies in SmB6 from two
of the SmB6 samples where oscillations were observed, represented by solid and open circle
symbols. Importantly, one of the samples (solid circles) was prepared as a thin plate with the
dominant face perpendicular to the [100] axis (sample 1, shown in methods), and the second
sample (open circles) was prepared as a thin plate with the dominant face perpendicular to the
[110] axis (sample 2, shown in methods). The angular dependence strongly resembles that of
the three-dimensional Fermi surface in antiferromagnetic PrB6 shown in (B), and nonmagnetic
LaB6 shown in (C) [30]. The ↵ orbit in red in all the rare earth hexaborides is fit to large
multiply connected spherical ellipsoids centred at the X points of the Brillouin zone, shown in
D, a cross-section in the XM plane is shown in E. The ⇢ and ⇢0 orbits in each of the rare earth
hexaborides are fit to small ellipsoids located at the neck positions. The remaining intermediate
orbits are shown with lines as a guide to the eye, all orbit identifications have been made after
measured frequencies in PrB6 and LaB6 identified in ref. [30].
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symbols. Importantly, one of the samples (solid circles) was prepared as a thin plate with the
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sample (open circles) was prepared as a thin plate with the dominant face perpendicular to the
[110] axis (sample 2, shown in methods). The angular dependence strongly resembles that of
the three-dimensional Fermi surface in antiferromagnetic PrB6 shown in (B), and nonmagnetic
LaB6 shown in (C) [30]. The ↵ orbit in red in all the rare earth hexaborides is fit to large
multiply connected spherical ellipsoids centred at the X points of the Brillouin zone, shown in
D, a cross-section in the XM plane is shown in E. The ⇢ and ⇢0 orbits in each of the rare earth
hexaborides are fit to small ellipsoids located at the neck positions. The remaining intermediate
orbits are shown with lines as a guide to the eye, all orbit identifications have been made after
measured frequencies in PrB6 and LaB6 identified in ref. [30].
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Figure 3: (A) Angular dependence of the quantum oscillation frequencies in SmB6 from two
of the SmB6 samples where oscillations were observed, represented by solid and open circle
symbols. Importantly, one of the samples (solid circles) was prepared as a thin plate with the
dominant face perpendicular to the [100] axis (sample 1, shown in methods), and the second
sample (open circles) was prepared as a thin plate with the dominant face perpendicular to the
[110] axis (sample 2, shown in methods). The angular dependence strongly resembles that of
the three-dimensional Fermi surface in antiferromagnetic PrB6 shown in (B), and nonmagnetic
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multiply connected spherical ellipsoids centred at the X points of the Brillouin zone, shown in
D, a cross-section in the XM plane is shown in E. The ⇢ and ⇢0 orbits in each of the rare earth
hexaborides are fit to small ellipsoids located at the neck positions. The remaining intermediate
orbits are shown with lines as a guide to the eye, all orbit identifications have been made after
measured frequencies in PrB6 and LaB6 identified in ref. [30].
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Figure 4: (A) Temperature dependence of quantum oscillation amplitude (of the dominant 330 T
frequency) over the magnetic field range 25 to 35 T, revealing a strong departure from the
conventional Lifshitz Kosevich form (shown in the inset). Temperatures in the range 25 K to
0.35 K were measured in a 3-Helium fridge in the hybrid magnet (sample 1: black diamonds),
and temperatures in the range 1 K to 0.030 mK were measured in a dilution fridge in the resistive
magnet on two different samples (sample 1: blue diamonds and sample 3: black squares).
(B) Simulation of a non Lifshitz Kosevich temperature dependence from a quantum critical
enhancement in mass approaching low temperatures using the approach adopted by Engelsberg
and Simpson in ref. [33]. (C) Simulation of a non Lifshitz Kosevich temperature dependence
for unconventional quasiparticles using the non-perturbative holographic model of Hartnoll and
Hofman in ref. [34].

10

3D orbits! 6x Rise in N(0)*: Q Criticality?

X

R

M

[001]

[010]

[100]

X

α

X M

Γε

γ

α

α

D E

Figure 3: (A) Angular dependence of the quantum oscillation frequencies in SmB6 from two
of the SmB6 samples where oscillations were observed, represented by solid and open circle
symbols. Importantly, one of the samples (solid circles) was prepared as a thin plate with the
dominant face perpendicular to the [100] axis (sample 1, shown in methods), and the second
sample (open circles) was prepared as a thin plate with the dominant face perpendicular to the
[110] axis (sample 2, shown in methods). The angular dependence strongly resembles that of
the three-dimensional Fermi surface in antiferromagnetic PrB6 shown in (B), and nonmagnetic
LaB6 shown in (C) [30]. The ↵ orbit in red in all the rare earth hexaborides is fit to large
multiply connected spherical ellipsoids centred at the X points of the Brillouin zone, shown in
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3D orbits! 6x Rise in N(0)*: Q Criticality? • 3D FS in a bulk insulator !

•  ωc ≳ V ?  
(Knolle &Cooper arXiv 1507.00885) 
 

• Majorana FS? Are KI gapless?
     ( Baskaran arXiv 1507.03477; see also

Miranda, PC, Tsvelik, Physica B, 186-188, 362, 1993)

• Phase separation of quantum critical
     bubbles? 
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•Rise,of,Topology,leads,to,a,new,picture,of,Kondo,Insulators,,
closer)to)HeB3)than)Silicon,

•The,robustness,of,the,Surface,States,,Weak,localizaQon,,
surface,conductance,and,ARPES,and,sARPES,,each,suggest,this,is,
a,topological,Kondo,insulator.,

•The,high,bulk,resisQvity,makes,this,an,excellent,research,
material,for,topological,studies.

Summary,&,QuesQons

•Strong,magne-c,connecQon:,AFM,under,pressure,,Neutron,excitons.,

•Surface,Kondo,Breakdown:,is,the,surface,different,,and,can,it,undergo,phase,transiQons?,

•Bulk,is,strangely,different:,,
,,,,,,,,,breakdown,)strange)gapless)insulator)or)inhomogenious)quantum)criJcality?,,

•Is,topology,important,for,other,strongly,correlated,systems,K,metals,,superconductors?,


