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Two Routes to Quantum Spin Liquid

1. Geometric Frustration (spin-rotation invariant)

H = J
⇧

�i,j⇥

Si · Sj =
J

2

⇧

simplex

�

⇤
⇧

i � simplex

Si

⇥

⌅
2

1284 Can. J. Phys. Vol. 79, 2001

Fig. 1. Corner-sharing lattices, clockwise from top left: the pyrochlore lattice. A projection of the lattice of the

gadolinium gallium garnet (GGG), which consists of two separate, interpenetrating sublattices of corner-sharing

triangles. The Kagome lattice.A side-on view of the trilayer lattice of SCGO, consisting of triangles and tetrahedra.

It can be thought of as two Kagome layers coupled by an intermediate triangular layer (circles).

frustrated SCGO, GGG, Kagome, and pyrochlore lattices (see Fig. 1) [4].2

Geometric frustration arises when the arrangement of spins on a lattice precludes satisfying all

interactions at the same time. The simplest case is provided by a group of three anti-ferromagnetically

coupled spins: once two spins point in opposite directions, the third one cannot be antiparallel to

both of them. Geometrically frustrated magnets are considered to be in a separate class both from

unfrustrated and from disordered magnets (spin glasses and the like). This article concentrates on

continuous, classical, disorder-free geometrically frustrated magnetism, although discrete, quantum,

and disordered models are also briefly discussed.

The popularity of geometrically frustrated magnets stems from the very rich behaviour they present.

For example, magnetic analogues of solid, glassy, liquid, and even ice phases have been identified in

this class of magnets, which is increasingly seen as providing a stage for studying generic questions in

many-body physics in a set of well-characterized compounds described by simple model Hamiltonians.

A wide range of experimental probes are available for their study — including neutron and X-ray

scattering, muon spin rotation (µSR), nuclear magnetic resonance (NMR), and susceptibility and heat

capacity measurements—which yield complementary information. For instance, recently begun NMR

measurements on SCGO are providing information about the local physics at the different inequivalent

sites of the magnetic Cr ions [5], complementing our knowledge obtained from the probes from which

such local information is harder to extract [4]. In the following, however, only cursory reference will

be made to experiment, since a number of detailed experimental reviews exist, to which the reader is

2 Several of these experiments, as well as related theoretical work, are treated in other articles of this volume.
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Classical antiferromagnet on a hyper-kagome lattice

John M. Hopkinson,1 Sergei V. Isakov,1 Hae-Young Kee,1 and Yong Baek Kim1, 2
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Motivated by the recent experiment on Na4Ir3O8 [1], we study the classical antiferromagnet on a
frustrated three-dimensional lattice obtained by selectively removing one of four sites in each tetra-
hedron of the pyrochlore lattice. This “hyper-kagome” lattice consists of corner-sharing triangles.
We present the results of large-N mean field theory and Monte Carlo computations on O(N) classical
spin models. It is found that the classical ground states are highly degenerate. Nonetheless a ne-
matic order emerges at low temperatures in the Heisenberg model (N = 3) via “order by disorder”,
representing the dominance of coplanar spin configurations. Implications for future experiments are
discussed.

PACS numbers: 75.10.Hk, 75.50.Ee, 75.40.Cx

Antiferromagnets on geometrically frustrated lattices
often possess macroscopically degenerate classical ground
states that satisfy peculiar local constraints imposed by
the underlying lattice structure [2]. Such highly degener-
ate systems are extremely sensitive to thermal and quan-
tum fluctuations, and thereby intriguing classical and
quantum ground states may emerge via “order by dis-
order” [3]. On the other hand, the system may remain
disordered even at zero temperature [4]. These paramag-
netic states are called spin liquid phases and their clas-
sical and quantum varieties have been recent subjects of
intensive theoretical and experimental research activities
[2].

Among several examples of two and three-dimensional
frustrated magnets, the kagome and pyrochlore lattices
have obtained particular attention because a relatively
large number of materials with the magnetic ions sit-
ting on these lattice structures are available [2]. Both
of these lattices are corner-sharing structures of a basic
unit; the triangle and tetrahedron respectively. Despite
this similarity, the classical Heisenberg magnet orders on
the kagome lattice [5, 6] while it remains disordered on
the pyrochlore lattice [7]. The nature of the spin-1/2
quantum Heisenberg magnets on these lattices has not
been settled and remains an important open problem
[8, 9]. On the other hand, spin-1/2 systems are rare on
these lattices and other degrees of freedom such as lat-
tice distortions may play an important additional role.
As a result, direct experimental tests on spin-1/2 quan-
tum magnets have been difficult to realize.

In this context, the recent experiments on Na4Ir3O8 [1]
may provide an important clue on these issues, albeit in a
different three-dimensional frustrated lattice. Here Ir4+

carries spin-1/2 as the five d-electrons form a low spin
state in the t2g level. The Ir and Na ions together occupy
the sites of the pyrochlore lattice such that only three of
the four sites of each tetrahedron are occupied by Ir. The
resulting lattice of magnetic Ir is a network of corner-
sharing triangles as shown in Fig. 1, where each triangle

FIG. 1: (color online). The hyper-kagome lattice. The thin
lines show the underlying pyrochlore lattice.

is derived from different faces of the tetrahedra. In anal-
ogy to the kagome lattice in two-dimensions, it is called
the hyper-kagome lattice. Even though the Curie-Weiss
temperature is large, θW = −650K, the susceptibility
and specific heat show no sign of magnetic ordering, nor
lattice distortion, down to T ∼ |θW |/200 [1]; suggesting
that it may be a spin liquid down to low temperatures.

In this paper, we study the classical antiferromagnet
on the hyper-kagome lattice. Such investigations would
not only reveal the behavior of the antiferromagnet in
the classical regime, but also provide an important start-
ing ground for the understanding of quantum fluctuation
effects. We first study the large-N limit of the O(N)
vector spin model at zero temperature and compute the
spin-spin correlation function in the large-N mean field
theory [10, 11]. It is found that there exist macroscopi-
cally degenerate ground states.

Then we perform large-scale Monte Carlo computa-
tions on the Ising (N = 1) and the Heisenberg (N = 3)
models. At temperatures T > Tn with Tn ∼ 10−3J , the
spin-spin correlation function in the Heisenberg model
(with the exchange coupling J) is very similar to that in
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2. Frustrated Interactions (spin-orbit)
Spin interactions depend on spatial directions



Kitaev Model on Honeycomb Lattice: Exact Solution

II. HEISENBERG-KITAEV MODEL ON HYPER-HONEYCOMB

Let us consider the following Heisenberg-Kitaev model on the Hyper-honeycomb lattice.

HHK = J
�

⇥ij⇤

Si · Sj �K
�

��links

S�
i S

�
j (1)

We first study the di�erent limits.

A. K=0

This is the limit of the pure antiferromagnetic Heisenberg model. The above lattice is

similar topologically to the lattice in fig. 5. On this lattice, the Neel order is not frustrated.

This is shown in figure 6. The reason that Neel order is not frustrated is that the above

lattice can be seen as a partially deleted cubic lattice where the deletion is done without

introducing new bonds.[7] So the Neel order remains unfrustrated and is the classical ground

state.

B. J=0

This is the pure Kitaev limit. This limit was first studied by Mandal et. al [4] on the

deleted cubic lattice (fig. 5). The Hamiltonian looks like:

HK = �
�

��links

S�
i S

�
j (2)

where the di�erent links are given in fig. 5. The details of this lattice are described in

Appendix A. Using the usual majorana fermion decomposition of the spins, we find that the

Hamiltonian is given by:

HK =
i

2

�

��links

u�
ijcicj (where u�

ij = ib�i b
�
j ) (3)

Now unlike the 2D case here we do not have a clear cut Lieb’s theorem which says that the

ground state belongs to the zero flux sector. So Ref. [4] resorted to some selected numerical

check and found that the ground state indeed belongs to this sector. We shall assume that

this is correct and look for the majorana dispersion in this sector. In this sector, we can set
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FIG. 5. The spectrum of the dispersing majorana fermion in the pure kitaev model on the hyperhoneycomb lattice along paths of high symmetry
in the first Brillouin zone (The first Brillouin zone and the paths are shown in Appendix A)

point (K = 2J), although the classical energies of the three
orders remain same, but, quantum corrections coming from
the spin-wave fluctuations lift this, accidental classical degen-
eracy.

C. J = 0 : The Kitaev Spin Liquid

This is the pure Kitaev limit. Mandal et. al6 showed that
the pure Kitaev model on the deleted cubic lattice which is
topologically similar to the hyper-honeycomb lattice can be
exactly solved using methods originally employed by Kitaev.2

The exact solution, as in the honeycomb case, is rendered
by the three-fold coordination and consequent presence of an
infinite number of conserved quantities. Using the usual ma-
jorana fermion decomposition of the spins

S�
i = ib�i c (3)

we find that the Hamiltonian (Eq. 1) in this limit is given by:

HK =
i

2

⌥

��links

u�
ijcicj (where u�

ij = ib�i b
�
j ), (4)

where we have put the overall scale K = 1. The {bxi , b
y
i , b

z
i , c}

are the four majorana fermions that mutually anticommute.
The infinite number of conserved quantities are given by

the Z2-link variables u�
ij that commute with each other and

with the Hamiltonian (Eq. 4). The Z2-fluxes generated by u�
ij

over the 10 site loop (see fig. 1) are given by6

WP =
�

loop

u�
ij (5)

Since these fluxes commute with the Hamiltonian, by con-
struction, they do not have any dynamics and hence the prob-
lem can be solved independently for different flux sectors.
This separation of the majorana sector and the flux sector, the
latter being good quantum numbers, lies at the heart of the
exact solution of the Kitaev models on different lattices.

The problem then reduces to majorana fermions hopping
in the background of frozen fluxes on the hyper-honeycomb

lattice. Similar issues have been studied by various people
on other lattices. E. Lieb et al. proved that, on certain bi-
partite lattice that contain mirror planes that bisect the lattice
links, the lowest energy is obtained when planer plaquettes
containing 2(mod 4) sites have zero-flux through them, while
plaquettes having 0 (mod 4) sites have �-flux through them.
Unfortunately, unlike the 2D-honeycomb lattice, we cannot
prove Lieb’s theorem for the present lattice6 because of the
absence of suitable miror planes. In absence of such theo-
rems, Mandal et al. resorted to numerical diagonalization of
the fermion hopping Hamiltonian (Eq. 4) over large system
sizes and found that the zero-flux sector has the lowest energy.
Assuming that this is also true in our case, we can specialize to
the zero-flux sector choosing a gauge where u�

ij = +1 (⇥⇧ij⌃)
to get

H0�flux
K =

i

2

⌥

ij

cicj (6)

This Hamiltonian can then be diagonalized by fourier trans-
formation taking the unit cell, as given in given in fig. 1 (and
the lattice vectors are given in Appendix A). We get

H0�flux
K =

⌥

k

�T
�kHk�k (7)

where �T
k = (c1,k, c2,k, c3,k, c4,k) and

Hk =
i

4
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k 0 1
�A⇤

k 0 �1 0

⇥
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where,

Ak = e�ik·a1 + e�ik·a2 ; Bk = 1 + e�ik·a3 (9)
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Four Majorana Fermions

commute with the Hamiltonian

4

y � z and x � z bonds respectively. We would like to re-
emphasize that the word skew indicates that this is essentially
a three dimensional magnetic order as opposed to a stacked
up two dimensional spin order. At this special point there is a
continuous “SU(2)” spin rotation symmetry that ensures that
all the three skew-stripy phases described above have the same
energy.

It is however worthwhile to note that there is a crucial
difference from the honeycomb case away from this special
point. In the honeycomb lattice a two dimensional stripy
phase is obtained for the Heisenberg-Kitaev model at the same
parameter value. There, a C3 symmetry of the lattice along
with concomitant rotation of the spins which is a symmetry
of the HHK Hamiltonian on the honeycomb lattice ensures
that the three stripy ordered phases have the same energy even
away from this special point where there is no “SU(2)” sym-
metry. However on the hyper-honeycomb lattice, there is only
a C2 symmetry between the x and the y bonds, while the z
bonds are not related by any symmetry. So there is no a-priori
reason for the Sz ordered skew-stripy phase to have the same
energy as the other two. Indeed we find that, away from this
point (K = 2J), although the classical energies of the three
states remain the same, quantum corrections coming from the
spin-wave fluctuations lift this accidental classical degener-
acy.

C. J = 0 : The Kitaev Spin Liquid

This is the pure Kitaev limit. Mandal et. al19 showed
that the pure Kitaev model on the deleted cubic lattice which
is topologically similar to the hyper-honeycomb lattice can
be exactly solved using methods originally employed by
Kitaev.18

The exact solution, as in the honeycomb case, is rendered
by the three-fold coordination and consequent presence of an
infinite number of conserved quantities. Using the usual Ma-
jorana fermion decomposition of the spins

S�
i = ib�i c (3)

we find that the Hamiltonian (Eq. 1) in this limit is given by:

HK =
i
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ijcicj (where u�

ij = ib�i b
�
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where we have put the overall scale K = 1. The {bxi , b
y
i , b

z
i , c}

are the four Majorana fermions that mutually anticommute.
The infinite number of conserved quantities are given by

the Z2-link variables u�
ij that commute with each other and

with the Hamiltonian (Eq. 4). The Z2-fluxes generated by u�
ij

over the 10 site loop (the blue sites in Fig. 1) are given by19
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ij . (5)

Since these fluxes commute with the Hamiltonian, by con-
struction, they do not have any dynamics and hence the prob-
lem can be solved independently for different flux sectors.

This separation of the Majorana sector and the flux sector, the
latter being good quantum numbers, lies at the heart of the
exact solution of the Kitaev models on different lattices.18

The problem then reduces to Majorana fermions hopping
in the background of frozen fluxes on the hyper-honeycomb
lattice. Similar issues have been studied by various people
on other lattices. E. Lieb et al.28 proved that, on certain bi-
partite lattice that contain mirror planes that bisect the lattice
links, the lowest energy is obtained when planer plaquettes
containing 2(mod 4) sites have zero-flux through them, while
plaquettes having 0 (mod 4) sites have �-flux through them.
Unfortunately, unlike the 2D-honeycomb lattice, we cannot
prove Lieb’s theorem for the present lattice19 because of the
absence of suitable miror planes. In absence of such theo-
rems, Mandal et al.19 resorted to numerical diagonalization of
the fermion hopping Hamiltonian (Eq. 4) over large system
sizes for several flux configurations and found that the zero-
flux sector has the lowest energy. Thus it is expected that the
zero flux sector corresponds to the ground state in our case as
well. We can then specialize to the zero-flux sector choosing
a gauge where u�

ij = +1 (⇤⌥ij�) to get

H0�flux
K =

i
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This Hamiltonian can then be diagonalized by fourier trans-
formation, taking the unit cell as given in Fig. 1 (the lattice
vectors are given in Appendix A). We get

H0�flux
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where,

Ak = e�ik·a1 + e�ik·a2 ; Bk = 1 + e�ik·a3 (9)

The spectrum is given by:

Ek = ± 1

2
⌦
2

�
(2 + |Ak|2 + |Bk|2)± (10)

↵
[2 + |Ak|2 + |Bk|2]2 � 4 [1 + |Ak|2|Bk|2 + 2⌅ [AkB⇤

k]]

⇥1/2

(11)

The spectrum for the dispersing Majorana fermion, c, along
the high symmetry lines within the first Brillouin zone is given
in Fig. 5. The lower two bands are occupied while the zero
energy surface describe the contour of the gapless excitation.
We find a fermi surface of co-dimension two, i.e. line nodes.
From Eq. 11, it is easy to see that this is given by the zeros of

WP = ±1⇒
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The Model
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FIG. 5. The spectrum of the dispersing majorana fermion in the pure kitaev model on the hyperhoneycomb lattice along paths of high symmetry
in the first Brillouin zone (The first Brillouin zone and the paths are shown in Appendix A)

point (K = 2J), although the classical energies of the three
orders remain same, but, quantum corrections coming from
the spin-wave fluctuations lift this, accidental classical degen-
eracy.

C. J = 0 : The Kitaev Spin Liquid

This is the pure Kitaev limit. Mandal et. al6 showed that
the pure Kitaev model on the deleted cubic lattice which is
topologically similar to the hyper-honeycomb lattice can be
exactly solved using methods originally employed by Kitaev.2

The exact solution, as in the honeycomb case, is rendered
by the three-fold coordination and consequent presence of an
infinite number of conserved quantities. Using the usual ma-
jorana fermion decomposition of the spins

S�
i = ib�i c (3)

we find that the Hamiltonian (Eq. 1) in this limit is given by:

HK =
i

2

⌥

��links

u�
ijcicj (where u�

ij = ib�i b
�
j ), (4)

where we have put the overall scale K = 1. The {bxi , b
y
i , b

z
i , c}

are the four majorana fermions that mutually anticommute.
The infinite number of conserved quantities are given by

the Z2-link variables u�
ij that commute with each other and

with the Hamiltonian (Eq. 4). The Z2-fluxes generated by u�
ij

over the 10 site loop (see fig. 1) are given by6

WP =
�

loop

u�
ij (5)

Since these fluxes commute with the Hamiltonian, by con-
struction, they do not have any dynamics and hence the prob-
lem can be solved independently for different flux sectors.
This separation of the majorana sector and the flux sector, the
latter being good quantum numbers, lies at the heart of the
exact solution of the Kitaev models on different lattices.

The problem then reduces to majorana fermions hopping
in the background of frozen fluxes on the hyper-honeycomb

lattice. Similar issues have been studied by various people
on other lattices. E. Lieb et al. proved that, on certain bi-
partite lattice that contain mirror planes that bisect the lattice
links, the lowest energy is obtained when planer plaquettes
containing 2(mod 4) sites have zero-flux through them, while
plaquettes having 0 (mod 4) sites have �-flux through them.
Unfortunately, unlike the 2D-honeycomb lattice, we cannot
prove Lieb’s theorem for the present lattice6 because of the
absence of suitable miror planes. In absence of such theo-
rems, Mandal et al. resorted to numerical diagonalization of
the fermion hopping Hamiltonian (Eq. 4) over large system
sizes and found that the zero-flux sector has the lowest energy.
Assuming that this is also true in our case, we can specialize to
the zero-flux sector choosing a gauge where u�

ij = +1 (⇥⇧ij⌃)
to get

H0�flux
K =

i

2

⌥

ij

cicj (6)

This Hamiltonian can then be diagonalized by fourier trans-
formation taking the unit cell, as given in given in fig. 1 (and
the lattice vectors are given in Appendix A). We get

H0�flux
K =

⌥

k

�T
�kHk�k (7)

where �T
k = (c1,k, c2,k, c3,k, c4,k) and

Hk =
i

4

�

⇧⇤

0 1 0 Ak

�1 0 BK 0
0 �B⇤

k 0 1
�A⇤

k 0 �1 0

⇥

⌃⌅ (8)

where,

Ak = e�ik·a1 + e�ik·a2 ; Bk = 1 + e�ik·a3 (9)

Ground state is in the zero-flux sector 8
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FIG. 4: (Color online) Spinon spectrum in the Kitaev limit.
Bands shown in red are occupied, bands shown in blue are
unoccupied.

Defining ~k0 = ~k + ( 2⇡3 , 2⇡p
3
),

�dispersing(k
0) =

M

8
(1 + e

4⇡i

3 e�i~k0·~Rx

AB + e
2⇡i

3 e�i~k0·~Ry

AB )

⇡ M
p
3

16
(�k0x + ik0y). (49)

However, we would like to emphasize that the above
chiral p-wave pairing does not necessarily imply time-
reversal symmetry breaking, which is now implemented
projectively.1 The structure of the pairing terms di↵ers
from the work of Burnell and Nayak19, who found py
pairing about the Dirac points, by choosing a di↵erent
basis for the fermions which is related to the present one
by a gauge transformation.

We can further calculate the spin-spin correlation func-
tions within mean field theory. Using the Majorana rep-
resentation we find that this is given by:

hS↵
i S

�
j i ⇠ h�0

i�
0
j ih�↵

i �
�
j i (50)

Since the second correlation function involves absolutely
flat bands, it is only non-zero when ↵ = � and when
i = j or i and j belong to the same unit cell. Hence the
spin correlation are short ranged even if the spin liquid
is gapless. This is a novel feature of the Kitaev spin
liquid, where exact calculations7 also indicate that such
correlations vanish beyond nearest neighbour.

We would like to point out here that, when the model
is perturbed with the Heisenberg term, the gapped flat
bands acquire a weak dispersion, but still remain gapped.
Within perturbation theory, this is expected to lead
to exponentially decaying spin-spin correlation decaying
with a length-scale characteristic of the energy-gap.22

B. The gauge structure

At this point, before actually discussing the results of
our mean-field calculations, we wish to discuss the gauge
structure of the our spin liquid ansatz.
At the outset, it should be noted that the projec-

tive symmetry group (PSG) classification including the
triplet decoupling channels has not been comprehensively
studied. While a comprehensive discussion of these PSGs
is beyond the scope of our present work, we indicate the
relevant issues in the context of the Heisenberg-Kitaev
model by extending the formalism introduced by Shin-
dou and Momoi27.
While the formulation outlined above is more suited

to calculations of the mean field spectrum and self-
consistent solutions, to decipher the nature of the spin
liquid and the gauge transformations we wish to cast the
above decoupling within an SU(2) formalism.
In order to examine the nature of the spin liquid state,

it is worthwhile to formulate this Hamiltonian in another
basis. The transformation into this basis is defined by

~fi ! ~f 0
i = A~fi, Ui,p ! AUi,pA

†, (51)

where the transformation matrix is given by

A =

2

64

1 0 0 0
0 0 0 1
0 1 0 0
0 0 �1 0

3

75 (52)

and ~fi is given by Eq. 28. In the new basis, the ~f 0
i are

given by

~f 0
i
† =

h
f†
i," fi,# f†

i,# �fi,"

i
. (53)

In this basis, we can write the set of gauge transfor-
mations which leave our physical spin degrees of freedom
invariant in a block diagonal form,

Wi =


Vi 0
0 Vi

�
(54)

where the Vi matrices form a two dimensional represen-
tation of SU(2). The spinon Hamiltonian (Eq 31), when
written in the new basis, is invariant under the simulta-
neous gauge transformation

~f 0
i ! Wi

~f 0
i , U 0

i,p ! Wi+pU
0
i,pW

†
i . (55)

where U 0
i,p = AUi,pA

† gives the analog of Bogoliubov-de-
Gennes Hamiltonian in the new basis.
In order to study the low energy degrees of freedom

in this theory, we allow gauge fluctuations of the U 0
i,p

matrices of the form

U 0
i,p = Ū 0

i,pe
ial

i,p

l

, (56)

Majorana Fermions with 
Dirac Dispersion



Kitaev Spin Liquid as a Z2 Spin Liquid

fi" =
1p
2
(ci + ibzi )

f
i# =

ip
2
(bx

i

+ iby
i

)

Making connection to Slave-fermion approach (more conventional)

X

↵

f†
i↵fi↵ = 1with

Sa
i =

1

2
f†
i↵�

a
↵�fi�

exactly one particle  
per site (insulator)

H =
X

hiji2a

{f†
i↵[T

a]ij↵�fj� + fi↵[�
a]ij↵�fj�}

�a = 0If fi↵ �! fi↵e
i✓i [T a]ij = |[T a]ij |eiaij

aij �! aij + ✓i � ✓j
U(1)

In general fi↵ ! fi↵si

[T a]ij , [�a]ij ! si[T
a]ijsj , si[�

a]ijsj

si = ±1
Z2
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Kitaev-Heisenberg Model on a Honeycomb Lattice: Possible Exotic Phases in Iridium
Oxides A2IrO3

Jǐŕı Chaloupka,1, 2 George Jackeli,2, ∗ and Giniyat Khaliullin2

1Department of Condensed Matter Physics, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
2Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany

(Dated: July 12, 2010)

We derive and study a spin one-half Hamiltonian on a honeycomb lattice describing the exchange
interactions between Ir4+ ions in a family of layered iridates A2IrO3 (A=Li, Na). Depending on the
microscopic parameters, the Hamiltonian interpolates between the Heisenberg and exactly solvable
Kitaev models. Exact diagonalization and a complementary spin-wave analysis reveal the presence
of an extended spin-liquid phase near the Kitaev limit and a conventional Néel state close to the
Heisenberg limit. The two phases are separated by an unusual stripy antiferromagnetic state, which
is the exact ground state of the model at the midpoint between two limits.

PACS numbers: 75.10.Jm, 75.25.Dk, 75.30.Et

Magnetic systems exhibit, most commonly, long-range
classical order at sufficiently low temperatures. An ex-
ception are frustrated magnets, in which the topology of
the underlying lattice and/or competing interactions lead
to an extensively degenerate manifold of classical states.
In such systems, exotic quantum phases of Mott insula-
tors (spin liquids, valence bond solids, etc.) can emerge
as the true ground states (for reviews see Refs. [1, 2]). In
quantum spin liquids, strong zero-point fluctuations of
correlated spins prevent them to “freeze” into magnetic
or statically dimerized patterns, and conventional phase
transitions that break time-reversal and lattice symme-
tries are avoided. Spin liquids have attracted particular
attention since Anderson proposed their possible connec-
tion to superconductivity of cuprates [3].

Recently, spin-liquid states of matter have been exem-
plified, on a quantitative level, by an exactly solvable
model by Kitaev [4]. His model deals with spins one-half
that live on a honeycomb lattice. The nearest-neighbor
(NN) spins interact in a simple Ising-like fashion but, be-
cause different bonds use different spin components [see
Fig. 1(a)], the model is highly frustrated. Its ground state
is spin-disordered and supports the emergent gapless ex-
citations represented by Majorana fermions [4]. Spin-
spin correlations are, however, short-ranged and confined
to NN pairs [5, 6]. This may suggest the robustness of
the disordered state to spin perturbations. Indeed, Tsve-
lik has shown [7] that there is a window of stability for
the spin-liquid state in the Kitaev model perturbed by
isotropic Heisenberg exchange.

Finding a physical realization of this remarkable model
is a great challenge, also because of its special properties
attractive for quantum computation [4]. As the key el-
ement of the model is a bond-selective spin anisotropy,
one possible idea [8] is to explore Mott insulators of late
transition metal ions with orbital degeneracy, in which
the bond directional nature of electron orbitals can be
translated into a desired anisotropy of magnetic interac-
tions through strong spin-orbit coupling.

In this Letter, we examine the iridium oxides A2IrO3

from this perspective. In these compounds, the Ir4+ ions
have an effective spin one-half moment and form weakly
coupled honeycomb-lattice planes. Our analysis of the
underlying exchange mechanisms shows that the spin
Hamiltonian comprises two terms, ferromagnetic (FM)
and antiferromagnetic (AF), in the form of Kitaev and
Heisenberg models, respectively. The model has an in-
teresting phase behavior and hosts, in addition to the
spin-liquid state, an unusual AF order that is also an
exact solution at a certain point in phase space.
Experimental studies of iridium compounds are rather

scarce, and the nature of their insulating behavior is not
yet fully understood. In fact, Na2IrO3 was suggested as
an interesting candidate for a topological band insulator
[9]. Given that high temperature magnetic susceptibil-
ities of Na2IrO3 and Li2IrO3 obey the Curie-Weiss law
with an effective moment corresponding S = 1/2 per Ir
ion [10–13], we start here with the Mott insulator picture.
The Hamiltonian.– We recall that the Ir4+ ion in the

octahedral field has a single hole in the threefold degener-
ate t2g level hosting an orbital angular momentum l = 1.
Strong spin-orbit coupling lifts this degeneracy, and the
resulting ground state is a Kramers doublet with total
angular momentum one-half [14], referred to as “spin”
hereafter. In fact, it is predominantly of orbital origin,
and this is what makes the magnetic interactions highly
anisotropic due to the spin-orbit entanglement of mag-
netic and real spaces. In A2IrO3 compounds, the IrO6

octahedra share the edges, and Ir ions can communicate
through two 90◦ Ir-O-Ir exchange paths [8] or via direct
overlap of their orbitals. Collecting the possible exchange
processes (discussed below) and projecting them onto the
lowest Kramers doublet with S = 1/2, we obtain the fol-
lowing spin Hamiltonian on a given NN ij bond:

H(γ)
ij = −J1 Sγ

i S
γ
j + J2 Si ·Sj . (1)

Here, spin quantization axes are taken along the cubic
axes of IrO6 octahedra. In a honeycomb lattice formed

4

atures. If the exchange interactions were purely Kitaev
like they would have been ferromagnetic and we would
have obtained a positive Weiss temperature θ and addi-
tionally the ground state would have been a spin-liquid.
Therefore, the magnetic properties of these materials are
not governed entirely by Kitaev physics alone.
If on the other hand the exchange interactions were

entirely Heisenberg like, then these materials would have
shown a simple Néel type antiferromagnetic ordering.
However, recent resonant x-ray scattering measurements
on single crystalline Na2IrO3 have established that the
magnetic order is not a simple Néel antiferromagnet but
is rather of a stripy antiferromagnetic kind.16 Such a
stripy AFM state has been predicted for the Heisenberg-
Kitaev model when the parameter α in the model lies in
the range 0.4 ≤ α ≤ 0.8.11,13 Given the similarities of
the magnetic anomalies in the χ(T ) and C(T ) data for
both Na2IrO3 and Li2IrO3 it is most likely that Li2IrO3

also shows a similar stripy antiferromagnetic structure.
Thus there are strong indications that the A2IrO3 mate-
rials lie in the region 0.4 ≤ α ≤ 0.8 of the Heisenberg-
Kitaev model. Calculations of the finite temperature
Heisenberg-Kitaev model predict that if the system stays
in the region where 0.4 ≤ α ≤ 0.8 then θ monotonically
decreases with increasing α.13 Remarkably however, it is
also predicted that the magnetic ordering temperature
stays unchanged between 0.4 ≤ α ≤ 0.7 and only starts
dropping significantly as one approaches the Kitaev limit
beyond α ≥ 0.8 where long range order is replaced by a
spin-liquid state as the ground state.13 The reduction of
the Weiss temperature scale on increasing α is natural
since the Heisenberg term comes with an antiferromag-
netic sign and the Kitaev term comes with a ferromag-
netic sign. This reduction in the Weiss temperature scale
is indeed observed for our systems where θ decreases from
≈ −125 K to ≈ −33 K on going from Na2IrO3 to the
Li2IrO3 system. We can get a lower-limit estimate of
the proximity of the Li2IrO3 system to the Kitaev limit
of α ≥ 0.8 by assuming that Na2IrO3 sits at the lower
edge α = 0.4 of the region in which the stripy antiferro-
magnetism is observed. We can then use the theoretical
predictions of the variation of the Weiss temperature ver-
sus α [Ref. 13] and our experimental estimates of θ for

Na2IrO3 and Li2IrO3 to obtain α ≈ 0.6 as a lower limit
for Li2IrO3. Thus, Li2IrO3 lies very close to the Kitaev
limit α ≥ 0.8.
In going from the Na to the Li system the a, b lattice

parameters are reduced by ≈ 4.5% while the c parame-
ter is reduced by ≈ 10%. Thus, substituting Na by Li
is equivalent to preferentially applying chemical pressure
along the c axis (⊥ to the honeycomb planes). This leads
to a decrease of the c-axis distortion of the IrO6 octahe-
dra which enhances the parameters η1,2 leading to an
increased Kitaev coupling.11 This is consistent with the
value of α ≥ 0.6 for Li2IrO3 which puts its closer to the
Kitaev limit.
In addition to the above reduction of the Weiss scale,

the antiferromagnetic ordering temperature TN ≈ 15 K
is the same for both Na2IrO3 and Li2IrO3 despite a
factor of≈ 5 reduction of θ. This counter-intuitive re-
sult is again in direct agreement with the above theo-
retical predictions of the finite temperature Hiesenberg-
Kitaev model.13 The above independence of TN on θ for
0.4 ≤ α ≤ 0.7 and the factor of 8 reduction of TN com-
pared to θ for the Na system, are issues that will need
to be addressed in future experimental and theoretical
work.
In summary, our results provide the strongest support

yet that the A2IrO3 materials are the first realization of
the Heinsenberg-Kitaev model in real solid-state materi-
als. From the above comparison of experiment and the-
ory it is also clear that Li2IrO3 lies close to the α ≥ 0.8
Kitaev limit. The application of c-axis pressure to the
A2IrO3 materials can push them closer to the Kitaev
limit and the Li2IrO3 system should be easier to tune
given that it most likely lies close to α = 0.8.
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Realization of the Heisenberg-Kitaev model in the honeycomb lattice iridates A2IrO3
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Using thermodynamic measurements on the honeycomb lattice iridates A2IrO3 (A =Na, Li) we
demonstrate that these materials are possible realizations of the Heisenberg-Kitaev model. Both
materials are Mott insulators with effective spins S = 1/2 on a honeycomb lattice. The Curie
Weiss temperature decreases from θ ≈ −125 K for Na2IrO3 to θ ≈ −33 K for Li2IrO3. Surprisingly
however, the antiferromagnetic ordering temperature for both materials is the same TN ≈ 15 K.
This counter-intuitive behavior directly mimics the recent predictions of the finite temperature
Heisenberg-Kitaev model on a honeycomb lattice. Our results also indicate that the Li2IrO3 system
is close (0.6 ≤ α ≤ 0.7) to the Kitaev limit (α ≥ 0.8) and that application of pressure might tune it
to the spin-liquid state expected in the Kitaev limit of the model.

Introduction: Recently the Kitaev model of spins S =
1/2 on a honeycomb lattice has attracted a lot of atten-
tion because it is a relatively simple spin model involv-
ing only nearest neighbor interactions and yet it shows
several exotic states of matter.1 The ground state is a
gapless spin-liquid with emergent Majorana excitations,
or a gapped topologically ordered state (the Z2 spin-
liquid) with Abelian anyonic excitations depending on
the model parameters.1 Yet another exotic phase of the
Kitaev model is obtained when the spin-liquid is gapped
out by applying a magnetic field perpendicular to the
honeycomb plane.1,2 This phase is also a gapped, topo-
logically ordered phase, but one with non-abelian quasi-
particle (Majorana fermions) statistics.2,3 Among sys-
tems predicted to support Majorana fermions are exotic
fractional quantum Hall systems4 and heterostructures
of topological insulators, semi-metals, or semiconductors
with conventional s-wave superconductors.5 Realizations
of the Kitaev model and its extentions would also be av-
enues to look for these elusive quasiparticles.
The Kitaev model is thus relevant to such diverse areas

as quantum computation1,6 and strongly correlated con-
densed matter systems7,8 among others and search for
realizations of this and related models is of fundamental
importance.
In looking for experimental realizations of the Ki-

taev model one must not only look for systems with
S = 1/2 on the honeycomb lattice. In addition one
also needs to look at how to introduce anisotropic ex-
change interactions required in the model. Supercon-
ducting circuits9 and optical lattices10 have been pro-
posed as possible ways of realizing the Kitaev model. In
solid state materials, Mott insulating transition metal ox-
ides with strong spin-orbit coupling have been suggested
as possible candidates.7,11

The layered iridate Na2IrO3 has effective S = 1/2 Ir4+

moments on a honeycomb lattice.12 The strong spin-orbit
coupling in this 5d transition metal system is likely to
lead to orbital dependent anisotropic in-plane exchange.
However, one needs to worry about the possibility of
other interactions like the isotropic Heisenberg interac-
tions being present in addition to the Kitaev like inter-

actions. Such a Heisenberg-Kitaev (HK) model has been
studied recently and found to have an interesting phase
diagram depending on the relative strength of the two
terms. The HK Hamiltonian can be written as11

HHK = (1− α)
∑

ij

σ⃗i.σ⃗j − 2α
∑

γ

σγ
i .σ

γ
j (1)

where the σi are the Pauli matrices for the effective
S = 1/2 and γ = x, y, z labels the three different links
for each spin of the honeycomb lattice. The first part
in Eq.(1) is the isotropic Heisenberg term while the sec-
ond term is the anisotropic Kitaev term.11 The Heisen-
berg exchange is antiferromagnetic, while the anisotropic
Kitaev exchange is ferromagnetic. Varying the relative
coupling strength 0 ≤ α ≤ 1, the model interpolates
from the simple Heisenberg model with a Néel ground
state for α = 0 to the Kitaev model for α = 1, which
even for ferromagnetic interactions is highly frustrated
and exhibits a gapless spin-liquid ground state.1 As the
coupling α is varied, three magnetic phases were found
in zero temperature calculations11 and have been found
to persist in calculations at finite temperatures too.13

The three phases are a simple Néel antiferromagnet for
0 ≤ α ≤ 0.4, a stripy antiferromagnet for 0.4 ≤ α ≤ 0.8,
and a spin-liquid state for 0.8 ≤ α ≤ 1.11,13

Even though the A2IrO3 materials have been sug-
gested as possible avenues to look for Kitaev like and
HK like physics,7,11,13 there is very limited experimental
data available for the A2IrO3 systems. We have ear-
lier shown that single crystal Na2IrO3 is a Mott insu-
lator which undergoes antiferromagnetic ordering below
TN = 15 K although the polycrystalline samples showed
glassy behavior.12 There are two conflicting reports on
the magnetic properties of Li2IrO3.14,15 The first report
suggested paramagnetic behavior between T = 5 K and
300 K without any sign of magnetic order14 while the
second report showed an anomaly in the magnetic sus-
ceptibility below T = 10 K which was also accompanied
by a hysteresis between zero-field-cooled and field-cooled
data suggesting glassy behavior.15 No heat capacity data
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Generic Spin Model for the Honeycomb Iridates beyond the Kitaev Limit

Je⇥rey G. Rau,1 Eric Kin-Ho Lee,1 and Hae-Young Kee1, 2, ⇤

1Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
2Canadian Institute for Advanced Research/Quantum Materials Program, Toronto, Ontario MSG 1Z8, Canada

(Dated: March 18, 2014)

Recently, realizations of Kitaev physics have been sought in the A2IrO3 family of honeycomb iridates, origi-
nating from oxygen-mediated exchange through edge-shared octahedra. However, for the je⇥ = 1/2 Mott insu-
lator in these materials exchange from direct d-orbital overlap is relevant, and it was proposed that a Heisenberg
term should be added to the Kitaev model. Here we provide the generic nearest-neighbour spin Hamiltonian
when both oxygen-mediated and direct overlap are present, containing a bond-dependent o⇥-diagonal exchange
in addition to Heisenberg and Kitaev terms. We analyze this complete model using a combination of classical
techniques and exact diagonalization. Near the Kitaev limit, we find new magnetic phases, 120⌅ and incommen-
surate spiral order, as well as extended regions of zigzag and stripy order. Possible applications to Na2IrO3 and
Li2IrO3 are discussed.

The honeycomb family of iridium oxides[1–11] has at-
tracted a considerable amount of attention [12–20] due to
the possibility they lie near a realization of Kitaev’s exactly
solvable spin-1/2 honeycomb model[21]. This model hosts
a number of remarkable features: a Z2 spin liquid with gap-
less Majorana fermions and (non-Abelian) anyonic excita-
tions under an applied magnetic field. No symmetry prin-
ciple excludes terms besides the Kitaev, so additional inter-
actions are generically expected. From microscopic calcu-
lations of exchange mediated through the edge-shared oxy-
gen octahedra, it has been proposed that a pure Kitaev model
of je⇥ = 1/2 spins was the appropriate description[22]. It
was further suggested that direct overlap of the d-orbitals
generalizes this to a Heisenberg-Kitaev (HK) model[13], lin-
early interpolating between an isotropic Heisenberg model
and Kitaev’s bond-dependent exchange Hamiltonian. Exten-
sive study of the HK model[23–28] has shown a variety of fas-
cinating phenomena, including an extended spin liquid phase
and quantum phase transitions into several well-understood
magnetic ground states. While present, the zigzag phase seen
in Na2IrO3 [2, 4, 6] is di⇤cult to stabilize within the HK
model; one must resort to additional t2g-eg exchange paths[18]
or further neighbour hoppings[14]. In light of this puzzle one
may question whether the HK model provides an adequate de-
scription of the honeycomb iridates even at the nearest neigh-
bour level.

In this Letter, we show that when applied to the honey-
comb iridates the HK model is incomplete, explicitly deriving
the je⇥ = 1/2 spin model from a multiorbital t2g Hubbard-
Kanamori Hamiltonian. Considering the most idealized crys-
tal structure, an additional spin-spin interaction beyond the
HK model must be included: bond-dependent symmetric o⇥-
diagonal exchange. The complete spin Hamiltonian has the
form

H =
⇤

⌃i j⌥⇧�⇥(⇤)

⌅
J�S i · �S j + KS ⇤i S ⇤j + �

�
S �i S ⇥j + S ⇥i S �j

⇥⇧
, (1)

where J is Heisenberg exchange, K is the Kitaev exchange,
and � denotes the symmetric o⇥-diagonal exchange. On each
bond we distinguish one spin direction ⇤, labeling the bond

yx

z

zx(y)

yz(x)

xy(z)

Ir4+

O2�A+

FIG. 1: Crystal structure of the honeycomb iridates A2IrO3
with Ir4+ in black, O2� in white, and A = Na+,Li+ in gray.
For the Kitaev and bond-dependent exchanges we have
denoted the yz(x) bonds blue, the zx(y) bonds green and the
xy(z) bonds red.

�⇥(⇤) where � and ⇥ are the two remaining directions. Ex-
amining the phase diagram using a combination of classical
arguments and exact diagonalization, we find that with the in-
clusion of � new magnetic phases are stabilized near the Ki-
taev limits: an incommensurate spiral (IS) and 120⌅ order, in
addition to extended regions of zigzag and stripy order.

Microscopics.– We first construct a minimal model of a
honeycomb lattice of Ir4+ ions surrounded by a network of
edge-sharing oxygen octahedra. The Ir4+ 5d levels are split
into an eg doublet and t2g triplet by large crystal field e⇥ects,
leaving a single hole in the t2g states. Within the t2g mani-
fold, the orbital angular momentum behaves as an le⇥ = 1
triplet, with large spin-orbit coupling splitting this into an ac-
tive je⇥ = 1/2 doublet and filled je⇥ = 3/2 states. Because of
significant on-site interactions, localized je⇥ = 1/2 spins pro-
vide an e⇥ective model for the low-energy physics. To per-
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Kitaev-Heisenberg Model on a Honeycomb Lattice: Possible Exotic Phases in Iridium
Oxides A2IrO3

Jǐŕı Chaloupka,1, 2 George Jackeli,2, ∗ and Giniyat Khaliullin2

1Department of Condensed Matter Physics, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
2Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany

(Dated: July 12, 2010)

We derive and study a spin one-half Hamiltonian on a honeycomb lattice describing the exchange
interactions between Ir4+ ions in a family of layered iridates A2IrO3 (A=Li, Na). Depending on the
microscopic parameters, the Hamiltonian interpolates between the Heisenberg and exactly solvable
Kitaev models. Exact diagonalization and a complementary spin-wave analysis reveal the presence
of an extended spin-liquid phase near the Kitaev limit and a conventional Néel state close to the
Heisenberg limit. The two phases are separated by an unusual stripy antiferromagnetic state, which
is the exact ground state of the model at the midpoint between two limits.

PACS numbers: 75.10.Jm, 75.25.Dk, 75.30.Et

Magnetic systems exhibit, most commonly, long-range
classical order at sufficiently low temperatures. An ex-
ception are frustrated magnets, in which the topology of
the underlying lattice and/or competing interactions lead
to an extensively degenerate manifold of classical states.
In such systems, exotic quantum phases of Mott insula-
tors (spin liquids, valence bond solids, etc.) can emerge
as the true ground states (for reviews see Refs. [1, 2]). In
quantum spin liquids, strong zero-point fluctuations of
correlated spins prevent them to “freeze” into magnetic
or statically dimerized patterns, and conventional phase
transitions that break time-reversal and lattice symme-
tries are avoided. Spin liquids have attracted particular
attention since Anderson proposed their possible connec-
tion to superconductivity of cuprates [3].

Recently, spin-liquid states of matter have been exem-
plified, on a quantitative level, by an exactly solvable
model by Kitaev [4]. His model deals with spins one-half
that live on a honeycomb lattice. The nearest-neighbor
(NN) spins interact in a simple Ising-like fashion but, be-
cause different bonds use different spin components [see
Fig. 1(a)], the model is highly frustrated. Its ground state
is spin-disordered and supports the emergent gapless ex-
citations represented by Majorana fermions [4]. Spin-
spin correlations are, however, short-ranged and confined
to NN pairs [5, 6]. This may suggest the robustness of
the disordered state to spin perturbations. Indeed, Tsve-
lik has shown [7] that there is a window of stability for
the spin-liquid state in the Kitaev model perturbed by
isotropic Heisenberg exchange.

Finding a physical realization of this remarkable model
is a great challenge, also because of its special properties
attractive for quantum computation [4]. As the key el-
ement of the model is a bond-selective spin anisotropy,
one possible idea [8] is to explore Mott insulators of late
transition metal ions with orbital degeneracy, in which
the bond directional nature of electron orbitals can be
translated into a desired anisotropy of magnetic interac-
tions through strong spin-orbit coupling.

In this Letter, we examine the iridium oxides A2IrO3

from this perspective. In these compounds, the Ir4+ ions
have an effective spin one-half moment and form weakly
coupled honeycomb-lattice planes. Our analysis of the
underlying exchange mechanisms shows that the spin
Hamiltonian comprises two terms, ferromagnetic (FM)
and antiferromagnetic (AF), in the form of Kitaev and
Heisenberg models, respectively. The model has an in-
teresting phase behavior and hosts, in addition to the
spin-liquid state, an unusual AF order that is also an
exact solution at a certain point in phase space.
Experimental studies of iridium compounds are rather

scarce, and the nature of their insulating behavior is not
yet fully understood. In fact, Na2IrO3 was suggested as
an interesting candidate for a topological band insulator
[9]. Given that high temperature magnetic susceptibil-
ities of Na2IrO3 and Li2IrO3 obey the Curie-Weiss law
with an effective moment corresponding S = 1/2 per Ir
ion [10–13], we start here with the Mott insulator picture.
The Hamiltonian.– We recall that the Ir4+ ion in the

octahedral field has a single hole in the threefold degener-
ate t2g level hosting an orbital angular momentum l = 1.
Strong spin-orbit coupling lifts this degeneracy, and the
resulting ground state is a Kramers doublet with total
angular momentum one-half [14], referred to as “spin”
hereafter. In fact, it is predominantly of orbital origin,
and this is what makes the magnetic interactions highly
anisotropic due to the spin-orbit entanglement of mag-
netic and real spaces. In A2IrO3 compounds, the IrO6

octahedra share the edges, and Ir ions can communicate
through two 90◦ Ir-O-Ir exchange paths [8] or via direct
overlap of their orbitals. Collecting the possible exchange
processes (discussed below) and projecting them onto the
lowest Kramers doublet with S = 1/2, we obtain the fol-
lowing spin Hamiltonian on a given NN ij bond:

H(γ)
ij = −J1 Sγ

i S
γ
j + J2 Si ·Sj . (1)

Here, spin quantization axes are taken along the cubic
axes of IrO6 octahedra. In a honeycomb lattice formed

4

atures. If the exchange interactions were purely Kitaev
like they would have been ferromagnetic and we would
have obtained a positive Weiss temperature θ and addi-
tionally the ground state would have been a spin-liquid.
Therefore, the magnetic properties of these materials are
not governed entirely by Kitaev physics alone.
If on the other hand the exchange interactions were

entirely Heisenberg like, then these materials would have
shown a simple Néel type antiferromagnetic ordering.
However, recent resonant x-ray scattering measurements
on single crystalline Na2IrO3 have established that the
magnetic order is not a simple Néel antiferromagnet but
is rather of a stripy antiferromagnetic kind.16 Such a
stripy AFM state has been predicted for the Heisenberg-
Kitaev model when the parameter α in the model lies in
the range 0.4 ≤ α ≤ 0.8.11,13 Given the similarities of
the magnetic anomalies in the χ(T ) and C(T ) data for
both Na2IrO3 and Li2IrO3 it is most likely that Li2IrO3

also shows a similar stripy antiferromagnetic structure.
Thus there are strong indications that the A2IrO3 mate-
rials lie in the region 0.4 ≤ α ≤ 0.8 of the Heisenberg-
Kitaev model. Calculations of the finite temperature
Heisenberg-Kitaev model predict that if the system stays
in the region where 0.4 ≤ α ≤ 0.8 then θ monotonically
decreases with increasing α.13 Remarkably however, it is
also predicted that the magnetic ordering temperature
stays unchanged between 0.4 ≤ α ≤ 0.7 and only starts
dropping significantly as one approaches the Kitaev limit
beyond α ≥ 0.8 where long range order is replaced by a
spin-liquid state as the ground state.13 The reduction of
the Weiss temperature scale on increasing α is natural
since the Heisenberg term comes with an antiferromag-
netic sign and the Kitaev term comes with a ferromag-
netic sign. This reduction in the Weiss temperature scale
is indeed observed for our systems where θ decreases from
≈ −125 K to ≈ −33 K on going from Na2IrO3 to the
Li2IrO3 system. We can get a lower-limit estimate of
the proximity of the Li2IrO3 system to the Kitaev limit
of α ≥ 0.8 by assuming that Na2IrO3 sits at the lower
edge α = 0.4 of the region in which the stripy antiferro-
magnetism is observed. We can then use the theoretical
predictions of the variation of the Weiss temperature ver-
sus α [Ref. 13] and our experimental estimates of θ for

Na2IrO3 and Li2IrO3 to obtain α ≈ 0.6 as a lower limit
for Li2IrO3. Thus, Li2IrO3 lies very close to the Kitaev
limit α ≥ 0.8.
In going from the Na to the Li system the a, b lattice

parameters are reduced by ≈ 4.5% while the c parame-
ter is reduced by ≈ 10%. Thus, substituting Na by Li
is equivalent to preferentially applying chemical pressure
along the c axis (⊥ to the honeycomb planes). This leads
to a decrease of the c-axis distortion of the IrO6 octahe-
dra which enhances the parameters η1,2 leading to an
increased Kitaev coupling.11 This is consistent with the
value of α ≥ 0.6 for Li2IrO3 which puts its closer to the
Kitaev limit.
In addition to the above reduction of the Weiss scale,

the antiferromagnetic ordering temperature TN ≈ 15 K
is the same for both Na2IrO3 and Li2IrO3 despite a
factor of≈ 5 reduction of θ. This counter-intuitive re-
sult is again in direct agreement with the above theo-
retical predictions of the finite temperature Hiesenberg-
Kitaev model.13 The above independence of TN on θ for
0.4 ≤ α ≤ 0.7 and the factor of 8 reduction of TN com-
pared to θ for the Na system, are issues that will need
to be addressed in future experimental and theoretical
work.
In summary, our results provide the strongest support

yet that the A2IrO3 materials are the first realization of
the Heinsenberg-Kitaev model in real solid-state materi-
als. From the above comparison of experiment and the-
ory it is also clear that Li2IrO3 lies close to the α ≥ 0.8
Kitaev limit. The application of c-axis pressure to the
A2IrO3 materials can push them closer to the Kitaev
limit and the Li2IrO3 system should be easier to tune
given that it most likely lies close to α = 0.8.
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Possible proximity of the Mott insulating Iridate Na2IrO3 to a topological phase:
Phase diagram of the Heisenberg-Kitaev model in a magnetic field
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Motivated by the recent experimental observation of a Mott insulating state for the layered Iridate Na2IrO3,
we discuss possible ordering states of the effective Iridium moments in the presence of strong spin-orbit coupling
and a magnetic field. For a field pointing in the �111⇥ direction – perpendicular to the hexagonal lattice formed
by the Iridium moments – we find that a combination of Heisenberg and Kitaev exchange interactions gives rise
to a rich phase diagram with both symmetry breaking magnetically ordered phases as well as a topologically
ordered phase that is stable over a small range of coupling parameters. Our numerical simulations further
indicate two exotic multicritical points at the boundaries between these ordered phases.

PACS numbers: 71.20.Be, 75.25.Dk, 75.30.Et, 75.10.Jm

In the realm of condensed matter physics, spin-orbit cou-
pling has long been considered a residual, relativistic cor-
rection of minor relevance to the macroscopic properties of
a material. In recent years this perspective has dramatically
changed, especially due to the theoretical prediction and sub-
sequent experimental observation of fundamentally new states
of quantum matter, so-called topological insulators [1], that
are solely due to the effect of spin-orbit coupling. The topo-
logical insulators experimentally realized so far are semicon-
ductors, whose physical properties can be largely captured by
band theory of non-interacting electrons. It is an interesting
challenge, for both theory and experiment, to identify an even
broader class of materials where this physics plays out even in
the presence of interactions and strong correlations [2]. Good
candidate materials for the latter are the Iridates [3, 4]. These
5d transition metal oxides are prone to exhibit electronic cor-
relations and form (weak) Mott insulators, while the relatively
large mass of the Iridium ions (Z = 77) gives rise to a com-
parably strong spin-orbit coupling, which has been found to
be as large as ⇤ ⌅ 400 meV [5]. The most common va-
lence of the Iridium ions in these materials is Ir4+. The d-
orbitals of this 5d5 configuration are typically split by the sur-
rounding crystal field, and for the octahedral geometry of the
IrO6 oxygen cage, result in an orbital configuration where five
electrons occupy the lowered, threefold degenerate t2g level.
Spin-orbit coupling will further lift this degeneracy of the t2g
orbitals and for strong coupling the effective l = 1 orbital
angular momentum [6] is combined with the s = 1/2 spin
degree of freedom carried by the hole of this partially filled
t2g orbital configuration. This leaves us with two Kramers
doublets of total angular momentum j = 3/2 and j = 1/2,
of which the former is of lower energy and fully occupied by
four electrons, while the partial filling of the latter gives rise
to an effective spin-1/2 degree of freedom.

In this manuscript we focus on the Iridate Na2IrO3, in
which NaIr2O6 slabs are stacked along the crystallographic
c-axis, and the Ir4+ ions in the layers form a hexagonal lat-
tice [4]. Recent measurements of the magnetic susceptibil-

ity provide evidence of effective spin-1/2 moments and mag-
netic correlations below TN ⌅ 15 K indicating that Na2IrO3

is indeed a Mott insulator [4]. Theoretically, it has been ar-
gued [7, 8] that the interactions between the effective Iridium
moments in the Mott regime are captured by a combination
of isotropic and highly anisotropic exchanges, which can be
tracked back to the spin and orbital components of the effec-
tive momenta. A microscopic Hamiltonian interpolating be-
tween these two types of exchanges is given by

HHK = (1� �)
�

⇥i,j⇤

�⌅i · �⌅j � 2�
�

��links

⌅�
i ⌅

�
j , (1)

where the ⌅i denote the effective spin-1/2 moment of the Ir4+

ions, ⇥ = x, y, z indicates the three different links of the
hexagonal lattice, and 0 ⇤ � ⇤ 1 parametrizes the relative
coupling strength of the isotropic and anisotropic exchange
between the moments. For � = 0 the Hamiltonian reduces
to the ordinary Heisenberg model, while in the opposite limit
of highly anisotropic exchanges (� = 1) the system corre-
sponds to the Kitaev model [9]. The latter is known to exhibit
a gapless spin-liquid ground state (for equal coupling along
the links) that can be gapped out into a topological phase with
non-Abelian quasiparticle excitations by certain time-reversal
symmetry breaking perturbations [9]. One such perturbation
is a magnetic field pointing in the ⇧111⌃ direction, perpendic-
ular to the honeycomb layer

HHK+h = HHK �
�

i

�h · �⌅i . (2)

The main result of our manuscript is the rich phase diagram
of this model, shown in Fig. 1. Besides two conventional,
magnetically ordered phases we find a topologically ordered
phase and two multicritical points, which we will discuss in
detail in the remainder of the manuscript.

Numerical simulations.– We determine the ground-state
phase diagram of Hamiltonian (2) by extensive ‘quasi-2D’
density-matrix renormalization group (DMRG) [10] calcula-
tions on systems with up to N = 64 sites. In particular,
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by Ir ions, there are three distinct types of NN bonds
referred to as γ(= x, y, z) bonds because they host the
Ising-like J1 coupling between the γ components of spins
[see Fig. 1(a)]. The first part of Eq. (1) is thus nothing
but the FM Kitaev model, and the J2 term is a conven-
tional AF Heisenberg model. The exchange constants J1
and J2 are derived from a multiorbital Hubbard Hamilto-
nian consisting of the local interactions and the hopping
term. The latter describes tpdπ hopping between Ir 5d
and O 2p orbitals via the charge-transfer gap ∆pd, and
a direct dd overlap t′ between NN Ir t2g orbitals [15].
We find J1 = (η1 + 2η2) and J2 = (η2 + η3). Hereafter,
we use 4t2/9Ud as our energy unit, where t = t2pdπ/∆pd,
and Ud stands for the Coulomb repulsion on the same
d orbitals. There are three physically distinct virtual
processes that determine the set of η parameters and
thus the ratio J2/J1. The η1 = 6JH

Ud−3JH

Ud

Ud−JH
term ap-

pears due to the multiplet structure of the excited lev-
els induced by Hund’s coupling JH [8]. The processes
when two holes meet at the same oxygen site (and ex-
perience Up repulsion) and when they are cyclically ex-
changed around a Ir2O2 square plaquette bring together
a η2 = Up

∆pd+Up/2
Ud

∆pd
contribution. Further, a direct dd-

hopping t′ between NN Ir t2g orbitals contributes to the
Heisenberg term with exchange coupling η3 = (t′/t)2. It
is difficult to estimate the values of all the parameters
involved; however, we expect η1 to be the largest, of the
order of 1, and η2,3 < 1.
We parametrize the exchange couplings as J1 = 2α and

J2 = 1−α and study the properties of Kitaev-Heisenberg
model (1) in the whole parameter space 0 ≤ α ≤ 1.
Phase diagram.– At α = 0, we are left with the Heisen-

berg model exhibiting the Néel order with a staggered
moment reduced to ⟨Sz⟩ ≃ 0.24 [16]. The opposite limit,
α = 1, corresponds to the exactly solvable Kitaev model
with a short-range spin-liquid state [4], where spin corre-
lation functions are identically zero beyond the NN dis-
tance and, on a given NN bond, only the components of
spins matching the bond type are correlated [5].
Interestingly, the model is exactly solvable at α = 1

2 ,
too. At this point Eq. (1) reads, e.g., on a z-type bond,

as H(z)
ij = 1

2 (S
x
i S

x
j + Sy

i S
y
j − Sz

i S
z
j ). This anisotropic

Hamiltonian can be mapped to that of a simple Heisen-
berg model on all bonds simultaneously [17]. Specifically,
we divide the honeycomb lattice into four sublattices [see
Fig. 1(b)] and introduce the rotated operators S̃: While
S̃ = S in one of the sublattices, S̃ on the remaining
three sublattices differs from the original S by the sign
of two appropriate components, depending on the sub-
lattice they belong to. In the new basis, Eq. (1) takes
the form

H(γ)
ij = −2(2α− 1) S̃γ

i S̃
γ
j − (1− α) S̃i ·S̃j . (2)

At α = 1
2 , the first term vanishes and we obtain the

isotropic, both in spin and real spaces, Heisenberg model

H(γ)
ij = − 1

2 S̃i ·S̃j with FM coupling. Thus, at α = 1
2 ,
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FIG. 1: (a) Three types of bonds in the honeycomb lat-
tice and Kitaev part of the interaction. (b) The supercell
of the four-sublattice system enabling the transformation of
the model (1) into the Hamiltonian of a simple ferromagnet
at α = 1

2 . This supercell with periodic boundary conditions
applied was used as a cluster for the exact diagonalization.
(c) Schematic phase diagram: With increasing α, the ground
state changes from the Néel AF order to the stripy AF state
(being a fluctuation-free exact solution at α = 1

2 ) and to the
Kitaev spin liquid. See the text for the critical values of α.

i.e., at J1 = 2J2, the exact ground state of model (1)
is a fully polarized FM state in the rotated basis. Now
consider the FM array of spins with, e.g., ⟨S̃z⟩ = 1/2,
and map it back to the original spin basis. The resulting
order corresponds to a stripy AF pattern of the original
magnetic moments depicted in Fig. 1(c). Note that such
a stripy order, despite being of AF type, is fluctuation-
free at α = 1

2 and would thus show a fully saturated AF
order parameter.
The above discussion suggests three possible ground

state phases of the model (1) as shown in Fig. 1(c): (i)
Néel order near α = 0, (ii) stripy AF order around α = 1

2 ,
and (iii) a spin-liquid phase close to α = 1.
We first consider the ordered phases. Except special

cases of α = 0 and α = 1
2 just discussed, the Hamil-

tonian (1) does not have any spin-rotational symmetry.
However, a spurious SU(2) continuous symmetry and as-
sociated pseudo-Goldstone mode appear in a linear spin-
wave (SW) description. As in the case of a similar model
on a cubic lattice [18], we find that quantum fluctuations
restore the underlying discrete (hexagonal) symmetry of
the model, selecting thereby the direction of ordered mo-
ments along one of the cubic axes (of IrO6 octahedra),
and also open a gap in SW spectra. Considering the
quantum energy cost for rotating the order parameter by
a small angle away from a cubic axis, we find a quantum
SW gap ∆ ≃ 2

α (α− 1
2 )

2 for α ∼ 1
2 .

4

a) Néel d)b) zig-zag

b

c) stripy

a

2π
bΓ

2π
a

Néel
zig-zag
stripy

FIG. 3: (Color online) Diagram of a) Néel, b) zig-zag and c)
stripy order. d) Reciprocal space diagram showing locations
of magnetic Bragg peaks for various magnetic phases (inner
hexagon shows first Brillouin zone of the honeycomb lattice).
e) Powder inelastic neutron scattering data. The notable well-
defined feature is the sharp lower boundary of the scattering
at low Q (filled (magenta) symbols in h-j)), which we associate
with a sinusoidal spin wave dispersion; this becomes damped
out in the paramagnetic phase in f). Slanted thick dashed ar-
row shows the scan direction in g). Gray shading marks the
inaccessible region close to the elastic line dominated by inco-
herent elastic scattering. g) Energy scan (solid points 4.6 K,
open symbols 55 K) through the maximum spin-wave energy
seen in e) fitted to a Gaussian peak (solid line), dashed line is
estimated background. h-j) Calculated spherically-averaged
spin-wave intensity [16] for the J1,2,3 model with h) zig-zag
or i) stripy order, and j) the KH model with stripy order for
parameters given in the text. Solid red line in j) highlights
the low-energy boundary, which coincides with the dispersion
from Γ to the first softening point.

seen. Calculations for the KH Hamiltonian (1) are shown
in Fig. 3j) for α = 0.4 (lower limit for the stripy phase)
and J1 = 25.85 meV to reproduce the CW temperature
[21] Θ = −S(S + 1)(J1 − JK/3)/kB. The lower bound-

ary of the scattering at low Q (solid line) is predicted to
have a quadratic shape near the first softening point, a ro-
bust feature for any α throughout the stripy phase. This
is in contrast to the data where the dispersion bound-
ary (marked by filled symbols) has a distinctly different,
sinusoidal-like shape with a curvature the opposite way.
In addition, a different distribution of scattering weight
to higher energies is predicted, but not seen in the data.
We conclude that the KH model in the stripy phase has
a qualitatively different spin-wave spectrum compared to
the data. A minimal model that can reproduce the ob-
served low-Q dispersion and which predicts distribution
of magnetic scattering in broad overall agreement with
the data up to some intensity modulations is shown in
Fig. 3h) and requires substantial couplings up to 3rd
neighbors, which stabilize zig-zag magnetic order. Re-
cent theory [13] proposed that in addition to couplings
up to 3rd neighbors, a Kitaev term may also exist. We
have compared the data with such a model as well [16]
and estimate that a Kitaev term, if present, is smaller
than an upper bound corresponding to α ! 0.40(5).
We note that sizeable J3’s are not uncommon in trian-

gular plane metal oxides. The reason is that even though
J1 involves two hoppings and J3 four, the two additional
hoppings are strong pdσ ones, and the hopping proceeds
through intermediate unoccupied eg states [22]. In case of
Na2IrO3 the hopping proceeds through somewhat higher
Na s orbitals, but these are very diffuse, and the corre-
sponding tspσ parameter is sizeable. Near cancellation
of the AFM and FM superexchange interaction for the
nearest-neighbor path further reduces J1 compared to J3.
To summarize, by combining single-crystal diffraction

and LDA calculations we proposed a revised crystal
structure for the spin-orbit coupled honeycomb antifer-
romagnet Na2IrO3 that highlights important departures
from the ideal case where the Kitaev exchange domi-
nates. We observed dispersive spin-wave excitations in
inelastic neutron scattering and showed that substantial
further-neighbor exchange couplings are required to ex-
plain the observed dispersion and we proposed a model
for the magnetic ground state that could support such a
dispersion relation.
We thank G. Jackeli for providing notes on spin-wave

dispersions for the KH model in the rotated frame,
A. Amato for technical support, N. Shannon, J.T.
Chalker and L. Balents for discussions, and EPSRC for
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Motivated by recent experiments on ��Li2IrO3 [1], we study the phase diagram of the Heisenberg-Kitaev
model on a three dimensional lattice of tri-coordinated Ir4+, dubbed the hyper-honeycomb lattice by Takagi
et. al. The lattice geometry of this material, along with Ir4+ ions carrying Je� = 1/2 moments, suggests
that the Heisenberg-Kitaev model may effectively capture the low energy spin-physics of the system in the
strong-coupling limit. Using a combination of semiclassical analysis, exact solution and slave-fermion mean
field theory, we find, in addition to the spin-liquid, four different magnetically ordered phases depending on the
parameter regime. All four magnetic phases–the Néel, the polarized ferromagnet, the skew-stripy and the skew-
zig-zag, have collinear spin ordering. The three dimensional Z2 spin liquid, which extends over an extended
parameter regime around the exactly solvable Kitaev point, has a gapless Majorana mode with a deformed
Fermi-circle (co-dimensions, dc = 2). We discuss the effect of the magnetic field and finite temperature on
different phases that may be relevant for future experiments.

I. INTRODUCTION

Recent studies show that 5d transition metal (Ir=iridium,
osmium) oxides,2–10 with large spin-orbit coupling, are
promising candidates for realizing a number of previously un-
known electronic phases of matter11–16 as well as providing
concrete material systems that may harbour some of the so far
theoretically studied novel quantum phases of electrons.17,18

To this latter category belongs the now well-known Kitaev
model.18 Originally proposed on a honeycomb lattice, the Ki-
taev model is an exactly solvable spin-1/2 Hamiltonian that
has a quantum spin-liquid ground state. Subsequent studies
found similar exactly solvable spin models on several other
two and three dimensional lattices.19–23

In an interesting work by Jackeli et al.24, it was pointed out
that in presence of strong SO coupling, spin Hamiltonians of
the kind proposed by Kitaev (quantum compass models) can
be realized in certain 5d transition metal oxide Mott insula-
tors with coordination number z = 3. While the almost si-
multaneous discovery of two honeycomb iridium oxide Mott
insulators (Na2IrO3

2 and Li2IrO3
3) have lead to a thorough in-

vestigation of these Hamiltonians on honeycomb lattice, there
are other tri-coordinated lattices in both two and three spa-
tial dimensions, where similar physics may become relevant
in context of materials.

In this work, we study such a three dimensional Ir based
Mott insulator where the magnetism may be correctly de-
scribed by a generalized quantum compass Hamiltonian. Our
work is directly motivated by the recent experiments by H.
Takagi et al.1 on �-Li2IrO3. In this material, the Ir4+ ions,
carrying Je� = 1/2 moments, sit on a three dimensional
network that has been dubbed as a hyper-honeycomb lattice
(face-centred-orthorhombic lattice with a 4-site unit cell) by
Takagi et al.1 (Fig. 1). Since each Ir site has three Ir neigh-
bours and is surrounded by an oxygen octahedron (see below),
we find that a spin-1/2 quantum compass model captures the
low energy spin physics of this system in the strong coupling
limit (with localized moments).

This is particularly interesting and our study shows that on

FIG. 1. (color online) The tri-coordinated orthorhombic lattice. The
orthorhombic unit cell is outlined in gray. The primitive unit cell
contains four Ir atoms colored yellow and are labeled from 1 to 4.
The ten blue sites show the smallest closed loop on this lattice. These
sites are labeled from a to j. All the other Ir atoms are colored gray.
The primitive vectors for the 4-site unit cell are given by ai. For the
Kitaev interactions, the red bonds refer to SxSx, the green to SySy ,
and the blue to SzSz interactions respectively. The orientation of the
global x, y, z coordinates are shown in the bottom right.

the present lattice the above Hamiltonian allows, apart from
four magnetically ordered phases, a quantum spin liquid phase
over an extended part of the phase diagram. This spin liq-
uid is adiabatically connected to the exactly solvable ground
state of the Kitaev model. We use a combination of semi-
classical analysis (Luttinger-Tisza approximation with zero
point corrections from spin-waves), exact solution and slave-
fermion mean field theory to find the details of the phase di-
agram over the entire parameter regime. We find that all the
magnetic phases, namely, the Néel, the polarized ferromag-
net, the skew-stripy (Fig. 4) and the skew-zig-zag (Fig. 8),
have collinear spin ordering. The last two phases (see be-
low) have interesting similarities and important differences
with their two dimensional counterparts obtained on the hon-
eycomb lattice.24,25 The spin liquid, on the other hand, is a
three dimensional Z2 spin liquid, with a gapless Majorana
spinon mode. The Majorana spinon has gapless line nodes

Discovery of Three dimensional “Honeycomb” lattice

β- Li2IrO3

arXiv:1403.3296

FIG. 1. Single crystal of H⇧1⌃-Li2IrO3 and the Ir lattice structure. (A) Single crystal oriented to

be parallel to the crystallographic axes shown in (C), (B) 3D view and (C) projection in the ab

plane. In (B) gray shading emphasizes the Ir (purple balls) honeycomb rows that run parallel to the

a± b diagonals, alternating upon moving along the c-axis. For simplicity only Li ions (grey balls)

located in the center of Ir honeycombs are shown. In (B) and (C) the rectangular box indicates

the unit cell. Comparing (A) and (C) we note that the ⇤70� angle between honeycomb rows is

evident in the crystalline morphology.

the spin-anisotropy of exchange across the Ir-O2-Ir bond from the temperature dependence

of the anisotropic magnetic susceptibility. The crystals are synthesized as described in

Methods. As shown in Figure 1A, the crystals are clearly faceted and typically around

100�100�200µm3 in size. In contrast to the monoclinic structure of the layered iridate, we

find that these materials are orthorhombic and belong to the non-symmorphic space group

Cccm, with lattice parameters a = 5.9119(3) Å, b = 8.4461(5) Å, c = 17.8363(10) Å (see SI

I in published version for details of the crystallography). The structure (shown in Figure 1B

and C) contains two interlaced honeycomb planes, the orientation of which alternate along

the c axis. The angle ⇥0 between the honeycomb planes is fixed by the geometry of the

edge shared bonding of the IrO6 octahedra (see Figures 2A and 4A ). For cubic octahedra

cos⇥o = 1/3, namely ⇥o ⌅ 70�, as shown in Figure 2A. The x-ray refinement (see SI II

in published version) indicates that the stoichiometry is Li2IrO3, such that the Ir oxidation

state is Ir4+ 5d5 with an e�ective Ir local moment of Je� = 1/2. The possibility of Li deficiency

in our samples could lead to some Ir5+ sites, however this is not expected to have a marked

e�ect on the magnetism; in the case that spin-orbit coupling dominates over the Coulomb
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FIG. 1. Single crystal of H⇧1⌃-Li2IrO3 and the Ir lattice structure. (A) Single crystal oriented to

be parallel to the crystallographic axes shown in (C), (B) 3D view and (C) projection in the ab

plane. In (B) gray shading emphasizes the Ir (purple balls) honeycomb rows that run parallel to the

a± b diagonals, alternating upon moving along the c-axis. For simplicity only Li ions (grey balls)

located in the center of Ir honeycombs are shown. In (B) and (C) the rectangular box indicates

the unit cell. Comparing (A) and (C) we note that the ⇤70� angle between honeycomb rows is

evident in the crystalline morphology.

the spin-anisotropy of exchange across the Ir-O2-Ir bond from the temperature dependence

of the anisotropic magnetic susceptibility. The crystals are synthesized as described in

Methods. As shown in Figure 1A, the crystals are clearly faceted and typically around

100�100�200µm3 in size. In contrast to the monoclinic structure of the layered iridate, we

find that these materials are orthorhombic and belong to the non-symmorphic space group

Cccm, with lattice parameters a = 5.9119(3) Å, b = 8.4461(5) Å, c = 17.8363(10) Å (see SI

I in published version for details of the crystallography). The structure (shown in Figure 1B

and C) contains two interlaced honeycomb planes, the orientation of which alternate along

the c axis. The angle ⇥0 between the honeycomb planes is fixed by the geometry of the

edge shared bonding of the IrO6 octahedra (see Figures 2A and 4A ). For cubic octahedra

cos⇥o = 1/3, namely ⇥o ⌅ 70�, as shown in Figure 2A. The x-ray refinement (see SI II

in published version) indicates that the stoichiometry is Li2IrO3, such that the Ir oxidation

state is Ir4+ 5d5 with an e�ective Ir local moment of Je� = 1/2. The possibility of Li deficiency

in our samples could lead to some Ir5+ sites, however this is not expected to have a marked

e�ect on the magnetism; in the case that spin-orbit coupling dominates over the Coulomb

4

interaction, Ir5+ 5d4 is non-magnetic. This is supported by studies of NaIrO3 which are

consistent with octahedrally coordinated Ir5+ being close to non-magnetic [11]. We denote

our crystal structure H⇤1⌅-Li2IrO3, where H⇤1⌅ refers to the single, complete Honeycomb

row.

FIG. 2. Temperature dependence of the magnetic susceptibility and its anisotropy. (A) Each Ir is

surrounded by one of two planar, triangular environments indicated by blue and red shaded trian-

gles, located at � 35� either side of the b-axis. (B) The anisotropy of the magnetic susceptibility

as measured by torque and the direct (SQUID) susceptibility (inset) are shown as a function of

temperature for all three crystallographic directions. An anomaly indicates the onset of magnetic

order at TN = 38 K. (C) The ratios of the anisotropic susceptibility tend to simple fractional values

dictated by the g-factor anisotropy of the local planar iridium environment. (D) sin(2⇥) fits to the

anisotropy �bc illustrating the change of sign at � 75K.
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FIG. 3. (Color online) (a,b) Band structrue and density of states (DOS) projected onto the je↵ states in the presence of SOC (a) without and
(b) with the on-site Coulomb interaction Ue↵ = 3.0eV. (c) shows the schematic shape of the je↵=1/2-like Wannier orbital constructed from the
je↵=1/2-dominated bands near the Fermi level. Dashed and solid circles depict the Wannier orbitals from calculations without and with finite
Ue↵ , respectively. Weights of the central je↵=1/2 and nearest-neighboring je↵=3/2 tail in the orbital are shown in (d) as a function of Ue↵ .

Ue↵ (eV) 0.0 1.5 3.0
�t2g 0.401 0.482 0.516
t1 Z +0.085 +0.077 +0.064

X +0.083 +0.074 +0.058
|t2| Z 0.238 0.255 0.270

X 0.260 0.276 0.289
t3 Z -0.162 -0.119 -0.060

X -0.153 -0.110 -0.055

TABLE I. Magnitude of SOC within the Ir t2g states and t2g hopping
terms from Wannier orbital calculations in the presence of Ue↵ . We
adopt the coordinate system such that t2 is negative for both Z and X
bonds. By symmetry, t2 is positive for the X’ bonds.

↵LIO[26, 27], which mirrors the remnant molecular orbital
character originating from the t2g hopping[28]. As Ue↵ is in-
cluded and �t2g is enhanced, the jeff = 1/2 character becomes
more dominant while je↵ = 3/2 components on the NN sites
decreases as shown in Fig. 3(c) and (d). The jeff = 1/2-like
Wannier orbital is more localized accordingly, which makes
the low-energy description of �LIO in terms of the localized
jeff = 1/2 states more feasible in the strong coupling limit.

t2g Wannier orbital hopping amplitudes – For a detailed un-
derstanding of how the near-ideal structure of �LIO is man-
ifested in the electronic band structure, we calculated the Ir
t2g hopping amplitudes from the Wannier orbitals in the ex-
perimental structure. Table I shows the magnitude of the three
largest hopping terms—t1, t2, and t3—as the value of Ue↵

changes (Ueff = 0.0 eV, 1.5 eV, and 3.0 eV, and SOC is in-
cluded in the calculation); see Fig. 4 and Ref. [29] for illustra-
tion of these hopping processes. Since the Ir-Ir bond lengths
and Ir-O-Ir bond angles are similar on the two inequivalent
bonds of �LIO (X and Z bonds), the values of their respective
hopping amplitudes are expected to be similar. Indeed, by
comparing the hopping amplitudes between the two inequiv-

alent NN bonds, we observe small anistropies between the X
and Z bonds (< 10%) regardless of the value of Ue↵ . Since the
presence of trigonal distortions differentiate the Z bond from
the X bonds, the small anisotropy in the hopping amplitudes
reflects the close-to-ideal structure of �LIO.

The evolution of the NN hopping amplitudes as we include
on-site Coulomb interactions can be seen in Table I. As Ueff
increases, |t2| increases while t1 and t3 decrease. Such be-
havior is understood in terms of the enhanced hybridization
between the Ir t2g and oxygen p states in the presence of Ue↵ .
Inclusion of Ueff pushes the jeff=3/2 states down energetically
so that they become closer to the oxygen p states. This leads
to increased hybridization between the Ir t2g and oxygen p
states, which yields the enhancement of oxygen-mediated t2
(and the reduction of t1 and t3).

Strong-coupling minimal model and experimental spiral
phase – Having validated the use of the jeff = 1/2 basis
and the similarity of hopping amplitudes between inequiva-
lent bonds, we can now construct an effective model to de-
scribe the low-energy properties of �LIO in the large-U limit.
Following the derivation in Ref. [9], we start with localized
jeff = 1/2 states then perform a strong-coupling expansion
using NN t2g hopping amplitudes. In the presence of Hund’s
coupling JH , we arrive at a NN, jeff = 1/2 model with highly
anisotropic pseudospin exchanges

H =
X

hiji2↵(��)

J↵Si · Sj + K↵S↵
i S↵

j + �↵(S�
i S�

j + S�
i S�

j ),

where Si is the jeff = 1/2 pseudospin on site i, ↵ labels the
NN hiji bond by its Kitaev component, and � and � denote
the two non-Kitaev components of the hiji-bond. The ex-
changes are functions of the hopping ampltiudes, strength of
Hund’s coupling, SOC, and the on-site Coulomb interaction:
the precise functional forms are given in the Supplementary
Materials.
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We study the general phase diagram of correlated electrons for iridium-based (Ir) compounds on the hyper-
honeycomb lattice—a crystal structure where the Ir4+ ions form a three-dimensional network with three-fold
coordination recently realized in the �-Li2IrO3 compound. Using a combination of microscopic derivations,
symmetry analysis, and density functional calculations, we determine the general model for the electrons occu-
pying the jeff = 1/2 orbitals at the Ir4+ sites. In the non-interacting limit, we find that this model allows for
both topological and trivial electronic band insulators along with metallic states. The effect of Hubbard-type
electron-electron repulsion on the above electronic structure in stabilizing q = 0 magnetic order reveals a phase
diagram with continuous phase transition between a topological band insulator and a Néel ordered magnetic
insulator.

I. INTRODUCTION

The importance of the interplay between spin-orbit cou-
pling (SOC) and electron-electron correlations in stabilizing
a wide variety of novel electronic phases such as topological
insulators (TI), Weyl semi-metals, and quantum spin liquids
has been explored recently.1–7 Materials such as 5d transition
metal (iridium=Ir, osmium=Os) oxides with strong atomic
SOC provide fertile grounds to uncover the above physics
and a large number of such compounds are currently being
investigated.8–16

Recently, the material �-Li2IrO3 has been synthesized by
Takagi et al.17 which has attracted attention due to the novel
three-dimensional network formed by the Ir4+ ions—the hy-
perhoneycomb lattice (see Fig. 1). It has been theoretically
predicted that the spin model in the strong-coupling limit can
be highly anisotropic and may lead to interesting magnetic
as well as a three-dimensional Kitaev quantum spin-liquid
ground state.18–21

In this paper, motivated by the above developments, we
study the weak- and intermediate-coupling regimes of �-
Li2IrO3 and iso-structural compounds with Ir situated on a
hyperhoneycomb lattice. We point out the possibility of inter-
esting ground states in these systems that generally arise from
the nature of the underlying lattice geometry and strong SOC
effects. In turn, these results can shed light on the physics of
the above material and others on a similar lattice structure.

An important starting point in the study of these compounds
is to ascertain the nature of the electronic structure, particu-
larly that of the electronic bands near the Fermi level. Due
to the large atomic SOC, as in a large number of Ir-based
compounds,3,6,12,13,22 the low energy bands are expected to be
formed by jeff = 1/2 atomic orbitals. Using the symmetries
of the hyperhoneycomb lattice, we obtain the general tight-
binding Hamiltonian for the jeff = 1/2 orbitals. Apart from
the generic metal and band insulator (BI), we find that this
hopping Hamiltonian allows for a three-dimensional strong

a3

a1

a2

x

y

z
1 2

3 4

FIG. 1. (Color online) The ideal hyperhoneycomb lattice. The Ir4+

atoms (denoted by white spheres, except for the four yellow ones
that indicate the four atoms in our unit cell) sit in an octahedral cage
(shaded in blue) of oxygen atoms (small red spheres). The lattice
vectors are denoted by a1,a2 and a3. The three nearest-neighbor
bonds are referred to as x (green), y (pink) and z (blue) bonds.

TI (STI) over a large parameter regime. The above tight-
binding model is further justified by more microscopic calcu-
lations based on Slater-Koster parameters for the 5d orbitals
in the large SOC limit for the ideal hyperhoneycomb lattice.
This latter calculation also reveals the connection between the
symmetry-allowed hopping parameters and the Slater-Koster
parameters. In parallel, we perform density functional theory
(DFT) calculations in the presence of SOC to probe the nature
of the states near the Fermi level for �-Li2IrO3 on an ideal hy-
perhoneycomb lattice. The DFT results support our assump-
tion that the low energy states near the Fermi level have a
predominantly jeff = 1/2 orbital character and are well sepa-
rated from the jeff = 3/2 bands that lie below the Fermi level.
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Strong Coupling Limit: Localized Pseudo-Spin Model
2

(a) Classical phase diagram with � > 0

(b) AFM (c) FM (d) Stripy

(e) Zigzag (f) 120⇥ (g) | ⇣Q| in the IS

FIG. 2: (a) Combined Luttinger-Tisza and single-Q analysis.
Solid colours correspond to exact classical ground states
from Luttinger-Tisza while the region indicated by the white
dashed line are the single-Q results. (b-f) Ground state spin
configurations in each phase. (g) Magnitude of the ordering
wave-vector ⇣Q in the IS phase.

form the strong coupling expansion, we consider an atomic
Hamiltonian of Kanamori form[29]:

H0 =
↵

i

⇤
U � 3JH

2
(Ni � 5)2 � 2JHS 2

i � JH

2
L2

i

⌅
, (2)

where Ni, S i, and Li are the total number, spin, and (e⇤ec-
tive) orbital angular momentum operators at site i, U is the
Coulomb interaction, and JH is Hund’s coupling. The expan-
sion is carried out in the limit U, JH ⌅ ⌃ ⌅ t, first taking U
and JH to be large. Since the spin-orbit coupling then domi-
nates the kinetic terms, the resulting spin-orbital model can be
projected into the je⇤ = 1/2 subspace.

The kinetic terms are encapsulated through a tight-binding
model for the Ir t2g orbitals, including both direct overlap of d-

orbitals and hopping mediated through the oxygen atoms. For
our purposes, we focus on nearest-neighbour bonds where we
then have
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where d†i� = (d†i�⌃ d†i�⌥) and di� are the creation and annihila-
tion operators for the t2g state � at site i. Here we sum over the
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where tdd�, tdd⌥, tdd⌅ and tpd⌥ are Slater-Koster[30] parameters
for the direct Ir-Ir overlap and Ir-O overlap while ⇥pd is the Ir-
O gap[31]. Treating the kinetic terms as a perturbation yields
the Hamiltonian in Eq. 1 with
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Exchanges of the same form as the � term were originally
called symmetric anisotropic exchange[32, 33] and can be re-
lated to the truncated dipolar exchange[34, 35] discussed in
other contexts through a reparametrization. We stress that
since this term is allowed by symmetry even in the most ide-
alized cases, the presence of the � term is a generic feature of
je⇤ = 1/2 models with edge-shared octahedra (see the Sup-
plemental material [36] for more information). To confirm
this, the strong coupling expansion was also carried out in the
limit where U, ⌃ ⌅ JH ⌅ t, with the contributions of JH
included in the excited states perturbatively. While energies
of the virtual states involve ⌃ instead of JH , all three terms are
generated, with the dependence of K and � on the hoppings t1,
t2, and t3 unchanged (Supplemental Material [36]). Whereas
the Kitaev limit can be naturally accessed when t2 ⌅ t1, t3,
leaving this regime introduces both J and �making it di⌅cult
to reach the HK limit[37]. Fine tuning could in principle ren-
der � small, but the dominant contributions to t1 ⇤ tdd⌥ and
t3 ⇤ tdd� are of opposite sign making any such tuning implau-
sible. Further applications to wider classes of iridium oxides
are left for future work.

Classical phase diagram.- To understand the e⇤ects of in-
cluding this bond-dependent � term, we first map out the clas-
sical magnetic phases. We parametrize the exchanges using
angles  and ⇧

J = sin ⇧ cos  , K = sin ⇧ sin  , � = cos ⇧, (6)

fixing the energy scale so that
�

J2 + K2 + �2 = 1. By map-
ping ⇣S i ⇧ �⇣S i on one sublattice, we send  ⇧ � and

(a) Ir-Ir overlap for t1 (b) Ir-O-Ir overlap for t2

(c) Ir-Ir overlap for t2

2

(d) Ir-Ir overlap for t3



2

(a) Classical phase diagram with � > 0

(b) AFM (c) FM (d) Stripy

(e) Zigzag (f) 120⇥ (g) | ⇣Q| in the IS
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dashed line are the single-Q results. (b-f) Ground state spin
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where Ni, S i, and Li are the total number, spin, and (e⇤ec-
tive) orbital angular momentum operators at site i, U is the
Coulomb interaction, and JH is Hund’s coupling. The expan-
sion is carried out in the limit U, JH ⌅ ⌃ ⌅ t, first taking U
and JH to be large. Since the spin-orbit coupling then domi-
nates the kinetic terms, the resulting spin-orbital model can be
projected into the je⇤ = 1/2 subspace.

The kinetic terms are encapsulated through a tight-binding
model for the Ir t2g orbitals, including both direct overlap of d-

orbitals and hopping mediated through the oxygen atoms. For
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Exchanges of the same form as the � term were originally
called symmetric anisotropic exchange[32, 33] and can be re-
lated to the truncated dipolar exchange[34, 35] discussed in
other contexts through a reparametrization. We stress that
since this term is allowed by symmetry even in the most ide-
alized cases, the presence of the � term is a generic feature of
je⇤ = 1/2 models with edge-shared octahedra (see the Sup-
plemental material [36] for more information). To confirm
this, the strong coupling expansion was also carried out in the
limit where U, ⌃ ⌅ JH ⌅ t, with the contributions of JH
included in the excited states perturbatively. While energies
of the virtual states involve ⌃ instead of JH , all three terms are
generated, with the dependence of K and � on the hoppings t1,
t2, and t3 unchanged (Supplemental Material [36]). Whereas
the Kitaev limit can be naturally accessed when t2 ⌅ t1, t3,
leaving this regime introduces both J and �making it di⌅cult
to reach the HK limit[37]. Fine tuning could in principle ren-
der � small, but the dominant contributions to t1 ⇤ tdd⌥ and
t3 ⇤ tdd� are of opposite sign making any such tuning implau-
sible. Further applications to wider classes of iridium oxides
are left for future work.

Classical phase diagram.- To understand the e⇤ects of in-
cluding this bond-dependent � term, we first map out the clas-
sical magnetic phases. We parametrize the exchanges using
angles  and ⇧

J = sin ⇧ cos  , K = sin ⇧ sin  , � = cos ⇧, (6)

fixing the energy scale so that
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FIG. 2: (a) Combined Luttinger-Tisza and single-Q analysis.
Solid colours correspond to exact classical ground states
from Luttinger-Tisza while the region indicated by the white
dashed line are the single-Q results. (b-f) Ground state spin
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wave-vector ⇣Q in the IS phase.
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where Ni, S i, and Li are the total number, spin, and (e⇤ec-
tive) orbital angular momentum operators at site i, U is the
Coulomb interaction, and JH is Hund’s coupling. The expan-
sion is carried out in the limit U, JH ⌅ ⌃ ⌅ t, first taking U
and JH to be large. Since the spin-orbit coupling then domi-
nates the kinetic terms, the resulting spin-orbital model can be
projected into the je⇤ = 1/2 subspace.

The kinetic terms are encapsulated through a tight-binding
model for the Ir t2g orbitals, including both direct overlap of d-

orbitals and hopping mediated through the oxygen atoms. For
our purposes, we focus on nearest-neighbour bonds where we
then have
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tion operators for the t2g state � at site i. Here we sum over the
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where tdd�, tdd⌥, tdd⌅ and tpd⌥ are Slater-Koster[30] parameters
for the direct Ir-Ir overlap and Ir-O overlap while ⇥pd is the Ir-
O gap[31]. Treating the kinetic terms as a perturbation yields
the Hamiltonian in Eq. 1 with
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Exchanges of the same form as the � term were originally
called symmetric anisotropic exchange[32, 33] and can be re-
lated to the truncated dipolar exchange[34, 35] discussed in
other contexts through a reparametrization. We stress that
since this term is allowed by symmetry even in the most ide-
alized cases, the presence of the � term is a generic feature of
je⇤ = 1/2 models with edge-shared octahedra (see the Sup-
plemental material [36] for more information). To confirm
this, the strong coupling expansion was also carried out in the
limit where U, ⌃ ⌅ JH ⌅ t, with the contributions of JH
included in the excited states perturbatively. While energies
of the virtual states involve ⌃ instead of JH , all three terms are
generated, with the dependence of K and � on the hoppings t1,
t2, and t3 unchanged (Supplemental Material [36]). Whereas
the Kitaev limit can be naturally accessed when t2 ⌅ t1, t3,
leaving this regime introduces both J and �making it di⌅cult
to reach the HK limit[37]. Fine tuning could in principle ren-
der � small, but the dominant contributions to t1 ⇤ tdd⌥ and
t3 ⇤ tdd� are of opposite sign making any such tuning implau-
sible. Further applications to wider classes of iridium oxides
are left for future work.

Classical phase diagram.- To understand the e⇤ects of in-
cluding this bond-dependent � term, we first map out the clas-
sical magnetic phases. We parametrize the exchanges using
angles  and ⇧

J = sin ⇧ cos  , K = sin ⇧ sin  , � = cos ⇧, (6)

fixing the energy scale so that
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J2 + K2 + �2 = 1. By map-
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Recently, realizations of Kitaev physics have been sought in the A2IrO3 family of honeycomb iridates, origi-
nating from oxygen-mediated exchange through edge-shared octahedra. However, for the je⇥ = 1/2 Mott insu-
lator in these materials exchange from direct d-orbital overlap is relevant, and it was proposed that a Heisenberg
term should be added to the Kitaev model. Here we provide the generic nearest-neighbour spin Hamiltonian
when both oxygen-mediated and direct overlap are present, containing a bond-dependent o⇥-diagonal exchange
in addition to Heisenberg and Kitaev terms. We analyze this complete model using a combination of classical
techniques and exact diagonalization. Near the Kitaev limit, we find new magnetic phases, 120⌅ and incommen-
surate spiral order, as well as extended regions of zigzag and stripy order. Possible applications to Na2IrO3 and
Li2IrO3 are discussed.

The honeycomb family of iridium oxides[1–11] has at-
tracted a considerable amount of attention [12–20] due to
the possibility they lie near a realization of Kitaev’s exactly
solvable spin-1/2 honeycomb model[21]. This model hosts
a number of remarkable features: a Z2 spin liquid with gap-
less Majorana fermions and (non-Abelian) anyonic excita-
tions under an applied magnetic field. No symmetry prin-
ciple excludes terms besides the Kitaev, so additional inter-
actions are generically expected. From microscopic calcu-
lations of exchange mediated through the edge-shared oxy-
gen octahedra, it has been proposed that a pure Kitaev model
of je⇥ = 1/2 spins was the appropriate description[22]. It
was further suggested that direct overlap of the d-orbitals
generalizes this to a Heisenberg-Kitaev (HK) model[13], lin-
early interpolating between an isotropic Heisenberg model
and Kitaev’s bond-dependent exchange Hamiltonian. Exten-
sive study of the HK model[23–28] has shown a variety of fas-
cinating phenomena, including an extended spin liquid phase
and quantum phase transitions into several well-understood
magnetic ground states. While present, the zigzag phase seen
in Na2IrO3 [2, 4, 6] is di⇤cult to stabilize within the HK
model; one must resort to additional t2g-eg exchange paths[18]
or further neighbour hoppings[14]. In light of this puzzle one
may question whether the HK model provides an adequate de-
scription of the honeycomb iridates even at the nearest neigh-
bour level.

In this Letter, we show that when applied to the honey-
comb iridates the HK model is incomplete, explicitly deriving
the je⇥ = 1/2 spin model from a multiorbital t2g Hubbard-
Kanamori Hamiltonian. Considering the most idealized crys-
tal structure, an additional spin-spin interaction beyond the
HK model must be included: bond-dependent symmetric o⇥-
diagonal exchange. The complete spin Hamiltonian has the
form

H =
⇤

⌃i j⌥⇧�⇥(⇤)

⌅
J�S i · �S j + KS ⇤i S ⇤j + �

�
S �i S ⇥j + S ⇥i S �j

⇥⇧
, (1)

where J is Heisenberg exchange, K is the Kitaev exchange,
and � denotes the symmetric o⇥-diagonal exchange. On each
bond we distinguish one spin direction ⇤, labeling the bond

FIG. 1: Crystal structure of the honeycomb iridates A2IrO3
with Ir4+ in black, O2� in white, and A = Na+,Li+ in gray.
For the Kitaev and bond-dependent exchanges we have
denoted the yz(x) bonds blue, the zx(y) bonds green and the
xy(z) bonds red.

�⇥(⇤) where � and ⇥ are the two remaining directions. Ex-
amining the phase diagram using a combination of classical
arguments and exact diagonalization, we find that with the in-
clusion of � new magnetic phases are stabilized near the Ki-
taev limits: an incommensurate spiral (IS) and 120⌅ order, in
addition to extended regions of zigzag and stripy order.

Microscopics.– We first construct a minimal model of a
honeycomb lattice of Ir4+ ions surrounded by a network of
edge-sharing oxygen octahedra. The Ir4+ 5d levels are split
into an eg doublet and t2g triplet by large crystal field e⇥ects,
leaving a single hole in the t2g states. Within the t2g mani-
fold, the orbital angular momentum behaves as an le⇥ = 1
triplet, with large spin-orbit coupling splitting this into an ac-
tive je⇥ = 1/2 doublet and filled je⇥ = 3/2 states. Because of
significant on-site interactions, localized je⇥ = 1/2 spins pro-
vide an e⇥ective model for the low-energy physics. To per-
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from Luttinger-Tisza while the region indicated by the white
dashed line are the single-Q results. (b-f) Ground state spin
configurations in each phase. (g) Magnitude of the ordering
wave-vector ⇣Q in the IS phase.

form the strong coupling expansion, we consider an atomic
Hamiltonian of Kanamori form[29]:
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where Ni, S i, and Li are the total number, spin, and (e⇤ec-
tive) orbital angular momentum operators at site i, U is the
Coulomb interaction, and JH is Hund’s coupling. The expan-
sion is carried out in the limit U, JH ⌅ ⌃ ⌅ t, first taking U
and JH to be large. Since the spin-orbit coupling then domi-
nates the kinetic terms, the resulting spin-orbital model can be
projected into the je⇤ = 1/2 subspace.

The kinetic terms are encapsulated through a tight-binding
model for the Ir t2g orbitals, including both direct overlap of d-

orbitals and hopping mediated through the oxygen atoms. For
our purposes, we focus on nearest-neighbour bonds where we
then have
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where d†i� = (d†i�⌃ d†i�⌥) and di� are the creation and annihila-
tion operators for the t2g state � at site i. Here we sum over the
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where tdd�, tdd⌥, tdd⌅ and tpd⌥ are Slater-Koster[30] parameters
for the direct Ir-Ir overlap and Ir-O overlap while ⇥pd is the Ir-
O gap[31]. Treating the kinetic terms as a perturbation yields
the Hamiltonian in Eq. 1 with
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Exchanges of the same form as the � term were originally
called symmetric anisotropic exchange[32, 33] and can be re-
lated to the truncated dipolar exchange[34, 35] discussed in
other contexts through a reparametrization. We stress that
since this term is allowed by symmetry even in the most ide-
alized cases, the presence of the � term is a generic feature of
je⇤ = 1/2 models with edge-shared octahedra (see the Sup-
plemental material [36] for more information). To confirm
this, the strong coupling expansion was also carried out in the
limit where U, ⌃ ⌅ JH ⌅ t, with the contributions of JH
included in the excited states perturbatively. While energies
of the virtual states involve ⌃ instead of JH , all three terms are
generated, with the dependence of K and � on the hoppings t1,
t2, and t3 unchanged (Supplemental Material [36]). Whereas
the Kitaev limit can be naturally accessed when t2 ⌅ t1, t3,
leaving this regime introduces both J and �making it di⌅cult
to reach the HK limit[37]. Fine tuning could in principle ren-
der � small, but the dominant contributions to t1 ⇤ tdd⌥ and
t3 ⇤ tdd� are of opposite sign making any such tuning implau-
sible. Further applications to wider classes of iridium oxides
are left for future work.

Classical phase diagram.- To understand the e⇤ects of in-
cluding this bond-dependent � term, we first map out the clas-
sical magnetic phases. We parametrize the exchanges using
angles  and ⇧

J = sin ⇧ cos  , K = sin ⇧ sin  , � = cos ⇧, (6)

fixing the energy scale so that
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J2 + K2 + �2 = 1. By map-
ping ⇣S i ⇧ �⇣S i on one sublattice, we send  ⇧ � and

e.g. In the limit of 

Strong Coupling Limit: Localized Pseudo-Spin Model 6

Supplementary Material A:

Details on ab-initio electronic structure calculations

For the electronic structure calculations with SOC and on-
site Coulomb interaction, OPENMX code[31, 32], which is
based on the linear-combination-of-pseudo-atomic-orbital ba-
sis formalism, was used. A non-collinear DFT scheme and
a fully relativistic j-dependent pseudopotential were used to
treat SOC, and Perdew-Burke-Ernzerhof (PBE) parametriza-
tion of the generalized gradient apporoximation (GGA) was
chosen for the exchange-correlation functional[], (Cite PBE)
which was compared and found to be almost identical with
the results with the Perdew and Zunger local density approx-
imation functional[]. (Cite CA-PZ) 400 Ry of energy cutoff
was used for the real-space sampling, and 9 ⇥ 9 ⇥ 9 k-grid
was adopted for the primitive unit cell. Electron interactions
are treated as on-site Coulomb interactions via a simplified
LDA+U formalism implemented in OPENMX code[33], and

up to 3.0 eV of Ue↵ ⌘ U � JH parameter (JH is Hund’s
coupling) was used for Ir d orbital in our GGA+SOC+U cal-
culations. Maximally-localized Wannier orbital method[34],
which is implemented in OPENMX code[35], were used to
obtain the tight-binding Hamiltonian for Ir t2g atoms.

z

x ydxz

t3
t2

t1 pz

dyz

FIG. 4. (Color online) (Supplementary materials:) The three largest
t2g Wannier orbital hopping amplitudes.
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Kitaev Model: Exact Solution

II. HEISENBERG-KITAEV MODEL ON HYPER-HONEYCOMB

Let us consider the following Heisenberg-Kitaev model on the Hyper-honeycomb lattice.

HHK = J
�

⇥ij⇤

Si · Sj �K
�

��links

S�
i S

�
j (1)

We first study the di�erent limits.

A. K=0

This is the limit of the pure antiferromagnetic Heisenberg model. The above lattice is

similar topologically to the lattice in fig. 5. On this lattice, the Neel order is not frustrated.

This is shown in figure 6. The reason that Neel order is not frustrated is that the above

lattice can be seen as a partially deleted cubic lattice where the deletion is done without

introducing new bonds.[7] So the Neel order remains unfrustrated and is the classical ground

state.

B. J=0

This is the pure Kitaev limit. This limit was first studied by Mandal et. al [4] on the

deleted cubic lattice (fig. 5). The Hamiltonian looks like:
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where the di�erent links are given in fig. 5. The details of this lattice are described in

Appendix A. Using the usual majorana fermion decomposition of the spins, we find that the
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Now unlike the 2D case here we do not have a clear cut Lieb’s theorem which says that the

ground state belongs to the zero flux sector. So Ref. [4] resorted to some selected numerical

check and found that the ground state indeed belongs to this sector. We shall assume that

this is correct and look for the majorana dispersion in this sector. In this sector, we can set
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point (K = 2J), although the classical energies of the three
orders remain same, but, quantum corrections coming from
the spin-wave fluctuations lift this, accidental classical degen-
eracy.

C. J = 0 : The Kitaev Spin Liquid

This is the pure Kitaev limit. Mandal et. al6 showed that
the pure Kitaev model on the deleted cubic lattice which is
topologically similar to the hyper-honeycomb lattice can be
exactly solved using methods originally employed by Kitaev.2

The exact solution, as in the honeycomb case, is rendered
by the three-fold coordination and consequent presence of an
infinite number of conserved quantities. Using the usual ma-
jorana fermion decomposition of the spins

S�
i = ib�i c (3)

we find that the Hamiltonian (Eq. 1) in this limit is given by:

HK =
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ij = ib�i b
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j ), (4)

where we have put the overall scale K = 1. The {bxi , b
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are the four majorana fermions that mutually anticommute.
The infinite number of conserved quantities are given by

the Z2-link variables u�
ij that commute with each other and

with the Hamiltonian (Eq. 4). The Z2-fluxes generated by u�
ij

over the 10 site loop (see fig. 1) are given by6

WP =
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loop

u�
ij (5)

Since these fluxes commute with the Hamiltonian, by con-
struction, they do not have any dynamics and hence the prob-
lem can be solved independently for different flux sectors.
This separation of the majorana sector and the flux sector, the
latter being good quantum numbers, lies at the heart of the
exact solution of the Kitaev models on different lattices.

The problem then reduces to majorana fermions hopping
in the background of frozen fluxes on the hyper-honeycomb

lattice. Similar issues have been studied by various people
on other lattices. E. Lieb et al. proved that, on certain bi-
partite lattice that contain mirror planes that bisect the lattice
links, the lowest energy is obtained when planer plaquettes
containing 2(mod 4) sites have zero-flux through them, while
plaquettes having 0 (mod 4) sites have �-flux through them.
Unfortunately, unlike the 2D-honeycomb lattice, we cannot
prove Lieb’s theorem for the present lattice6 because of the
absence of suitable miror planes. In absence of such theo-
rems, Mandal et al. resorted to numerical diagonalization of
the fermion hopping Hamiltonian (Eq. 4) over large system
sizes and found that the zero-flux sector has the lowest energy.
Assuming that this is also true in our case, we can specialize to
the zero-flux sector choosing a gauge where u�

ij = +1 (⇥⇧ij⌃)
to get

H0�flux
K =

i

2

⌥

ij

cicj (6)

This Hamiltonian can then be diagonalized by fourier trans-
formation taking the unit cell, as given in given in fig. 1 (and
the lattice vectors are given in Appendix A). We get

H0�flux
K =

⌥
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�kHk�k (7)

where �T
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where,
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4

⇥ Y T Z ⇥ X A1 Y
�1.5
�1.0
�0.5
0.0
0.5
1.0
1.5

⇤�K

T X1X A Z⇥ L

FIG. 5. The spectrum of the dispersing majorana fermion in the pure kitaev model on the hyperhoneycomb lattice along paths of high symmetry
in the first Brillouin zone (The first Brillouin zone and the paths are shown in Appendix A)

point (K = 2J), although the classical energies of the three
orders remain same, but, quantum corrections coming from
the spin-wave fluctuations lift this, accidental classical degen-
eracy.

C. J = 0 : The Kitaev Spin Liquid

This is the pure Kitaev limit. Mandal et. al6 showed that
the pure Kitaev model on the deleted cubic lattice which is
topologically similar to the hyper-honeycomb lattice can be
exactly solved using methods originally employed by Kitaev.2

The exact solution, as in the honeycomb case, is rendered
by the three-fold coordination and consequent presence of an
infinite number of conserved quantities. Using the usual ma-
jorana fermion decomposition of the spins
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i = ib�i c (3)

we find that the Hamiltonian (Eq. 1) in this limit is given by:
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where we have put the overall scale K = 1. The {bxi , b
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are the four majorana fermions that mutually anticommute.
The infinite number of conserved quantities are given by

the Z2-link variables u�
ij that commute with each other and

with the Hamiltonian (Eq. 4). The Z2-fluxes generated by u�
ij

over the 10 site loop (see fig. 1) are given by6
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Since these fluxes commute with the Hamiltonian, by con-
struction, they do not have any dynamics and hence the prob-
lem can be solved independently for different flux sectors.
This separation of the majorana sector and the flux sector, the
latter being good quantum numbers, lies at the heart of the
exact solution of the Kitaev models on different lattices.

The problem then reduces to majorana fermions hopping
in the background of frozen fluxes on the hyper-honeycomb

lattice. Similar issues have been studied by various people
on other lattices. E. Lieb et al. proved that, on certain bi-
partite lattice that contain mirror planes that bisect the lattice
links, the lowest energy is obtained when planer plaquettes
containing 2(mod 4) sites have zero-flux through them, while
plaquettes having 0 (mod 4) sites have �-flux through them.
Unfortunately, unlike the 2D-honeycomb lattice, we cannot
prove Lieb’s theorem for the present lattice6 because of the
absence of suitable miror planes. In absence of such theo-
rems, Mandal et al. resorted to numerical diagonalization of
the fermion hopping Hamiltonian (Eq. 4) over large system
sizes and found that the zero-flux sector has the lowest energy.
Assuming that this is also true in our case, we can specialize to
the zero-flux sector choosing a gauge where u�

ij = +1 (⇥⇧ij⌃)
to get

H0�flux
K =

i

2

⌥

ij

cicj (6)

This Hamiltonian can then be diagonalized by fourier trans-
formation taking the unit cell, as given in given in fig. 1 (and
the lattice vectors are given in Appendix A). We get

H0�flux
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where �T
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point (K = 2J), although the classical energies of the three
orders remain same, but, quantum corrections coming from
the spin-wave fluctuations lift this, accidental classical degen-
eracy.

C. J = 0 : The Kitaev Spin Liquid

This is the pure Kitaev limit. Mandal et. al6 showed that
the pure Kitaev model on the deleted cubic lattice which is
topologically similar to the hyper-honeycomb lattice can be
exactly solved using methods originally employed by Kitaev.2

The exact solution, as in the honeycomb case, is rendered
by the three-fold coordination and consequent presence of an
infinite number of conserved quantities. Using the usual ma-
jorana fermion decomposition of the spins

S�
i = ib�i c (3)

we find that the Hamiltonian (Eq. 1) in this limit is given by:
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where we have put the overall scale K = 1. The {bxi , b
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are the four majorana fermions that mutually anticommute.
The infinite number of conserved quantities are given by

the Z2-link variables u�
ij that commute with each other and

with the Hamiltonian (Eq. 4). The Z2-fluxes generated by u�
ij

over the 10 site loop (see fig. 1) are given by6
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Since these fluxes commute with the Hamiltonian, by con-
struction, they do not have any dynamics and hence the prob-
lem can be solved independently for different flux sectors.
This separation of the majorana sector and the flux sector, the
latter being good quantum numbers, lies at the heart of the
exact solution of the Kitaev models on different lattices.

The problem then reduces to majorana fermions hopping
in the background of frozen fluxes on the hyper-honeycomb

lattice. Similar issues have been studied by various people
on other lattices. E. Lieb et al. proved that, on certain bi-
partite lattice that contain mirror planes that bisect the lattice
links, the lowest energy is obtained when planer plaquettes
containing 2(mod 4) sites have zero-flux through them, while
plaquettes having 0 (mod 4) sites have �-flux through them.
Unfortunately, unlike the 2D-honeycomb lattice, we cannot
prove Lieb’s theorem for the present lattice6 because of the
absence of suitable miror planes. In absence of such theo-
rems, Mandal et al. resorted to numerical diagonalization of
the fermion hopping Hamiltonian (Eq. 4) over large system
sizes and found that the zero-flux sector has the lowest energy.
Assuming that this is also true in our case, we can specialize to
the zero-flux sector choosing a gauge where u�

ij = +1 (⇥⇧ij⌃)
to get

H0�flux
K =
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2
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cicj (6)

This Hamiltonian can then be diagonalized by fourier trans-
formation taking the unit cell, as given in given in fig. 1 (and
the lattice vectors are given in Appendix A). We get
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K =
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where �T
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point (K = 2J), although the classical energies of the three
orders remain same, but, quantum corrections coming from
the spin-wave fluctuations lift this, accidental classical degen-
eracy.

C. J = 0 : The Kitaev Spin Liquid

This is the pure Kitaev limit. Mandal et. al6 showed that
the pure Kitaev model on the deleted cubic lattice which is
topologically similar to the hyper-honeycomb lattice can be
exactly solved using methods originally employed by Kitaev.2

The exact solution, as in the honeycomb case, is rendered
by the three-fold coordination and consequent presence of an
infinite number of conserved quantities. Using the usual ma-
jorana fermion decomposition of the spins

S�
i = ib�i c (3)

we find that the Hamiltonian (Eq. 1) in this limit is given by:
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where we have put the overall scale K = 1. The {bxi , b
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i , b
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i , c}

are the four majorana fermions that mutually anticommute.
The infinite number of conserved quantities are given by

the Z2-link variables u�
ij that commute with each other and

with the Hamiltonian (Eq. 4). The Z2-fluxes generated by u�
ij

over the 10 site loop (see fig. 1) are given by6

WP =
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loop
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ij (5)

Since these fluxes commute with the Hamiltonian, by con-
struction, they do not have any dynamics and hence the prob-
lem can be solved independently for different flux sectors.
This separation of the majorana sector and the flux sector, the
latter being good quantum numbers, lies at the heart of the
exact solution of the Kitaev models on different lattices.

The problem then reduces to majorana fermions hopping
in the background of frozen fluxes on the hyper-honeycomb

lattice. Similar issues have been studied by various people
on other lattices. E. Lieb et al. proved that, on certain bi-
partite lattice that contain mirror planes that bisect the lattice
links, the lowest energy is obtained when planer plaquettes
containing 2(mod 4) sites have zero-flux through them, while
plaquettes having 0 (mod 4) sites have �-flux through them.
Unfortunately, unlike the 2D-honeycomb lattice, we cannot
prove Lieb’s theorem for the present lattice6 because of the
absence of suitable miror planes. In absence of such theo-
rems, Mandal et al. resorted to numerical diagonalization of
the fermion hopping Hamiltonian (Eq. 4) over large system
sizes and found that the zero-flux sector has the lowest energy.
Assuming that this is also true in our case, we can specialize to
the zero-flux sector choosing a gauge where u�

ij = +1 (⇥⇧ij⌃)
to get

H0�flux
K =
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2

⌥
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cicj (6)

This Hamiltonian can then be diagonalized by fourier trans-
formation taking the unit cell, as given in given in fig. 1 (and
the lattice vectors are given in Appendix A). We get

H0�flux
K =
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where �T
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where,

Ak = e�ik·a1 + e�ik·a2 ; Bk = 1 + e�ik·a3 (9)

Ground state is in the zero-flux sector

commute with the Hamiltonian

4

y � z and x � z bonds respectively. We would like to re-
emphasize that the word skew indicates that this is essentially
a three dimensional magnetic order as opposed to a stacked
up two dimensional spin order. At this special point there is a
continuous “SU(2)” spin rotation symmetry that ensures that
all the three skew-stripy phases described above have the same
energy.

It is however worthwhile to note that there is a crucial
difference from the honeycomb case away from this special
point. In the honeycomb lattice a two dimensional stripy
phase is obtained for the Heisenberg-Kitaev model at the same
parameter value. There, a C3 symmetry of the lattice along
with concomitant rotation of the spins which is a symmetry
of the HHK Hamiltonian on the honeycomb lattice ensures
that the three stripy ordered phases have the same energy even
away from this special point where there is no “SU(2)” sym-
metry. However on the hyper-honeycomb lattice, there is only
a C2 symmetry between the x and the y bonds, while the z
bonds are not related by any symmetry. So there is no a-priori
reason for the Sz ordered skew-stripy phase to have the same
energy as the other two. Indeed we find that, away from this
point (K = 2J), although the classical energies of the three
states remain the same, quantum corrections coming from the
spin-wave fluctuations lift this accidental classical degener-
acy.

C. J = 0 : The Kitaev Spin Liquid

This is the pure Kitaev limit. Mandal et. al19 showed
that the pure Kitaev model on the deleted cubic lattice which
is topologically similar to the hyper-honeycomb lattice can
be exactly solved using methods originally employed by
Kitaev.18

The exact solution, as in the honeycomb case, is rendered
by the three-fold coordination and consequent presence of an
infinite number of conserved quantities. Using the usual Ma-
jorana fermion decomposition of the spins

S�
i = ib�i c (3)

we find that the Hamiltonian (Eq. 1) in this limit is given by:

HK =
i

2

 

��links

u�
ijcicj (where u�

ij = ib�i b
�
j ), (4)

where we have put the overall scale K = 1. The {bxi , b
y
i , b

z
i , c}

are the four Majorana fermions that mutually anticommute.
The infinite number of conserved quantities are given by

the Z2-link variables u�
ij that commute with each other and

with the Hamiltonian (Eq. 4). The Z2-fluxes generated by u�
ij

over the 10 site loop (the blue sites in Fig. 1) are given by19

WP =
⌦

loop

u�
ij . (5)

Since these fluxes commute with the Hamiltonian, by con-
struction, they do not have any dynamics and hence the prob-
lem can be solved independently for different flux sectors.

This separation of the Majorana sector and the flux sector, the
latter being good quantum numbers, lies at the heart of the
exact solution of the Kitaev models on different lattices.18

The problem then reduces to Majorana fermions hopping
in the background of frozen fluxes on the hyper-honeycomb
lattice. Similar issues have been studied by various people
on other lattices. E. Lieb et al.28 proved that, on certain bi-
partite lattice that contain mirror planes that bisect the lattice
links, the lowest energy is obtained when planer plaquettes
containing 2(mod 4) sites have zero-flux through them, while
plaquettes having 0 (mod 4) sites have �-flux through them.
Unfortunately, unlike the 2D-honeycomb lattice, we cannot
prove Lieb’s theorem for the present lattice19 because of the
absence of suitable miror planes. In absence of such theo-
rems, Mandal et al.19 resorted to numerical diagonalization of
the fermion hopping Hamiltonian (Eq. 4) over large system
sizes for several flux configurations and found that the zero-
flux sector has the lowest energy. Thus it is expected that the
zero flux sector corresponds to the ground state in our case as
well. We can then specialize to the zero-flux sector choosing
a gauge where u�

ij = +1 (⇤⌥ij�) to get

H0�flux
K =

i

2

 

ij

cicj . (6)

This Hamiltonian can then be diagonalized by fourier trans-
formation, taking the unit cell as given in Fig. 1 (the lattice
vectors are given in Appendix A). We get

H0�flux
K =

 

k

�T
�kHk�k (7)

where �T
k = (c1,k, c2,k, c3,k, c4,k) and

Hk =
i

4
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�1 0 BK 0
0 �B⇤

k 0 1
�A⇤

k 0 �1 0

⌅

�⌃ (8)

where,

Ak = e�ik·a1 + e�ik·a2 ; Bk = 1 + e�ik·a3 (9)

The spectrum is given by:

Ek = ± 1

2
⌦
2

�
(2 + |Ak|2 + |Bk|2)± (10)

↵
[2 + |Ak|2 + |Bk|2]2 � 4 [1 + |Ak|2|Bk|2 + 2⌅ [AkB⇤

k]]

⇥1/2

(11)

The spectrum for the dispersing Majorana fermion, c, along
the high symmetry lines within the first Brillouin zone is given
in Fig. 5. The lower two bands are occupied while the zero
energy surface describe the contour of the gapless excitation.
We find a fermi surface of co-dimension two, i.e. line nodes.
From Eq. 11, it is easy to see that this is given by the zeros of

WP = ±1⇒
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Ground state is in a π-flux sector Wp = �1some
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they define conserved quantities that take on the values of ±1

on each bond. These u
ij

are not gauge invariant. However,
products of these operators over closed loops, which corre-
spond to fluxes of the Z2 gauge field, are gauge invariant[9].
By choosing a configuration of {u

ij

}, the fluxes are fully de-
termined and the Hamiltonian becomes quadratic in terms of
the c fermions. The ground state can be found by solving the
quadratic Hamiltonians corresponding to all possible flux con-
figurations (or flux sectors) and identifying the flux sector that
yields the lowest energy state.

Unlike the 2D honeycomb lattice, both the hyperhoney-
comb (i.e. H–0) and H–1 lattices possess loops without mir-
ror symmetries. As such, Lieb’s theorem [17] cannot deter-
mine the flux passing through these loops in the ground state.
We performed a brute-force search throughout all flux sec-
tors compatible with an 8-fold enlarged unit cell and the re-
sults suggest that the ground state on the hyperhoneycomb
lattice belongs to the zero-flux sector, which agrees with pre-
vious work[12]. In contrast, on the H–1 lattice, we find
that the ground state flux sector differs for different values
of � = J

z

/J
x

. At the isotropic point � = 1, a particular flux
configuration with ⇡ flux passing through a subset of the loops
appears to be the ground state flux sector (hereafter, we label
it as the “⇡-flux sector”). Upon increasing �, the zero-flux
sector becomes energetically favorable. We will first focus on
the zero-flux sectors on the hyperhoneycomb and H–1 lattices
and defer the more involved analysis of the ⇡-flux sector on
the H–1 lattice for later.

Bulk Majorana spectrum in the zero-flux sector: Due to
the bipartite nature of both the hyperhoneycomb and H–1 lat-
tices, the Hamiltonian in any flux sector takes the off-diagonal
form

H�
n

=

X

k

~c T

n,�k

H�
n,k

~c
n,k

(2)

H�
n,k

=

"
0 �iD�

n,k

i
⇣
D�

n,k

⌘†
0

#
, (3)

where n refers to the nth-harmonic honeycomb, � labels the
flux sector, and ~c

n,k

is the vector of the Fourier transforms
of the c Majorana fermions ordered by the odd sublattices fol-
lowed by the even sublattices (See Supplemental Material [18]
for definition of lattice vectors, unit cell, and sublattice con-
ventions). In the zero-flux sector, we can choose the gauge
where u

ij

= 1 when i is an even sublattice and j is an odd
sublattice. Consequently, the D0-matrices for the hyperhon-
eycomb and H–1 lattices are

D0
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
J
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A
k
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k
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2

664
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0 0
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775 ,

(4)

where A
k

= J
x

(1 + e�ik1
), B

k

= J
x

(1 + e�ik2
) with k

i

=

~k · ~a
i

, and ~a
i

are the lattice vectors.

Each of the zero-flux sectors of both hyperhoneycomb and
H–1 lattices possesses gapless spinon excitations in the bulk
that form a nodal ring in the 3D Brillouin zone (BZ). The off-
diagonal block form of H�

n

ensures that the zero-modes of
H�

n

are determined by det(D�
n,k

) = 0. For the zero-flux phase
of the hyperhoneycomb and H–1 lattices, these conditions are

H–0 : 4 cos

k1
2

cos

k2
2

= �2e�i(k3� k1
2 � k2

2 ), (5)

H–1 :

����4 cos
k1
2

cos

k2
2

���� = �2e�ik3 . (6)

For values of � < 2, a continuous set of solutions exist for
each of Eq. (5) and Eq. (6), which defines the nodal ring.
We have illustrated the locations of the nodal rings for the
isotropic case � = 1 in Fig. 2a and Fig. 2b.

Topological invariants of the nodal ring: The nodal rings
present in the zero-flux sectors of the hyperhoneycomb and
H–1 models are topologically stable. To see this, we first de-
fine the time-reversal (TR) and particle-hole (PH) symmetry
operators, whose unitary components satisfy the following re-
lations

H
k

= ✏
U

UHT

�k

U�1, UU†
= I, UT

= ⌘
U

U, (7)

where H
k

is the Hamiltonian matrix, T is the matrix transpose,
I is the identity matrix, U = T, P for TR/PH respectively,
✏
U

= ±1 for TR/PH, and ⌘
U

= ±1. The presence of both
TR and PH ensures that S = TP is a chiral (or sublattice)
symmetry of the system, which satisfies {S,H�

n

} = 0 (where
boldface letters denote operators).

In the case of the hyperhoneycomb and H–1 lattices, we
find for the zero-flux sector

T 0
n

= S0
n

= �
z

⌦ I2n+2, P 0
n

= I4n+4, (8)

where � are the Pauli matrices, ⌦ is the tensor product of ma-
trices, and I

m

is the m ⇥m identity matrix. In both systems,
⌘
T

= ⌘
P

= +1, which implies that H0
n,k

belongs to sym-
metry class BDI based on the classification of topologically
stable Fermi surfaces (FS’s)[16, 19]. The topological stability
of a nodal ring in three-dimensional systems of class BDI is
characterized by the following integer-valued topological in-
variant (winding number)

⌫ =

1

4⇡i

I
dkTr[D�1

k @
k

Dk � (D†
)

�1
k @

k

D†
k], (9)

where the integral is taken along a path around the nodal ring.
We can deform the path into two pieces: one passing

through the inside of the nodal ring and one outside. Inte-
grating Eq. 9 in the k3 direction along the lines k1 = k2 = 0

(inside the nodal ring) and k1 = k2 = ⇡ (outside the nodal
ring), we find a nontrivial winding number ⌫ = 1 inside the
nodal ring but a trivial one (⌫ = 0) outside (See Supplemen-
tal Material [18] for details). As a result, the nodal ring is
characterized by a topological index ⌫ = ±1 and is hence
topologically stable. Accordingly, the surface spectra of these
two systems should possess zero-energy flat bands due to the
bulk-boundary correspondence[16], as long as the bulk nodal
ring has finite projection in the surface BZ.
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FIG. 4. Introducing the harmonic honeycomb series. (A) Two kinds of c-axis bonds (black links) in

the harmonic honeycomb family H⇥N⇤-Li2IrO3 are shown, one linking within a honeycomb plane

(for example blue to blue, top) and one that rotates between honeycomb planes (for example red

to blue, bottom). For undistorted octahedra, these links are locally indistinguishable, as can be

observed by the local coordination of any Ir atom (also see Figure 2A). (B) These building blocks

can be used to construct a series of structures. The end members include the theoretical N = 0

‘hyper-honeycomb’ [13–15] and the N = � layered honeycomb [12]. Here N counts the number

of complete honeycomb rows in a section along the c-axis before the orientation of the honeycomb

plane switches.

conditions. The building blocks shown in Figure 4A connect each member of the harmonic

honeycomb series in a manner that is analogous to how corner sharing octahedra connect the

Ruddlesden-Popper (RP) series. Indeed, despite the fact that members of the RP family are

locally identical in structure, they exhibit a rich variety of exotic electronic states; including

superconductivity and ferromagnetism in the ruthenates [16, 17], multiferroic behavior in

the titanates [18], collosal magnetoresistance in the manganites [19] and high temperature

superconductivity in the cuprates [20]. The harmonic honeycomb family is a honeycomb

analogue of the RP series, and its successful synthesis could similarly create a new frontier

in the exploration of strongly spin-orbit coupled Mott insulators.
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they define conserved quantities that take on the values of ±1

on each bond. These u
ij

are not gauge invariant. However,
products of these operators over closed loops, which corre-
spond to fluxes of the Z2 gauge field, are gauge invariant[9].
By choosing a configuration of {u

ij

}, the fluxes are fully de-
termined and the Hamiltonian becomes quadratic in terms of
the c fermions. The ground state can be found by solving the
quadratic Hamiltonians corresponding to all possible flux con-
figurations (or flux sectors) and identifying the flux sector that
yields the lowest energy state.

Unlike the 2D honeycomb lattice, both the hyperhoney-
comb (i.e. H–0) and H–1 lattices possess loops without mir-
ror symmetries. As such, Lieb’s theorem [17] cannot deter-
mine the flux passing through these loops in the ground state.
We performed a brute-force search throughout all flux sec-
tors compatible with an 8-fold enlarged unit cell and the re-
sults suggest that the ground state on the hyperhoneycomb
lattice belongs to the zero-flux sector, which agrees with pre-
vious work[12]. In contrast, on the H–1 lattice, we find
that the ground state flux sector differs for different values
of � = J

z

/J
x

. At the isotropic point � = 1, a particular flux
configuration with ⇡ flux passing through a subset of the loops
appears to be the ground state flux sector (hereafter, we label
it as the “⇡-flux sector”). Upon increasing �, the zero-flux
sector becomes energetically favorable. We will first focus on
the zero-flux sectors on the hyperhoneycomb and H–1 lattices
and defer the more involved analysis of the ⇡-flux sector on
the H–1 lattice for later.

Bulk Majorana spectrum in the zero-flux sector: Due to
the bipartite nature of both the hyperhoneycomb and H–1 lat-
tices, the Hamiltonian in any flux sector takes the off-diagonal
form

H�
n
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(2)
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n,k
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"
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n,k

i
⇣
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n,k

⌘†
0

#
, (3)

where n refers to the nth-harmonic honeycomb, � labels the
flux sector, and ~c

n,k

is the vector of the Fourier transforms
of the c Majorana fermions ordered by the odd sublattices fol-
lowed by the even sublattices (See Supplemental Material [18]
for definition of lattice vectors, unit cell, and sublattice con-
ventions). In the zero-flux sector, we can choose the gauge
where u

ij

= 1 when i is an even sublattice and j is an odd
sublattice. Consequently, the D0-matrices for the hyperhon-
eycomb and H–1 lattices are

D0
0,k =


J
z

A
k

eik3

B
k

J
z

�
, D0
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2

664
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0 0 A
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eik3
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J
z

0 0

0 B
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3

775 ,

(4)

where A
k

= J
x

(1 + e�ik1
), B

k

= J
x

(1 + e�ik2
) with k

i

=

~k · ~a
i

, and ~a
i

are the lattice vectors.

Each of the zero-flux sectors of both hyperhoneycomb and
H–1 lattices possesses gapless spinon excitations in the bulk
that form a nodal ring in the 3D Brillouin zone (BZ). The off-
diagonal block form of H�

n

ensures that the zero-modes of
H�

n

are determined by det(D�
n,k

) = 0. For the zero-flux phase
of the hyperhoneycomb and H–1 lattices, these conditions are

H–0 : 4 cos

k1
2

cos

k2
2

= �2e�i(k3� k1
2 � k2

2 ), (5)

H–1 :

����4 cos
k1
2

cos

k2
2

���� = �2e�ik3 . (6)

For values of � < 2, a continuous set of solutions exist for
each of Eq. (5) and Eq. (6), which defines the nodal ring.
We have illustrated the locations of the nodal rings for the
isotropic case � = 1 in Fig. 2a and Fig. 2b.

Topological invariants of the nodal ring: The nodal rings
present in the zero-flux sectors of the hyperhoneycomb and
H–1 models are topologically stable. To see this, we first de-
fine the time-reversal (TR) and particle-hole (PH) symmetry
operators, whose unitary components satisfy the following re-
lations

H
k

= ✏
U

UHT

�k

U�1, UU†
= I, UT

= ⌘
U

U, (7)

where H
k

is the Hamiltonian matrix, T is the matrix transpose,
I is the identity matrix, U = T, P for TR/PH respectively,
✏
U

= ±1 for TR/PH, and ⌘
U

= ±1. The presence of both
TR and PH ensures that S = TP is a chiral (or sublattice)
symmetry of the system, which satisfies {S,H�

n

} = 0 (where
boldface letters denote operators).

In the case of the hyperhoneycomb and H–1 lattices, we
find for the zero-flux sector

T 0
n

= S0
n

= �
z

⌦ I2n+2, P 0
n

= I4n+4, (8)

where � are the Pauli matrices, ⌦ is the tensor product of ma-
trices, and I

m

is the m ⇥m identity matrix. In both systems,
⌘
T

= ⌘
P

= +1, which implies that H0
n,k

belongs to sym-
metry class BDI based on the classification of topologically
stable Fermi surfaces (FS’s)[16, 19]. The topological stability
of a nodal ring in three-dimensional systems of class BDI is
characterized by the following integer-valued topological in-
variant (winding number)

⌫ =

1

4⇡i

I
dkTr[D�1

k @
k

Dk � (D†
)

�1
k @

k

D†
k], (9)

where the integral is taken along a path around the nodal ring.
We can deform the path into two pieces: one passing

through the inside of the nodal ring and one outside. Inte-
grating Eq. 9 in the k3 direction along the lines k1 = k2 = 0

(inside the nodal ring) and k1 = k2 = ⇡ (outside the nodal
ring), we find a nontrivial winding number ⌫ = 1 inside the
nodal ring but a trivial one (⌫ = 0) outside (See Supplemen-
tal Material [18] for details). As a result, the nodal ring is
characterized by a topological index ⌫ = ±1 and is hence
topologically stable. Accordingly, the surface spectra of these
two systems should possess zero-energy flat bands due to the
bulk-boundary correspondence[16], as long as the bulk nodal
ring has finite projection in the surface BZ.
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FIG. 2. (Color online) Position of nodal rings, surface spectra, and winding numbers. In Figs. 2a-2c, the red lines show the location of the
nodal rings of the indicated lattice, flux sector, and � = J

z

/J

x

. The red lines are the intersections of the yellow and turquoise surfaces, which
are the LHS = 1 and RHS = 1 of Eq. 5, Eq. 6, and Eq. 11. In Fig. 2c, the first Brillouin zone spans the region �⇡/2 < k1  ⇡/2
due to doubling of the unit cell in the ⇡-flux sector. Figs. 2d-2h show the surface spectra along one-dimensional momentum cuts on the
various lattices and flux sectors, while the insets within indicate the location of the momentum cuts and projection of the nodal ring on the
surfaces indicated. The colors in the insets correspond to the winding numbers, where yellow, turquoise, and red are ⌫ = 0, ±1, and ±2
respectively. When ⌫ 6= 0, as shown in Figs. 2d-2h, we find the presence of zero-energy surface flat bands with |⌫|-fold degeneracy, due to the
bulk-boundary correspondence.

We can deform the path into two pieces: one passing
through the inside of the nodal ring and one outside. Inte-
grating Eq. 9 in the k3 direction along the lines k1 = k2 = 0

(inside the nodal ring) and k1 = k2 = ⇡ (outside the nodal
ring), we find a nontrivial winding number ⌫ = 1 inside the
nodal ring but a trivial one (⌫ = 0) outside (See Supplemen-
tal Material [21] for details). As a result, the nodal ring is
characterized by a topological index ⌫ = ±1 and is hence
topologically stable.

Surface spectra: The surface spectra of the hyperhoney-
comb and H–1 lattices is expected to possess zero-energy flat
bands due to the bulk-boundary correspondence[17], as long
as the bulk nodal ring has finite projection in the surface BZ.
At the momenta corresponding to the projection of the nodal
ring on a surface, the change in the number of flat bands must
be the same as the topological index ⌫ of the ring.

For the hyperhoneycomb lattice, we examine the spectra as-
sociated with the (100) and (001) surfaces in Fig. 2d and 2e
(the surface (010) is related to the (100) surface by a glide
plane symmetry, hence it is not shown). Since the nodal ring

has finite projection along k1 and k3, flat bands at zero energy
are expected in both surface spectra. Indeed, we see ⌫ = 1

within the area enclosed by the projection of the nodal ring.
Plotting the surface spectra along momentum paths that cut
through the nodal ring projections, we see the presence of flat
bands where the winding number is ±1. In contrast, the nodal
ring in the H–1 lattice only has finite projection along the k3
direction. Therefore, only the (001) surface spectrum pos-
sesses zero energy flat bands, which can be seen in Fig. 2f.

Analysis of the ⇡-flux sector: The above analysis can be
performed analogously in the ⇡-flux sector on the H–1 lattice;
here we summarize the main results. The description of the ⇡-
flux sector requires doubling of the unit cell in the a1 direction
(See Supplemental Material [21] for definition of the enlarged
unit cell and D⇡

1,k). Due to the enlarged unit cell, the TR, PH,
and chiral symmetry operators are now given by

T⇡

n

= S⇡

n

= �
z

⌦ I4n+4, P⇡

n

= I8n+8 (10)

with n = 1. Since ⌘
T

= ⌘
P

= +1, H⇡

k

still belongs to
class BDI and its nodal rings are associated with Z-valued
topological invariants.
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. The red lines are the intersections of the yellow and turquoise surfaces, which
are the LHS = 1 and RHS = 1 of Eq. 5, Eq. 6, and Eq. 11. In Fig. 2c, the first Brillouin zone spans the region �⇡/2 < k1  ⇡/2
due to doubling of the unit cell in the ⇡-flux sector. Figs. 2d-2h show the surface spectra along one-dimensional momentum cuts on the
various lattices and flux sectors, while the insets within indicate the location of the momentum cuts and projection of the nodal ring on the
surfaces indicated. The colors in the insets correspond to the winding numbers, where yellow, turquoise, and red are ⌫ = 0, ±1, and ±2
respectively. When ⌫ 6= 0, as shown in Figs. 2d-2h, we find the presence of zero-energy surface flat bands with |⌫|-fold degeneracy, due to the
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We can deform the path into two pieces: one passing
through the inside of the nodal ring and one outside. Inte-
grating Eq. 9 in the k3 direction along the lines k1 = k2 = 0

(inside the nodal ring) and k1 = k2 = ⇡ (outside the nodal
ring), we find a nontrivial winding number ⌫ = 1 inside the
nodal ring but a trivial one (⌫ = 0) outside (See Supplemen-
tal Material [21] for details). As a result, the nodal ring is
characterized by a topological index ⌫ = ±1 and is hence
topologically stable.

Surface spectra: The surface spectra of the hyperhoney-
comb and H–1 lattices is expected to possess zero-energy flat
bands due to the bulk-boundary correspondence[17], as long
as the bulk nodal ring has finite projection in the surface BZ.
At the momenta corresponding to the projection of the nodal
ring on a surface, the change in the number of flat bands must
be the same as the topological index ⌫ of the ring.

For the hyperhoneycomb lattice, we examine the spectra as-
sociated with the (100) and (001) surfaces in Fig. 2d and 2e
(the surface (010) is related to the (100) surface by a glide
plane symmetry, hence it is not shown). Since the nodal ring

has finite projection along k1 and k3, flat bands at zero energy
are expected in both surface spectra. Indeed, we see ⌫ = 1

within the area enclosed by the projection of the nodal ring.
Plotting the surface spectra along momentum paths that cut
through the nodal ring projections, we see the presence of flat
bands where the winding number is ±1. In contrast, the nodal
ring in the H–1 lattice only has finite projection along the k3
direction. Therefore, only the (001) surface spectrum pos-
sesses zero energy flat bands, which can be seen in Fig. 2f.

Analysis of the ⇡-flux sector: The above analysis can be
performed analogously in the ⇡-flux sector on the H–1 lattice;
here we summarize the main results. The description of the ⇡-
flux sector requires doubling of the unit cell in the a1 direction
(See Supplemental Material [21] for definition of the enlarged
unit cell and D⇡

1,k). Due to the enlarged unit cell, the TR, PH,
and chiral symmetry operators are now given by
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= �
z

⌦ I4n+4, P⇡
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with n = 1. Since ⌘
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still belongs to
class BDI and its nodal rings are associated with Z-valued
topological invariants.


