B-Li2IrO3 Counter-rotating Incommensurate Non-Coplanar Spiral Orders

F = [+, +, +, +]C = [+, +, -, -]G = [+, -, +, -]A = [+, -, -, +]

B-Li2IrO3 Counter-rotating Incommensurate Non-Coplanar Spiral Orders

Y-Li2IrO3 Counter-rotating Incommensurate Non-Coplanar Spiral Orders

F = [+, +, +, +]C = [+, +, -, -]G = [+, -, +, -]A = [+, -, -, +]

Y-Li2IrO3 Counter-rotating Incommensurate Non-Coplanar Spiral Orders

Coupled Zig-Zag Chain (CZC) Model

FM KITAEV, HIGHLY BOND ANISOTROP(

$$H = \sum_{\langle ij \rangle \in \gamma} [J\vec{S}_i \cdot \vec{S}_j + KS_i^{\gamma}S_j^{\gamma}] + \sum_{\langle ij \rangle \in Z} I_c(\hat{r}_{ij} \cdot \vec{S}_i)(\hat{r}_{ij} \cdot \vec{S}_j)$$

$$J_Z = J + \frac{1}{2}I_c \quad K_Z = K - \frac{1}{2}I_c \quad \Gamma_Z = \frac{1}{2}I_c$$

$$J_{X/Y} = J \quad K_{X/Y} = K \quad \Gamma_Z = 0$$

I KIMCHI, R COLDEA, A VISHWANATH PRB 91, 245134 (2015) **Comparison Study**

MODELS JKT CZC TORONTO BERKELEY

METHODSCLASSICAL (SIM ANNEALING)SOFT-SPIN (MIX BY HAND)E. K.-H. Lee, Y. B. Kim,
PRB 91, 064407 (2015)I KIMCHI, R COLDEA, A VISHWANATH
PRB 91, 245134 (2015)

	Comparison Study				
	CLASSICAL (SIM ANN)		SOFT-SPIN		
			No Mix	Mix	
ІКГ	β	same as exp			
TORONTO	Y	Non-coplanar (a, wrong, c)			
	β		co-planar (a, zero, c)	same as exp	
BEKKELEI	γ		co-planar (a, zero, c)	same as exp	
	_		E ar	KH LEE, J RAU, YB KIM Xiv:150606746 (2015)	

	Comparison Study				
	CLASSICAL (SIM ANN)		SOFT-SPIN		
			No Mix	Mix	
ІКГ	β	same as exp			
TORONTO	Y	Non-coplanar (a, wrong, c)			
	β	Commensurate	co-planar (a, zero, c) co-planar (a, zero, c)	same as exp	
BEKKELEI	γ	Commensurate		same as exp	
			El ar	KH LEE, J RAU, YB KIM Xiv:150606746 (2015)	

	Comparison Study				
	CLASSICAL (SIM ANN)		SOFT-SPIN		
			No Mix	Mix	
JKL	β	same as exp	same as exp	No need	
TORONTO	γ	Non-coplanar (a, wrong, c)	Soft-S Soft-S No Mix Same as exp Non-coplanar (a, wrong, c) co-planar (a, zero, c) co-planar (a, zero, c)	same as exp	
	β	Commensurate	co-planar (a, zero, c) co-planar (a, zero, c)	same as exp	
BEKKELEY	Y	Commensurate		same as exp	
			EK	H LEE, J RAU, YB KIM	

arXiv:150606746 (2015)

Decoupled Chain Limit

HYPERHONEYCOMB

STRIPYHONEYCOMB

EKH LEE, J RAU, YB KIM arXiv:150606746 (2015)

Decoupled Chain Limit - Classical

EKH LEE, J RAU, YB KIM arXiv:150606746 (2015)

I KIMCHI, R COLDEA, A VISHWANATH PRB 91, 245134 (2015)

Decoupled Chain Limit - DMRG

EKH LEE, J RAU, YB KIM arXiv:150606746 (2015)

Decoupled Chain Limit - DMRG

Intra-chain Γ interaction is important for the stabilization of incommensurate spiral order in the 1D quantum model

Inter-chain Γ interaction may be important for CZC (coupled zig-zag chain) model in 3D ? will need 3D quantum model

> EKH LEE, J RAU, YB KIM arXiv:150606746 (2015)

Why do we care (no spin liquid) ? This is a benchmark for Kitaev interaction Engineering Kitaev limit (relative strength of Ir-Ir and Ir-O-Ir exchanges)

The Kitaev interaction may be dominant in the 3D materials, irrespective of details Pressure exp (Takagi); gapless spin liquid ?

Finite temperature signatures

Need understanding of Quantum Model