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Overview

Efficient simulations of low-dimensional systems 

(1) Matrix-product states and probes for topological phases

- Review: Entanglement and matrix-product states (MPS)
- MPS for infinite systems
- Extracting fingerprints of topological order

(2) Efficient simulation of dynamical properties 

- Time-evolving block decimation (TEBD)  
- Quench dynamics and entanglement growth
- MPO based time evolution

(3) Tutorial: Hands on session



(2)  Efficient simulation of dynamical properties 
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Time evolution of MPS

— Time evolving block decimation  
[Vidal ’03]

— Time dependent DMRG  
[White & Feiguin ’04, Daley et al. ’04,… ]

— Krylov space based methods  
[Schmitteckert ’04,…]

— Time dependent variational principle   
[Haegemann et al. ’11 / ’15]

— Matrix-product operator based time evolutions  
[Zaletel et al. ’15]

| ti = exp(�iHt)| t=0i

• How to efficiently simulate the time evolution of MPS?



Time evolving block decimation 



Time evolving block decimation 

• Assume we have a Hamiltonian of the form

H =
X

j

h[j,j+1]

| 0i = lim

⌧!1

exp(�H⌧)| ii
|| exp(�H⌧)| ii||

• Time evolution in imaginary time  

| ti = exp(�iHt)| t=0i

• Time evolution in real time  



• Consider the Hamiltonian H =
X

j

h[j,j+1]

Time evolving block decimation 

[F [r], F [r0]] = 0 ([G[r], G[r0]] = 0)
[G,F ] 6= 0

• We observe  
but
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h[j,j+1]

G ⌘
X

odd j

G[j] ⌘
X

odd j

h[j,j+1]

• Decompose the Hamiltonian as 



• Apply Suzuki-Trotter decomposition of order p 
  
 
with                         ,                                 , etc.

exp (�i(F +G)�t) ⇡ fp [exp(�F �t), exp(�G�t)]

f1(x, y) = xy

f2(x, y) = x

1/2
yx

1/2

Time evolving block decimation 

UF =

Y

even r

exp(�iF [r]�t)

UG =

Y

odd r

exp(�iG[r]�t)

• Two chains of two-site gates



• Time Evolving Block Decimation algorithm (TEBD)
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Time evolving block decimation 

• How do we get the original form back?



truncation

�3

Time evolving block decimation 

• Scales with the matrix dimension as 

• Time Evolving Block Decimation algorithm (TEBD)



• Assume that       is translational invariant and              :  
infinite Time Evolving Block Decimation algorithm (iTEBD)

| i N = 1

• Time evolution achieved by repeated local application  
of gates (parallel)

�[2r] = �A, �[2r] = �A, �[2r+1] = �B , �[2r+1] = �B

� � � � � � �������� � � � �A B B B BA A A A A

• Partially break translational symmetry to simulate  
the action of the gates

Time evolving block decimation 



• Python + numpy provide useful tools to simply implement  
the algorithm as key functions are already implemented

Xijk =
X

m

YimZmjkX=tensordot(Y,Z,axes=(1,0))

X=reshape(X,(dim1*dim2,dim3)) Xijk ! X(ij)k

X=transpose(X,(0,2,1)) Xijk ! Xikj

Time evolving block decimation 



Time evolving block decimation 



Quench dynamics and entanglement growth



• Spin-1 Heisenberg model:

• Time evolution of   

H =
P

j
~Sj · ~Sj+1

j

h 
(t
)|S

z
| 
(t
)i
S+
j0
| 0i ... ...

Dynamical Response



• Dynamical structure factor S(k,�)

Spin-1 Heisenberg Spin-1/2 Ladder

C(x, t) = h 0|S�
x

(t)S+
0 (0)| 0i

S(k,!) =
X

x

Z 1

�1
dte

�i(kx+!t)
C(x, t)

Dynamical Response



• Start from an unentangled product state (          )

| 0⇤ = | �⇥�⇥�⇥�⇥�⇥�⇥�⇥�⇥�⇥�⇥⇤

S = 0

Lieb and Robinson (1972)
P. Calabrese and J. Cardy (2006)tJ?

S tJ?

x

• Time evolution with a Heisenberg Hamiltonian:

U(t) = e�itH

A B

• Measure the entanglement after quench and the time  
evolution with

Global Quenches



• Quickly leaving the comfort zone:  
Exponential growth of the bond dimension!  

Global Quenches

H | 0�
|�(t)�

• Only short times can be simulated!

Hands on session!



MPO based time evolution



MPO based time evolution

(i) … applied to any long-ranged Hamiltonian 
(ii) … applied to an infinitely long system  
(iii)… easily implemented 

• Desirable to have a method that can be…
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Neglect overlapping  
terms in expansion

Compact matrix product 
operator representation

↵ �
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• Hamiltonian expressed as a sum of terms  
Expand                            for          :

H =
P
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x
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MPO based time evolution



D D � 1    dimensional  
Hamiltonian MPO 

          dimensional 
time evolution MPO 

• For experts on matrix product operators….

MPO based time evolution



• Quench in the spin-1/2 Heisenberg chain 

MPO based time evolution



• Dynamical correlation functions in the  
Haldane Shastry model [Haldane & Zirnbauer ’93]

HHS =
X

x,r>0

S
x

· S
x+r

r2
.

MPO based time evolution



[Hauschild  et al. ‘15]

MPO based time evolution
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• Expansion of bosonic clouds in 2D



Many-body localization



Anderson  (1958)  
Basko, Aleiner,  Altshuler (2006)
Oganesyan and Huse (2007) 
Pal and Huse (2010)
Bauer and Nayak (2013) 
…

Many-body localization

t t

�µ

?Interactions
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4 |0i



Many-body localization

Localized 

disorder strength Anderson  (1958)  
Basko, Aleiner,  Altshuler (2006)
Oganesyan and Huse (2007) 
Pal and Huse (2010)
Bauer and Nayak (2013) 
…

Extended  

ETH ETH breaks  
down

� = 0� > 0
A

Area lawVolume law
B

✏ > ✏0Band insulator
� ⇠ exp(��/kT )



Many-body localization transition

• Localized and extended phase: AREA vs. VOLUME law

...
A B

...
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Kjäll, Bárðarson, FP, PRL 113, 107204 (2014)



Many-body localization transition

• Localized and extended phase: AREA vs. VOLUME law
➡ Variance of     diverges at the transition pointS

Kjäll, Bárðarson, FP, PRL 113, 107204 (2014)

✏ = 1

�J



Many-body localization transition

• Repeating the scaling for various energy densities  
yields the phase diagram 

Kjäll, Bárðarson, FP, PRL 113, 107204 (2014)
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Quasi local integrals of motion

• Many-body eigenstates of Anderson insulator

• “Quasi local” product state representation of      states 

| n1,n2,...,nLi = (c†1)
n1(c†2)

n2 . . . (c†L)
nL |0i

2L



• Many-body localization: “p-bits” (  ) and “l-bits” (  ): 

|⌧1, ⌧2, . . . , ⌧Li =

• All      many-body eigenstates given by a “quasi local” unitary2L

Quasi local integrals of motion

U�1,...,�L
⌧1,...,⌧L

[Huse & Oganesyan ’13, Serbyn, Papic, Abanin ‘13]  

| ⌧1,⌧2,...,⌧Li =

�1 �2 �3 �L�L�1. . .

• Efficient representation as Matrix-Product Operator ???

� ⌧



• Toy model to study the MBL phases 
 
 
 
 
 
 
 

}
hopping

H = J�
�

i

(Sx
i Sx

i+1 + Sy
i Sy

i+1)

interaction

+Jz

�

i

Sz
i Sz

i+1}
[Anderson  ’58]

Disordered Anisotropic Heisenberg Chain

random potential

+
�

i

hiS
z
i}

with hi 2 [�W,W ]

W 6= 0• All single particle states localized for

•                     : fully MBL for J? = Jz = 1 W & 3.5 [Pal & Huse ‘10]



• Compression using exact diagonalization (ED)

Quasi local integrals of motion

L

U�1,...,�L
⌧1,...,⌧L ⇡

⇤

• ED exponential in size! Gauge of                ? Unitarity?U�1,...,�L
⌧1,...,⌧L

[Pekker & Clark ’14]  



Variational Ansatz:

• Finite depth local 
unitary network 

B[1] B[2] B[3] B[L]B[L� 1]
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 �1,...�L =

=

(a)

(b)

Ũ�1,...�L
⌧1,...⌧L =

Different unitary  
networks possible…

• Locally minimize the cost function using CG
f({A[n]}) =

X

{⌧}

h ⌧ |H2| ⌧ i � h ⌧ |H| ⌧ i2 � 0

Scaling: Linear in    and exponential in  L NLayer

FP, Khemani, Cirac, Sondhi, arXiv:1506.07179 (2015)



Comparison with exact results

• Deep in localized phase with             and           :               W = 8 L = 8

FP, Khemani, Cirac, Sondhi, arXiv:1506.07179 (2015)



Comparison with exact results

• Linear scaling of the mean variance: Constant error density

FP, Khemani, Cirac, Sondhi, arXiv:1506.07179 (2015)

W = 8



Comparison with exact results

• Spectral function: A(!) =
1

2L

X

{⌧1},{⌧2}

|h⌧1|Sz
L/2|⌧2i|2�(! � E⌧1 + E⌧2)

FP, Khemani, Cirac, Sondhi, arXiv:1506.07179 (2015)

W=16,L=10

W=8,L=10


