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Introduction 

• Often the first thing to be measured, but the last to be understood… 
 

• “What scatters may also pair”  
Hence, electrical resistivity is a powerful, albeit coarse, probe of superconductivity 

 
 

What makes dc transport measurements such an 
important probe of correlated electron systems? 

Gunnarsson et al.,  
RMP 75 1085 (03) 



Drude model 

Drude assumed that electrons were scattered  
by random collisions with the immobile ion  
cores. He assumed a mean free time τ between  
collisions so that after a time t, the number of  
electrons having survived without collisions was 
 
If the electric field E has been present for this time t, then an unscattered electron will have 
achieved a drift velocity of v = (-eEt/m) and have travelled a distance 
 
This gives for the total electronic transport in the direction of the applied field 
 
 
 
 
 
which is equivalent to n0 electrons having mean drift velocity                             for time τ. 
Finally, for a metal containing n electrons / m3, the current density  
 
 
 
                                  with the corresponding electrical conductivity 
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Despite the crude approximations and wildly incorrect assumptions, the Drude expression 
serves as an excellent, practical way to form simple pictures and rough estimates of 
properties whose deeper comprehension may require analysis of real complexity.  
 
How come?  
 
Well, some of it is fortuitous.  
 
Drude then estimated the velocity from the kinetic equation  
 
 
 
From this he extracted a mean-free-path of ~1 nm, i.e. the approximate interatomic spacing! 
Of course, while this seemed reasonable to Drude, it was way off the mark... 
 
The workability of the Drude model reflects the fact that two of the fundamental 
assumptions (the action due to the Lorentz force and the exponential decay in n(t)) are also 
found to be equally applicable to Bloch waves and fermionic quasiparticles. 
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Drude model 

Hall effect                 ac conductivity 
 
 
In steady state, current is independent of t 
                Seek steady state solution of the form 
px and py thus satisfy 
 
                Thus   
 
where ωc = eB/m (B//z)  
 
Thus                Current density 
 
 
Hall field is determined by condition jy = 0 
 
     where 
 
 
Hence, Hall coefficient  
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( )tfk ,r

(i) Carriers move in and out of the region r 
 
 

(ii)  The k-vector will be changed by external fields 
 
 
 
 
 

(iii) Carriers are scattered 
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Distribution functions 



Boltzmann equation – 3 key points 
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Note that this is steady state, not equilibrium state fk

0 
 
 
For electrons 
 
 
 
 
We are most concerned with small departures from fk

0 
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Fermi distribution 
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Boltzmann equation – all aboard the Chain Rule! 



Assume “infinite homogeneous medium”, constant temperature and zero magnetic field; 
 
 
 
 
 
and for simplicity, let us make the phenomenological relaxation time approximation 
 
 
       Hence 
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Boltzmann vs. Drude 
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Thus, despite their extreme starting points, both models consider a steady state solution 
involving forces acting on charged particles or wave packets with a distribution of velocities. 



Current response 

A n electrons/unit vol. 
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dc electrical conductivity 

Recall 
 
  where cosγ is the angle between vF and kF  
     = 1 for isotropic 3D FS  
 
 
And for most metals,              behaves as a δ-function. 
 
 
Hence, 
 
 
Note that this is the same surface integral that appears in the 
expression for the electronic density of states 
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dc electrical conductivity 

Hence, 
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Assume, isotropic, cylindrical Fermi surface 
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Conductivity in a magnetic field 

In metals, the effect of a magnetic field is usually to deviate the trajectory of the carriers from their 
electric-field induced path. The two major corresponding changes to the electrical conductivity 
tensor are: 
 
 (i) the well-known Hall effect emerges as a result of cross terms (σxy etc...)  
 
 (ii) the longitudinal (diagonal) conductivity also changes - magnetoresistance 
 
The Hall effect can be of either sign, depending on the majority or most mobile carrier type. 
 
The magnetoresistance, on the other hand, is almost always positive. Why? 
 
A definition of magnetoresistance 
 
The increase in the longitudinal resistance caused by the additional scattering all mobile carriers 
experience per unit length in the direction of the applied electric field in the presence of an applied 
magnetic field. 
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Conductivity in a magnetic field 

Within the relaxation time approximation; 
 
 
 
Continuous series 
 
 
 
 
 
Hence 
  
 
 
e.g. To calculate σxy

(1), simply work through with the applied magnetic field H//z and the electric 
field E//y and calculate the response Jx with the first-order Jones-Zener equation.  
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Interlude: Taking into account the shape of quasi-2D FS 
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For B//c: 
 
 
 
     where 
 
 
    
   and 
 
Finally, 
 
 
 
 
 
NB (i) σxy

(1) probes the variation of the mean-free-path around the Fermi surface. 
NB (ii) σxy

(1) in a quasi-2D metal does NOT depend on the carrier density 
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Thus σxx
(2) as expected, is negative and scales with B2 

Consider isotropic cylinder: 
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In-plane magnetoresistance in a quasi-2D metal 

 

Magnetoresistance 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
MR is zero in strictly isotropic system even though magnetoconductance is always finite 

2

0

)1(

)0(

)2(

0 







−−=

∆

xx

xy

xx

xx

xx

xx

σ
σ

σ
σ

ρ
ρ

( )

( )

( ) ( ) 0

2
2

22

2
2

2

22

23
2

0

=−+=









−+=









⋅−+=

∆

τωτω

τω

π
π

τω
ρ
ρ

cc

F
c

F
c

xx

xx

k
eB

ke
c

c
Be













( ) ( )
c

Be
c

Be
c

Be
xy 2

232

0

2
22

232

0
22

23
1

2
dcos

2
dsincos

2 











π
ϕϕ

π
ϕ

ϕ
ϕϕ

π
σ

ππ

==
∂

∂−
= ∫∫ { π 




Fxx k
c

e
π

σ
2

2

=



Kohler’s rule 

 

If the only effect of a change of temperature or of a change of purity of the metal is to  
alter τtr(k) to λτtr(k), where λ is not a function of k, then ∆ρ/ρ is unchanged if B is  
changed to B/λ. Since                         , , the product ∆ρ.ρ (= ∆ρ/ρ . ρ2) is independent  
of τtr and a plot of ∆ρ/ρ versus (B/ρ)2 is expected to fall on a straight line with a slope  
that is independent of T (provided the carrier concentration remains constant). 
 
Kohler’s rule is obeyed in a large number of standard metals, including those with two  
types of carriers, provided that changes in temperature or purity simply alter τtr(k) by the 
same factor. 
 
 
 
 
 
Deviations from Kohler’s rule imply 
a change in carrier content, possibly  
a change in dimensionality, or most 
likely, a change in the variation of  
τtr(k) around the Fermi surface.  

Narduzzo et al.,  
PRL 98, 146601 (07) 

( )2τωρρ c∝∆



• Their transition temperatures are anomalously high 
 

• Their superconducting order parameter is unconventional (d-wave) 
 

• The superconductivity emerges out of a highly correlated insulating state 
 

• Their normal metallic state is unlike anything that has been seen before 
 

Tab 10~ ααρ +

Martin et al., Phys. Rev. B (1990) 

Bi2+xSr2-xCuO6+δ 

Ando et al., Phys. Rev. B (1999) 

Bi2+xSr2-xLaxCuO6 

Why are high temperature superconductors interesting?  



    Zaanen                                                               Senthil 
 
 
        
    Schmalian 
 
 
 
 
              Vojta 
 
  
            Randeria 

“The metallic state at optimal doping embodies the 
enlightenment. Rather than being complicated, 
this ‘bad’ metal shows a sacred simplicity – 
symbolized, for example, by its linear resistivity…” 

“Most mysterious is the strange optimally doped 
metal. There simply do not seem to be (m)any 
good ideas on how to think about it. Yet it is 
empircally characterized by simply stated laws.” 

“The biggest mystery is the linear resistivity at 
optimal doping.” 

“The difficulties lie with the normal state, featuring 
phenomena like the apparent linear-in-
temperature resistivity at optimal doping.” 

“However, many questions about the precise 
nature of the transition from the superconductor to 
the Mott insulator, the possibilities of various 
competing/coexisting ordered states at low doping 
and, most particularly, the description of the non-
Fermi-liquid normal states remain unclear at the 
present time.” 



High temperature superconductivity and Nobel Laureates 

 
J. G. Bednorz (1987) 
K. A. Muller (1987) 

 
 
 

 
A. A. Abrikosov (2003)  
P. W. Anderson (1977) 
P. G. de Gennes (1991) 

A. W. Geim (2010) 
V. L. Ginzburg (2003) 
A. J. Heeger  (2000) 
H. Kroemer (2000) 

R. W. Laughlin (1998) 
A. J. Leggett (2003) 
N. F. Mott (1977) 

J. R. Schrieffer (1972) 
F. Wilczek (2004) 

 
 
 



The key structural element, the copper-oxide plaquette, appears either in a square planar, or an 
octahedral arrangement. Hence, the Jahn-Teller effect is not necessarily   
    important in all cuprates. 
 
      

    
    
    
    
    

Crystal and electronic structure 

Tl2Ba2CuO6+δ La2-xSrxCuO4 

copper 

oxygen 

apical oxygen 

La/Sr 



        Electronic configuration of Cu 
 
         1s2 2s2 2p6 3s2 3p6 3d9 4s2 
 
        Electronic configuration of Cu2+ 
 
            1s2 2s2 2p6 3s2 3p6 3d9 
 
              = 1 carrier/unit cell 
 
 
 
 
        Electronic configuration of Cu(2-x)+ 
 
            1s2 2s2 2p6 3s2 3p6 3d9-x 
 
         = Hole-doped CuO2 plane 
      

Crystal and electronic structure 

    
    
    
    
    

(La3+)2Cu2+(O2-)4 

(La3+)2-x(Sr2+)xCu(2-x)+(O2-)4 

t2g orbitals 
 
 
 
 
 
 
 
 
  eg orbitals 



At half filling 

Mott insulator 
 
 
 
 
 
 
 
 
     3d9 3d9 3d8 3d10 
 
Charge transfer insulator 
 
 
 
 
 
 
 
 
           3d9 3d10 L 
 

+U 

O 
Cu 

+U 

+∆pd 

~ 7-8 eV 

+∆pd 



Beyond half filling… 

Doping away from half-filling strongly 
frustrates the spin background – leads to a 
strong suppression of the AFM ordering 
temperature. 
 
Frustration is significantly greater for spin 
exchange along the coordination axis than 
diagonally to it. Inherent in-plane 
anisotropy within the CuO2 plane. 
 

“Nodal-anti-nodal dichotomy” O 
Cu 

+t’ 



Phase diagram 

AFM suppressed with the addition 
of only a few percent of holes. 
 
Superconductivity emerges at a hole 
concentration p ~ 0.05. 
 
Maximum Tc occurs at an optimal 
doping of p = 0.16. 
 
Superconductivity vanishes again 
around p > 0.30. 
 
Dip in Tc also seen around p = 0.125 
– so-called 1/8-anomaly. 
 
Normal state phase diagram 
dominated by strange metallic 
phase and the pseudogap. 



Phase diagram 

AFM suppressed with the addition 
of only a few percent of holes. 
 
Superconductivity emerges at a hole 
concentration p ~ 0.05. 
 
Maximum Tc occurs at an optimal 
doping of p = 0.16. 
 
Superconductivity vanishes again 
around p > 0.30. 
 
Dip in Tc also seen around p = 0.125 
– so-called 1/8-anomaly. 
 
Normal state phase diagram 
dominated by strange metallic 
phase and the pseudogap. 

In underdoped cuprates, possibly an  additional 
temperature scale Tf due to extended region of 
phase fluctuating superconductivity 



Phase diagram – evolution of in-plane resistivity 

At low doping, ρab(T) is  
non-metallic at low T. 
 
Superconductivity develops out 
of insulating ground state. 

Note almost exponential decrease in ρab(300) 
with increased doping, showing how the mobility 
of doped holes improves with doping. 



Optimally doped cuprates 
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Yoshida et al., PRB 61 R15035 (99) 

YBa2Cu3O7 Tl2Ba2CuO6+δ 

Tyler + Mackenzie, PhysicaC 282 1185 (1997) 

Negative intercepts imply that T-linear resistivity cannot 
continue to absolute zero – there has to be a crossover to a 

higher exponent of T at the lowest temperature 



1) T-linear resistivity is observed only in a narrow composition range near 
optimal doping; the sharp crossover to supralinear resistivity on the OD side 
being more suggestive of electron correlation effects than phonons.  

 
 
2) The absence of resistivity saturation in OP La2-xSrxCuO4 up to 1000K argues 

against a dominant e-ph mechanism.  
 
 

3) The frequency dependence of 1/τtr, extracted from extended Drude analysis of 
the in-plane optical conductivity, is inconsistent with an electron-boson 
scattering response due to phonons. In particular, Γ(ω) does not saturate at 
frequencies corresponding to typical phonon energies in HTC.  
 
 

4) It has proved extremely problematic to explain the quadratic T-dependence of 
the inverse Hall angle cotθH(T) in a scenario based solely on e-ph scattering. 

 

The problem(s) with phonons 

, 



Strong T-dependence over a very wide temperature and doping range. 
What does it signify? 

Hall effect in hole-doped cuprates 

, 

Hwang et al., PRL 72 2636 (94) 



Marked, almost 1/T increase in RH(T) 
could indicate a reduction in carrier 
number with decreasing temperature 
(Recall that RH = 1/ne) 
 
 
 
 
 
 
 
 
 
 
 
However, this increase in RH(T) is 
occurring in range above pseudogap 
temperature. 
  

Strong T-dependence over a very wide temperature and doping range. 
What does it signify? 

, 

Hall effect in hole-doped cuprates 

Hwang et al., PRL 72 2636 (94) 



Moreover, in the underdoped regime, below T 
= T*, RH(T) begins to decrease with T in the 
pseudogap regime. 
 
 
 
 
 
 
 
 
 
 
 
This suggests that RH(T) does not in any way 
reflect the variation of n(T). 
 
Cuprates are also largely single-band. 
  

, 

Ando + Murayama, PRB 60 R6991 (94) 

Hall effect in hole-doped cuprates 



Variation in ρab(T) and 1/RH(T) with Zn-doping 
in Y123 does not appear to be correlated with 
one another… 

However when data plotted as cotθH(T), it  
shows a very simple T2 dependence.  

The inverse Hall angle 

, 

Chien et al., PRL 67 2088 (91) 



Variation in ρab(T) and 1/RH(T) with Zn-doping 
in Y123 does not appear to be correlated with 
one another… 

However when data plotted as cotθH(T), it  
shows a very simple T2 dependence.  

The inverse Hall angle 
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This so-called separation of lifetimes is most 
apparent at optimal doping, where ρab(T) ~ T 
and cotθH(T) ~ T2.  
 
Such remarkable transport behaviour is a 
hallmark of the cuprates that has engaged 
some of the greatest condensed matter 
thinkers. 

The separation of lifetimes 

, 

Tyler + Mackenzie, Physica C 282 1185 (97) 

Ono + Ando,  
PRB 75 024515 (07) 



The quasi-2D heavy-fermion compound CeCoIn5 
shows a similar phenomenon of separation of 
lifetimes between Tc and Tcoh ~ 20 K.  

We are not alone… 

, 

Nakajima et al.,  
JPSJ 75 023705 (06) 



1) The two-lifetime model of Anderson and co-workers 
 
 
 
 
 
 

 
 
 
 
 
 
 

Transport theories – the “Big Three” 
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Kohler’s rule violated all the  
way up to room temperature 

Violation of Kohler’s rule 

Harris et al., PRL 75 1391 (95) 
 

T-dependence of in-plane MR 
extremely well described by  
Anderson’s two-lifetime model 



The non-integer inverse Hall angle 

, 

Konstantinovic et al., PRB 62 R11989 (00) 
 

Ando + Murayama, PRB 60 R6991 (99) 

This non-integer exponent in the inverse Hall  
angle and its doping-dependence are very  
hard to capture within this model  



2) The marginal Fermi-liquid model of Varma and co-workers 
 
 
 

 
The anisotropic T-independent elastic scattering term γ(k) was  
argued to originate from small-angle scattering off impurities located  
out of the plane. 
 
⇒ scattering rate anisotropy reflects that of DOS, i.e.  
  
 
 
 
⇒ Violation of isotropic-l approximation and strong  
variation in RH(T) and 
 
 
 
 
Unfortunately, this model struggles to account for both 
the in-plane MR and the evolution of the exponents in OD cuprates. 
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Carter+Schofield,  
PRB 66 241102(R) (02) 

Transport theories – the “Big Three” 



3) Anisotropic single lifetime models 
 

3a) Nearly AFM FL model  
 
 
 
 
 
 
 
 
 
3b) Cold spots model 
 
 
 
3c)  Anisotropic scattering rate saturation model 
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Stojkovic+Pines, PRL 76  811 (96) 

Ioffe+Millis, PRB 58 11631(98) 

Hussey, EPJB 31 495 (03) 
Hussey, JPCM 20 123201 (08) 
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Transport theories – the “Big Three” 



Altogether now! 
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