Workshop on SCES, ICTP 2015@Trieste, Italy

N S F C

Ambient-pressure superconductivity in Cr₃As₃-chain based materials

Main Collaborators: Jin-Ke Bao, Zhang-Tu Tang, Ji-Yong Liu, Chun-Mu Feng, Zhu-An Xu, and Zeng-Wei Zhu

Outline

Introduction

- Ambient-pressure SC in A₂Cr₃As₃ (A=K,Rb,Cs) (with evidences of unconventional SC)
- Absence of SC in ACr₃As₃ (133)
- Concluding Remarks
 - J. K. Bao et al., K₂Cr₃As₃: PRX 5, 011013 (2015)
 - Z. T. Tang et al., Rb₂Cr₃As₃: PRB 91, 020506(R) (2015)
 - Z. T. Tang et al., Cs₂Cr₃As₃: Sci. China Mater. 58, 16 (2015)
 - J. K. Bao et al., KCr₃As₃: PRB 91, 180404(R) (2015)
 - Z. T, Tang et al., RbCr₃As₃ and CsCr₃As₃: Sci. China Mater. 58, 543 (2015)

New SCs: either higher Tc or Exotic SC

1911

1986

Roomtemperature Superconductors

One of Holy Grails in physical sciences

20??

ature (kelvin) for mercury from the 26 October 1911 experiment shows the superconducting transition at 4.20 K. Within 0.01 K, the resistance jumps from unmeasurably small (less than and top), C (root ef.). Fig. 1. Temperature dependence of resistivity in Ba_xLa_{5-x}Cu₅O_{5(3-y)} for samples with x(Ba)=1 (upper curves, left scale) and x(Ba)= 0.75 (lower curve, right scale) the first two case also show the Mechanism of USC

(E)

g

0

32 class of SCs categorized in terms of "conventionality"

Editorial

Physica C 514 (2015) 1-8

Hirsch, Maple & Marsiglio

Superconducting materials classes: Introduction and overview

Impact		Search for exotic SCs:							
# Times cited		i) Electron correlations							
(20141109)	8755 High-Tc	ii) Reduced dimensionality							
1189 f electrons participated 815 Q1D Q1D -600 Multi-pha	Q2D d-wave pseudogap Competing or 1495 p-wave	rders 3870 2-gaps 933 SCFM	4143 Multi-band High-Tc Orbital-related? 1540 Majorana Fermions						
1979 1980 1984	1986 1994	2000 2001 20	007 2008 2010? Year						

A Brief Introduction to New Superconductors recently discovered in Our Group

Ferromagnetic SC

PRB 80, 174424 (2009)

along c-axis with a possibly small canting

Self-doped SC

Y. L. Sun et al., JACS 134, 12893 (2012)

Compounds with BiS_2 bilayers: Zhai et al., JACS 136, 15386 (2014) doped band insulator \rightarrow SC \rightarrow New BiS_2 -bilayer based SCs Via self doping

H. F. Zhai et al., PRB 90, 064518 (2014)

Self-doped SC

Summary of the new SCs in our Group

2009-2013

- FMSC in iron pnictides: Eu122 system
- 2012-2014 Design and self doping:
 - $Ba_2Ti_2Fe_2As_4O$, $EuBiS_2F$ and $Eu_3Bi_2S_4F_4$
- 2014 low-dimensional telluride: Ta₄Pd₃Te₁₆
- 2014-2015 New quasi-1D Compounds: A₂Cr₃As₃

Superconductivity in the vicinity of antiferromagnetic order in CrAs

Wei Wu^{1,*}, Jinguang Cheng^{1,2,*}, Kazuyuki Matsubayashi², Panpan Kong¹, Fukun Lin¹, Changqing Jin^{1,3}, Nanlin Wang^{1,3,4}, Yoshiya Uwatoko² & Jianlin Luo^{1,3}

Superconductivity in Quasi-One-Dimensional K₂Cr₃As₃ with Significant Electron Correlations

Jin-Ke Bao,¹ Ji-Yong Liu,² Cong-Wei Ma,¹ Zhi-Hao Meng,¹ Zhang-Tu Tang,¹ Yun-Lei Sun,¹ Hui-Fei Zhai,¹ Hao Jiang,¹ Hua Bai,¹ Chun-Mu Feng,¹ Zhu-An Xu,^{1,3,4} and Guang-Han Cao^{1,3,4,*}

> ¹Department of Physics, Zhejiang University, Hangzhou 310027, China ²Department of Chemistry, Zhejiang University, Hangzhou 310027, China ³State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027, China ⁴Collaborative Innovation Centre of Advanced Microstructures, Nanjing 210093, China (Received 13 January 2015; published 9 February 2015)

Ambient-pressure SC at 6.1 K in Q1D K₂Cr₃As₃

How could we discover it?

SC in CrAs under HP
>(Ba,K)Cr₂As₂: "KCr₂As₂"?
>Unexpectedly, →K₂Cr₃As₃
>Difficulties: Sample is very air sensitive!
> SXs growth; Structure determination; Measurements

The Crystal Structure SG: #187 PG: D_{3h} non-

centrosymmetric

b

a = 9.9832(9) Å, c = 4.2304(4) Å space group of $P\bar{6}m2$ (No. 187)

Ambient-pressure bulk SC at 6.1 K

 Very high upper critical field: 3~4 H_P
Linear resistivity for polycrystalline samples (to be confirmed using well-protected SXs)

Specific-heat measurement of K233

Large Sommerfeld coefficient:
3-4 times of "bare" bandstructure DOS
T dependence is difficult due to the Schottky anomaly

Ś

Unconventional superconductivity in quasi-one-dimensional Rb₂Cr₃As₃

Zhang-Tu Tang,¹ Jin-Ke Bao,¹ Yi Liu,¹ Yun-Lei Sun,¹ Abduweli Ablimit,¹ Hui-Fei Zhai,¹ Hao Jiang,¹ Chun-Mu Feng,¹ Zhu-An Xu,^{1,2,3} and Guang-Han Cao^{1,2,3,*}

SC at 4.8 K in Rb233

Specific heat of Rb233

Influence of the ionic size of alkali metals

Correlation of T_c and Sommerfeld coefficient in A233

Theoretical and Experimental Progress

- **DFT calculations:** <u>arXiv:1412.1309</u> and <u>arXiv:1501.00412</u>, CPL2015
- Theory suggests an f-wave: <u>arXiv:1502.03928</u>
- Theory suggests a p_z-wave: <u>arXiv:1503.06707</u>
- Theory again suggests spin-triplet instabilities: arXiv: 1503.08965
- Recent DFT calculations suggest e-ph SC: arXiv: 1508.0082
- NMR/NQR : <u>arXiv:1501.00713</u>, PRL2015 and arXiv: 1508.01012 (Rb233)
- **Penetration depth :** <u>arXiv:1501.01880</u>, PRB2015
- Anisotropy reversal of Hc2: arXiv: 1505.05547,PRB2015
- muSR: arXiv: *1505.05743*

Change in Cr valence in Cr₃As₃-based mater.?

Absence of bulk SC in KCr₃As₃ $K_2Cr_3As_3+C_2H_5OH \rightarrow KCr_3As_3+KOC_2H_5 + \frac{1}{2}H_2\uparrow$

Crystal structure of K133 ACr₃As₃ isostructural to AMo₃Se₃

Magnetic properties of K133

Enhanced magnetic scattering around 60 K?

absence of bulk SC $\succ C_{\rm p}$ from spin glass > Metallic: $\gamma \sim 60 \text{ mJ/K}^2/\text{mol}$

·

200

150

Change in Cr valence in Cr₃As₃-based mater.?

Concluding Remarks & Open Questions

First Cr-based SC family at ambient pressure

More members? Higher Tc? Why large and anisotropic H₂₅? What is the NS? A Luttinger liquid? FM spin fluctuations? Nodal SC? a-Luttinger liquid in 233 and 133? v>vTripletspairing? porf wave?to "hole doping" erchain coupling due to loss of K1 Anderson localizations kill SC? Cluster spin glass due to geometrical inustration?

32 class of SCs categorized in terms of "conventionality"

Editorial

Physica C 514 (2015) 1-8

Hirsch, Maple & Marsiglio

Superconducting materials classes: Introduction and overview

	Material class	Year	Max T_c material	T_c^{max} (K)	ζ (Å)	λ_L (Å)	$2\Delta/k_BT_c$	dT_c/dP	mag?	dim	symm	Category	
C1	Elements,	1911	Nb	9.5	380	390	3.80	+/-	n	3	S	conv	
	alloys and simple compounds	1912	NbN	17	50	2000	4.1	+/-	n	3	S	conv	
C2	A15's	1954	Nb ₃ Ge	23.2	55	1000	4.2	+	n	3	S	conv	
C3	Doped semiconductors	1964	CB _x	10	950	720	3.5	_	n	3	S	conv	
C4	Insul. elements under pressure	1964	S	17				+	n	3	S	conv	
C5	Intercalated graphite	1965	C ₆ Ca	11.5	380	720	3.6	+	n	2	S	conv	
C6	Metallic elements under pressure	1968	Ca	25				+/-	n	3	S	conv	
C7	Hydrogen-rich materials	1970	PdD	10.7	400		3.8	+/-	n	3	S	conv	
C8	Layered t. m. dichalcogenides	1970	NbS ₂	7.2	100	1250	3.7	_	n	2	S	conv.	
C9	Chevrel phases	1971	PbMo ₆ S ₈	15	30	3000	4.7	+/-	У	3	S	conv	
C10	Magnetic superconductors	1972	ErRh ₄ B ₄	8.7	180	830	4	+/-	У	3	S	conv	
C11	Thin films	1978							n	2	S	conv	
C12	Magnesium diboride	2001	MgB ₂	<mark>39</mark>	<mark>52</mark>	1400	<mark>4.5</mark>	-	n	2	s	conv	
P1	Bismuthates	1975	$Ba_{1-x}K_xBiO_3$	34	50	5500	4	_	n	3	S	poss unc	
P2	Fullerenes	1991	RbCs ₂ C ₆₀	33	30	4500	3.5-5.0	_	n	0	S	poss unc	
P3	Borocarbides	1993	$YPd_5B_3C_{0.3}$	23	100	1000	4	+/-	y,n	2	s + g?	poss unc	
P4	Plutonium compounds	2002	PuCoGa ₅	18.5	16	2400	5-8	+/-	У	2	d	poss unc	
P5	Interface superconductivity	2007	LaAlO ₃ /SrTiO ₃	<mark>.35</mark>	<mark>600</mark>				y	2		poss unc	
P6	Aromatic hydrocarbons	2010	K-doped DBP	33	180	770		+/-	n	3		poss unc	
P7	Doped top. ins.	2010	Cu _x (PbSe) ₅ (Bi ₂ Se ₃) ₆	3	110	13000			n	2		poss unc	
P8	BiS ₂ -based materials	2012	YbO _{0.5} F _{0.5} BiS ₂	5.4	53	5000	7.2	+/-	n	2	S	poss unc	
	U12 alkali chromium arsenides?												
U3	Cuprates hole-doped	<mark>1986</mark>	HgBa ₂ Ca ₂ Cu ₃ O ₉	<mark>134</mark>	20	<mark>1200</mark>	<mark>4.3</mark>	+	y	2	d	unconv	
<mark>U4</mark>	Cuprates e-doped	<mark>1989</mark>	Sr _{0.9} La _x CuO ₂	<mark>40</mark>	<mark>50</mark>	2500	3.5	<u>—</u>	У	2	d	unconv	
<mark>U5</mark>	Strontium ruthenate	<mark>1994</mark>	Sr ₂ RuO ₄	1.5	<mark>660</mark>	<mark>1500</mark>		<u>—</u>	y	2	p	unconv	
U6	Layered nitrides	<mark>1996</mark>	Ca(THF)HfNCl	<mark>26</mark>	<mark>60</mark>	4700	<mark>2.9–10</mark>	<u>—</u>	n	2	<mark>d + id</mark>	unconv	
<mark>U7</mark>	Ferromagnetic sc	2000	UGe ₂	0.8	100	$\sim 10^{4}$		+/-	y	3	p	unconv	
<mark>-U8</mark>	Cobalt oxyde hydrate	2003	$Na_x(H_3O)_zCoO_2 \cdot yH_2O$	4.7	100	7000	<mark>4.3–4.6</mark>	<u>—</u>	y	2	?	unconv	
U9	Non-centro-symmetric	2004	SrPtSi ₃	2	<mark>60</mark>	<mark>8000</mark>			y	3	s/p	unconv	
U10	Iron pnictides	2008	SmFeAsO _{0.85}	55	10-50	2000	7.5	+/-	y	2	s±	unconv	
1111	Iron chalcogenides	2008	Na, FeaSea	46	20	2000	38	+	V	2	C	unconv	

Lanks for Your Attention