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Introduction

What makes dc transport measurements such an
important probe of correlated electron systems?

e Often the first thing to be measured, but the last to be understood...

e “What scatters may also pair”
Hence, electrical resistivity is a powerful, albeit coarse, probe of superconductivity
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Drude model

Drude assumed that electrons were scattered e o

by random collisions with the immobile ion

cores. He assumed a mean free time 7 between

collisions so that after a time t, the number of

electrons having survived without collisions was n(t): n, exp(— t/r)

If the electric field E has been present for this time t, then an unscattered electron will have
achieved a drift velocity of v = (-eEt/m) and have travelled a distance x = (eE tZ/Zm

This gives for the total electronic transport in the direction of the applied field

Ix(j_,;jdt:( Z:’J jt exp(— t/z-)l ( eEnmorzj

|
273

which is equivalent to n, electrons having mean drift velocity v = (— eE z'/m) for time 7.
Finally, for a metal containing n electrons / m3, the current density

ne’Er

j=0E =(~nev)=

m

with the corresponding electrical conductivity | o =




Drude model

Despite the crude approximations and wildly incorrect assumptions, the Drude expression
serves as an excellent, practical way to form simple pictures and rough estimates of
properties whose deeper comprehension may require analysis of real complexity.

How come?
Well, some of it is fortuitous. p(300)~24Qcm = 7~1x10™sec
Drude then estimated the velocity from the kinetic equation

imv?=3k,T = v=10°m/s

From this he extracted a mean-free-path of ~1 nm, i.e. the approximate interatomic spacing!
Of course, while this seemed reasonable to Drude, it was way off the mark...

The workability of the Drude model reflects the fact that two of the fundamental
assumptions (the action due to the Lorentz force and the exponential decay in n(t)) are also
found to be equally applicable to Bloch waves and fermionic quasiparticles.

olt-+lt)= (1—dt /2 )pl(t)+ £(t)dt + O(de } ) — dzgt):—pgt)+f(t) f(t) = —e(E -+ [vxB))




Drude model

Hall effect d_P:_E_eEEJ{BxBD
dt T m

In steady state, current is independent of t

pyand p, thus satisfy ~ 0=—eE — w.p, _Px

T
O=—ef, +o.p, _B
T
where o, =eB/m (B//z)
Thus oE, =w1j,+],

O'OEy =—0.1) *],

Hall field is determined by condition j, =0

.7 |, B ).
= E,=- ==l — |/,
o, ne
E 1

Hence, Hall coefficient R, -y -
J,B ne

ac conductivity

Thus

9P __P_ek(r)

dt T

E(t)= Re{E0 (w)exp(— ia)t)}

Seek steady state solution of the form

p(t)= Re{p(a))exp(— ia)t)}

—iop(w)=—

Current density

)

where

p(w)

T

o eEo (a))

(nez/m)io(a)) .

m

()= nep(e) _

(1/7)-iw

(@)o()



Distribution functions

f(r,t)

Local concentration of carriers “occupancy” in the state k in the
neighbourhood of the point r in space and time t

ot ot or

(i) Carriers move in and out of the region r % _ or . afk . Vf
_ _ VK k
diff

(ii)  The k-vector will be changed by external fields

%} _
at field

(iii) Carriers are scattered

o,
ot

ok of,

} :I{fk’(l‘fk)‘fk(l—fk')}Q(k,k’)dk'=__

k% where k=%(E+[vk XB])

ot ok ok

fk _fko
T

relaxation time approximation



Boltzmann equation - 3 key points

%:I +%:| +%:| :0
6t diff at field at coll

Note that this is steady state, not equilibrium state f,°

For electrons fo . 1
k

-~ expile —u)/kTH+1

We are most concerned with small departures from f,°



Fermi distribution

- (df /de)
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Boltzmann equation - all aboard the Chain Rule!
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Linearized Boltzmann equation

(— %’i]vk -{(%’U)VT ¥ e(E —?Xj} = —%L” v " +%[V,X].%

Assume “infinite homogeneous medium”, constant temperature and zero magnetic field;

= (— aLkoij -eE= —%}

and for simplicity, let us make the phenomenological relaxation time approximation

%} o+ £ ) 09, 9 | Hence a,(t)=g,(0)e
coll

ot ot ot r

a 0 t
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Boltzmann vs. Drude

%j| +%:| +%j| :O
at diff at field at coll

A
diff field

ot T Ot
_%:I __%_E(E_i_[vk XB]) i gk(t):gk(o)e—t/T :
Ot Jue 4 k |
c.f. Drude dz(t) — —@—e(E+ [va]) n(t): noe_t/T :
t T :
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Thus, despite their extreme starting points, both models consider a steady state solution
involving forces acting on charged particles or wave packets with a distribution of velocities.



Current response

n electrons/unit vol.

A
\4 'Il,‘\\‘
vV —» I: ‘l
“-— VvV — R
=1/AX =neAv/A =nev
3 1
d'k |= J, = vieg, d’k=0,E,
47’

(J.v,.efkO d’k = O)

v,(e—u)g, Pk=—x, VT

1
Similarly for thermal current 'li = 3
A1




dc electrical conductivity

1
). =

i 472_3 Jviegk d3k = GijEj and gy :(_—jeﬂ/l( -E




dc electrical conductivity

1
Recall vkzgvkgk = dg, =h|v,|cosydk,

where cosyis the angle between v, and k;
=1 for isotropic 3D FS

0
And for most metals, (_EJ behaves as a o-function.

Hence, H( jdk ds, = [ [ 5(e,(k)— &, )dk, ds, ‘IW

Note that this is the same surface integral that appears in the
expression for the electronic density of states

ds, 1
) e a0




dc electrical conductivity
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In-plane conductivity for quasi-2D metal
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Conductivity in a magnetic field

In metals, the effect of a magnetic field is usually to deviate the trajectory of the carriers from their
electric-field induced path. The two major corresponding changes to the electrical conductivity
tensor are:

(i) the well-known Hall effect emerges as a result of cross terms (o, etc...)

(ii) the longitudinal (diagonal) conductivity also changes - magnetoresistance
The Hall effect can be of either sign, depending on the majority or most mobile carrier type.

The magnetoresistance, on the other hand, is almost always positive. Why?

A definition of magnetoresistance

The increase in the longitudinal resistance caused by the additional scattering all mobile carriers
experience per unit length in the direction of the applied electric field in the presence of an applied
magnetic field.




Conductivity in a magnetic field

R e R L R e

Within the relaxation time approximation;

= eE-v [ % j %[vka]-%z—g—k

) ) aé‘k ok 4 Jones-Zener expansion
Continuous series

Hence O_IS,”): - jeV,- (—ﬂ[vk xB]-%j ev z{—%] d’k

o0&,

e.g. To calculate ¢, (1), simply work through with the applied magnetic field H//z and the electric

xy 7
field E//y and calculate the response J, with the first-order Jones-Zener equation.



Interlude: Taking into account the shape of quasi-2D FS

The relation between v, and k,

dk, o[ 0
tany = =| y=tan
k.dg 0




Hall conductivity in a quasi-2D conductor

w__1 _fr B i) _% d2k
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NB (i) O'xy(l) probes the variation of the mean-free-path around the Fermi surface.
NB (ii) O'xy(l) in a quasi-2D metal does NOT depend on the carrier density



In-plane magnetoresistance in a quasi-2D metal

Consider isotropic cylinder:

o e'B 7 0*(cos @)
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Thus ¢,,?) as expected, is negative and scales with B2
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In-plane magnetoresistance in a quasi-2D metal
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MR is zero in strictly isotropic system even though magnetoconductance is always finite



Kohler’s rule

If the only effect of a change of temperature or of a change of purity of the metal is to
alter 7,,(k) to A7,(k), where A is not a function of k, then Ap/pis unchanged if B is
changed to B/A. Since Ap/p o (w.7), the product Ap.p (= Aplp . p?) is independent
of 7,,and a plot of Ap/p versus (B/p)? is expected to fall on a straight line with a slope
that is independent of T (provided the carrier concentration remains constant).

Kohler’s rule is obeyed in a large number of standard metals, including those with two

types of carriers, provided that changes in temperature or purity simply alter 7,,(k) by the
same factor.

0-14 ' I 1 v ) I
Narduzzo et al., 012 | ;?E )
PRL 98, 146601 (07) [ ek ]
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. . . F 200K 4
a change in carrier content, possibly 0.04 L ]
a change in dimensionality, or most 0ozl PrBa,Cu,O, -
likely, a change in the variation of Rt H//a
. . 1 L 1 " 1 N 1 .
7,,(k) around the Fermi surface. % 2 4 6 8 10
2 2 72 2
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Why are high temperature superconductors interesting?

e Their transition temperatures are anomalously high
e Their superconducting order parameter is unconventional (d-wave)
e The superconductivity emerges out of a highly correlated insulating state

e Their normal metallic state is unlike anything that has been seen before
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“The metallic state at optimal doping embodies the “Most mysterious is the strange optimally doped
enlightenment. Rather than being complicated, metal. There simply do not seem to be (m)any
this ‘bad’ metal shows a sacred simplicity — good ideas on how to think about it. Yet it is
symbolized, for example, by its linear resistivity...” empircally characterized by simply stated laws.”
Zaanen Senthil

“The biggest mystery is the linear resistivity at
optimal doping.”

Schmalian

“The difficulties lie with the normal state, featuring
phenomena like the apparent linear-in-

temperature resistivity at optimal doping.” \Vojta

nature physics | VOL 2 [ MARCH 2006 | www.nature.com! naturephysics

“However, many questions about the precise
nature of the transition from the superconductor to
the Mott insulator, the possibilities of various
competing/coexisting ordered states at low doping
and, most particularly, the description of the non-
Fermi-liquid normal states remain unclear at the

resent time.” )
P Randeria
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Crystal and electronic structure

The key structural element, the copper-oxide plaguette, appears either in a square planar, or an
octahedral arrangement. Hence, the Jahn-Teller effect is not necessarily

important in all cuprates.

Tl,Ba,CuOg, s La, ,Sr,CuO,

@ thallium copper

@ barium oxygen

& copper c apical oxygen
La/Sr

¢ oxygen




Crystal and electronic structure

(La3+)zcu2+(02—)4

Electronic configuration of Cu
1s? 252 2p® 352 3p® 3d° 4s?
Electronic configuration of Cu?*
1s? 252 2p® 3s2 3p® 3d°

= 1 carrier/unit cell

(La3+)2_x(sr2+)xcu(2—x)+(02—)4

Electronic configuration of Cu2x1*
152 252 2p® 3s? 3p® 3d°*

= Hole-doped CuO, plane

dy z dXZ dx ¥

t,y Orbitals

G orbitals



At half filling

Mott insulator

[

U~7-8eV
t |
u
LHB : UHB
+U
 —_—
3d?3d® 3d&3d10
Charge transfer insulator
U
A '
u
LHB CTB ‘ UHB
+Apd
_—

3d° 3d10L



Beyond half filling...

Doping away from half-filling strongly
frustrates the spin background — leads to a
strong suppression of the AFM ordering
temperature.

Frustration is significantly greater for spin
exchange along the coordination axis than
diagonally to it. Inherent in-plane
anisotropy within the CuO, plane.




Phase diagram

T (K)
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AFM suppressed with the addition
of only a few percent of holes.
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Superconductivity emerges at a hole
concentration p ~ 0.05.
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Maximum T, occurs at an optimal
doping of p = 0.16.
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Superconductivity vanishes again
- around p > 0.30.

Dip in T, also seen around p = 0.125
— so-called 1/8-anomaly.
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dominated by strange metallic
phase and the pseudogap.



Phase diagram
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In underdoped cuprates, possibly an additional
temperature scale T, due to extended region of
phase fluctuating superconductivity

AFM suppressed with the addition
of only a few percent of holes.

Superconductivity emerges at a hole
concentration p ~ 0.05.

Maximum T, occurs at an optimal
doping of p = 0.16.

Superconductivity vanishes again
around p > 0.30.

Dip in T, also seen around p = 0.125
— so-called 1/8-anomaly.

Normal state phase diagram
dominated by strange metallic
phase and the pseudogap.



Phase diagram - evolution of in-plane resistivity
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At low doping, p,,(T) is
Note almost exponential decrease in p,,(300) non-metallic at low T.
with increased doping, showing how the mobility

of doped holes improves with doping. Superconductivity develops out

of insulating ground state.



Optimally doped cuprates

YBa,Cu;0;, Tl,Ba,CuO, s
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Negative intercepts imply that T-linear resistivity cannot
continue to absolute zero — there has to be a crossover to a
higher exponent of T at the lowest temperature

300



The problem(s) with phonons

1)

2)

4)

T-linear resistivity is observed only in a narrow composition range near
optimal doping; the sharp crossover to supralinear resistivity on the OD side
being more suggestive of electron correlation effects than phonons.

The absence of resistivity saturation in OP La,_Sr,CuO, up to 1000K argues
against a dominant e-ph mechanism.

The frequency dependence of 1/7,, extracted from extended Drude analysis of
the in-plane optical conductivity, is inconsistent with an electron-boson
scattering response due to phonons. In particular, I'(w) does not saturate at
frequencies corresponding to typical phonon energies in HTC.

It has proved extremely problematic to explain the quadratic T-dependence of
the inverse Hall angle cot8,(T) in a scenario based solely on e-ph scattering.



Hall effect in hole-doped cuprates
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Strong T-dependence over a very wide temperature and doping range.

What does it signify?



Hall effect in hole-doped cuprates

Marked, almost 1/T increase in R,(T)
could indicate a reduction in carrier
number with decreasing temperature

(Recall that R, = 1/ne)
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Strong T-dependence over a very wide temperature and doping range.

What does it signify?



Hall effect in hole-doped cuprates
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Ando + Murayama, PRB 60 R6991 (94)

Moreover, in the underdoped regime, below T
=T*, Ry(T) begins to decrease with T in the
pseudogap regime.
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Temperature (K)
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Superconducting

FL
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0.3

This suggests that R,,(T) does not in any way

reflect the variati

on of n(T).

Cuprates are also largely single-band.



The inverse Hall angle

Variation in p,,(T) and 1/R,(T) with Zn-doping

| YBa Cu. 7m0, 6 T in Y123 does not appear to be correlated with
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However when data plotted as cotd,(7), it
shows a very simple T?> dependence.



The inverse Hall angle
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However when data plotted as cotd,(7), it
shows a very simple T?> dependence.



The separation of lifetimes
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This so-called separation of lifetimes is most

apparent at optimal doping, where p,,(T) ~ T
and cot@,(T) ~ T2

Such remarkable transport behaviour is a
hallmark of the cuprates that has engaged

some of the greatest condensed matter
thinkers.



We are not alone...
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Transport theories - the “Big Three”

1) The two-lifetime model of Anderson and co-workers
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Violation of Kohler’s rule
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way up to room temperature
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T-dependence of in-plane MR
extremely well described by
Anderson’s two-lifetime model



The non-integer inverse Hall angle
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This non-integer exponent in the inverse Hall
angle and its doping-dependence are very
hard to capture within this model
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Transport theories - the “Big Three”

2) The marginal Fermi-liquid model of Varma and co-workers quantum
critical -..._.-'
1 - o
-~
p
T— oc AT + 7/(k) ordered " Fen]li
tr iquid

The anisotropic T-independent elastic scattering term »{k) was
argued to originate from small-angle scattering off impurities located
out of the plane.

—> scattering rate anisotropy reflects that of DOS, i.e.

—> Violation of isotropic-l approximation and strong

variation in R,(T) and 3
1
cotd,(T)oc (—j

Ttr

Unfortunately, this model struggles to account for both Carter+Schofield,
the in-plane MR and the evolution of the exponents in OD cuprates. PRB 66 241102(R) (02)



Transport theories - the “Big Three”

3) Anisotropic single lifetime models

3a) Nearly AFM FL model

r T
X I
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3b) Cold spots model

loffe+Millis, PRB 58 11631(98)

Carrington et al., PRL 69 2855 (92)
Stojkovic+Pines, PRL 76 811 (96)

[(¢p)oc T, sin*(2¢)+ 1

4

3c) Anisotropic scattering rate saturation model

Hussey, EPJB 31 495 (03)
Hussey, JPCM 20 123201 (08)

1_‘ideal ((0) = 1_‘0 ((0) + 1_‘1 Sinz (2§0)T + 1_‘ZTZ
1 1 1
= +
l—‘eff 1—‘ideal l—‘max




Altogether now!
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