Efficient simulations of low-dimensional systems

Frank Pollmann

Max Planck Institute for the Physics of Complex Systems

Efficient simulations of low-dimensional systems

Overview
(I) Matrix-product states and probes for topological phases

- Review: Entanglement and matrix-product states (MPS)
- MPS for infinite systems
- Extracting fingerprints of topological order
(2) Efficient simulation of dynamical properties
- Time-evolving block decimation (TEBD)
- Quench dynamics and entanglement growth
- MPO based time evolution
(3) Tutorial: Hands on session
(2) Efficient simulation of dynamical properties

Time evolution of MPS

- How to efficiently simulate the time evolution of MPS?

$$
\left|\psi_{t}\right\rangle=\exp (-i H t)\left|\psi_{t=0}\right\rangle
$$

- Time evolving block decimation
[Vidal '03]
- Time dependent DMRG
[White \& Feiguin '04, Daley et al. '04, ...]
- Krylov space based methods
[Schmitteckert '04,...]
- Time dependent variational principle [Haegemann et al. 'II / 'I5]
- Matrix-product operator based time evolutions [Zaletel et al.'15]

Time evolving block decimation

Time evolving block decimation

- Assume we have a Hamiltonian of the form

$$
H=\sum_{j} h^{[j, j+1]}
$$

- Time evolution in real time

$$
\left|\psi_{t}\right\rangle=\exp (-i H t)\left|\psi_{t=0}\right\rangle
$$

- Time evolution in imaginary time

$$
\left|\psi_{0}\right\rangle=\lim _{\tau \rightarrow \infty} \frac{\exp (-H \tau)\left|\psi_{i}\right\rangle}{\| \exp (-H \tau)\left|\psi_{i}\right\rangle \|}
$$

Time evolving block decimation

- Consider the Hamiltonian $H=\sum_{j} h^{[j, j+1]}$
- Decompose the Hamiltonian as $\mathrm{H}=\mathrm{F}+\mathrm{G}$

$$
\begin{aligned}
F \equiv \sum_{\text {even } j} F^{[j]} \equiv \sum_{\text {even } j} h^{[j, j+1]} \\
G \equiv \sum_{\text {odd } j} G^{[j]} \equiv \sum_{\text {odd } j} h^{[j, j+1]}
\end{aligned}
$$

- We observe $\left[F^{[r]}, F^{\left[r^{\prime}\right]}\right]=0\left(\left[G^{[r]}, G^{\left[r^{\prime}\right]}\right]=0\right)$ but $[G, F] \neq 0$

Time evolving block decimation

- Apply Suzuki-Trotter decomposition of order p

$$
\begin{aligned}
& \quad \exp (-i(F+G) \delta t) \approx f_{p}[\exp (-F \delta t), \exp (-G \delta t)] \\
& \text { with } \quad f_{1}(x, y)=x y, f_{2}(x, y)=x^{1 / 2} y x^{1 / 2} \text {, etc. }
\end{aligned}
$$

- Two chains of two-site gates

$$
\begin{aligned}
U_{F} & =\prod_{\text {even } r} \exp \left(-i F^{[r]} \delta t\right) \\
U_{G} & =\prod_{\text {odd } r} \exp \left(-i G^{[r]} \delta t\right)
\end{aligned}
$$

Time evolving block decimation

- Time Evolving Block Decimation algorithm (TEBD)

- How do we get the original form back?

Time evolving block decimation

- Time Evolving Block Decimation algorithm (TEBD)

(v)

(ii)
\longrightarrow
(iii)

(SVD)

(iv)

- Scales with the matrix dimension as χ^{3}

Time evolving block decimation

- Assume that $|\psi\rangle$ is translational invariant and $N=\infty$: infinite Time Evolving Block Decimation algorithm (iTEBD)
- Partially break translational symmetry to simulate the action of the gates

$$
\Gamma^{[2 r]}=\Gamma^{A}, \lambda^{[2 r]}=\lambda^{A}, \Gamma^{[2 r+1]}=\Gamma^{B}, \lambda^{[2 r+1]}=\lambda^{B}
$$

- Time evolution achieved by repeated local application of gates (parallel)

Time evolving block decimation

- Python + numpy provide useful tools to simply implement the algorithm as key functions are already implemented

$$
\begin{array}{ll}
\mathrm{x}=\operatorname{tensordot}(\mathrm{Y}, \mathrm{z}, \operatorname{axes}=(1,0)) & X_{i j k}=\sum_{m} Y_{i m} Z_{m j k} \\
\mathrm{X}=\operatorname{reshape}(\mathrm{X},(\operatorname{dim} 1 * \operatorname{dim} 2, \operatorname{dim} 3)) & X_{i j k} \rightarrow X_{(i j) k} \\
\mathrm{X}=\operatorname{transpose}(\mathrm{X},(0,2,1)) & X_{i j k} \rightarrow X_{i k j}
\end{array}
$$

Time evolving block decimation

```
# First define the parameters of the model / simulation
J=1.0; g=0.5; chi=5; d=2; delta=0.01; N=1000;
G = np.random.rand(2,d,chi,chi);l = np.random.rand(2,chi)
# Generate the two-site time evolution operator
H = np.array( [[J,-g/2,-g/2,0], [-g/2,-],0,-g/2], [-g/2,0,-],-g/2], [0,-g/2,-g/2,J]] )
U = np.reshape(expm(-delta*H),(2,2,2,2))
# Perform the imaginary time evolution alternating on A and B bonds
for step in range(0, N):
    A = np.mod(step,2); B = np.mod(step+1,2)
    # Construct theta
    theta = np.tensordot(np.diag(l[B,:]),G[A,:,:,:],axes=(1,1))
    theta = np.tensordot(theta,np.diag(l[A,:],0),axes=(2,0))
    theta = np.tensordot(theta,G[B,:,:,:],axes=(2,1))
    theta = np.tensordot(theta,np.diag(l[B,:],0),axes=(3,0))
    # Apply U
    theta = np.tensordot(theta,U,axes=([1,2],[0,1]))
    # SVD
    theta = np.reshape(np.transpose(theta,(2,0,3,1)),(d*chi,d*chi))
    X, Y, Z = np.linalg.svd(theta); Z = Z.T
    # Truncate
    l[A,0:chi]=Y[0:chi]/np.sqrt(sum(Y[0:chi]**2))
    X=np.reshape(X[0:d*chi,0:chi],(d,chi,chi))
    G[A,: ,:,:]=np.transpose(np.tensordot(np.diag(l[B,: ]**(-1)),X,axes=(1,1)),(1,0,2))
    Z=np.transpose(np.reshape(Z[0:d*chi,0:chi],(d,chi,chi)),(0,2,1))
    G[B,:,:,:]=np.tensordot(Z,np.diag(l[B,:]**(-1)),axes=(2,0))
print "E_iTEBD =", -np.log(np.sum(theta**2))/delta/2
```


Quench dynamics and entanglement growth

Dynamical Response

- Spin-I Heisenberg model: $H=\sum_{j} \vec{S}_{j} \cdot \vec{S}_{j+1}$
- Time evolution of $S_{j_{0}}^{+}\left|\psi_{0}\right\rangle$

Dynamical Response

- Dynamical structure factor $S(k, \omega)$

$$
\begin{aligned}
& C(x, t)=\left\langle\psi_{0}\right| S_{x}^{-}(t) S_{0}^{+}(0)\left|\psi_{0}\right\rangle \\
& S(k, \omega)=\sum_{x} \int_{-\infty}^{\infty} d t e^{-i(k x+\omega t)} C(x, t)
\end{aligned}
$$

Spin-I Heisenberg

Spin- I/2 Ladder

Global Quenches

- Start from an unentangled product state ($S=0$)

$$
\left|\psi_{0}\right\rangle=|\uparrow \downarrow \uparrow \downarrow\rangle
$$

- Measure the entanglement after quench and the time evolution with $U(t)=e^{-i t H}$

- Time evolution with a Heisenberg Hamiltonian:

Global Quenches

- Quickly leaving the comfort zone:

Exponential growth of the bond dimension!

- Only short times can be simulated!

Hands on session!

MPO based time evolution

MPO based time evolution

- Desirable to have a method that can be...
(i) ... applied to any long-ranged Hamiltonian
(ii) ... applied to an infinitely long system
(iii)... easily implemented

MPO based time evolution

- Hamiltonian expressed as a sum of terms $H=\sum_{x} H_{x}$ Expand $U=\exp (-i t H)$ for $t \ll 1$:

Neglect overlapping terms in expansion
$\approx 1+t \sum_{x} H_{x}+t^{2} \sum_{x<y} H_{x} H_{y}$
$+t^{3} \sum_{x<y<z} H_{x} H_{y} H_{z}+\ldots$
Compact matrix product operator representation

MPO based time evolution

- For experts on matrix product operators....

\hat{H}
D dimensional Hamiltonian MPO

$D-1$ dimensional time evolution MPO

MPO based time evolution

- Quench in the spin- I/2 Heisenberg chain

MPO based time evolution

- Dynamical correlation functions in the Haldane Shastry model [Haldane \& Zirnbauer '93]

$$
H_{\mathrm{HS}}=\sum_{x, r>0} \frac{\mathbf{S}_{x} \cdot \mathbf{S}_{x+r}}{r^{2}}
$$

MPO based time evolution

- Expansion of bosonic clouds in 2D [Hauschild et al. '15]

Many-body localization

Many-body localization

Many-body localization

Extended	Localized	Sȧa ¢ $^{0} \mathrm{insulator}$
$\sigma>0$	$\sigma=0$	$A \rightarrow \exp (-\Delta / k T)$
Volume law	Area law	
		$\rho_{B}=\operatorname{Tr}_{A}\|\psi\rangle\langle\psi\|$
ETH	ETH breaks down	$S=-\mathrm{Tr}_{B} \rho_{B} \log \rho_{B}$

disorder strength

Many-body localization transition

- Localized and extended phase: AREA vs.VOLUME law

$$
H=-\sum_{i}\left(1+\delta J_{i}\right) \sigma_{i}^{z} \sigma_{i+1}^{z}+h \sum_{i} \sigma_{i}^{x}+J_{2} \sum_{i} \sigma_{i}^{z} \sigma_{i+2}^{z}
$$

Many-body localization transition

- Localized and extended phase: AREA vs.VOLUME law
\Rightarrow Variance of S diverges at the transition point

Kjäll, Bárðarson, FP, PRL II I3, I 07204 (20|4)

Many-body localization transition

- Repeating the scaling for various energy densities yields the phase diagram

Kjäll, Bárðarson, FP, PRL II I3, I 07204 (20|4)

Quasi local integrals of motion

- Many-body eigenstates of Anderson insulator

- "Quasi local" product state representation of 2^{L} states

$$
\left|\psi_{n_{1}, n_{2}, \ldots, n_{L}}\right\rangle=\left(c_{1}^{\dagger}\right)^{n_{1}}\left(c_{2}^{\dagger}\right)^{n_{2}} \ldots\left(c_{L}^{\dagger}\right)^{n_{L}}|0\rangle
$$

Quasi local integrals of motion

- Many-body localization: "p-bits" (σ) and "l-bits" (τ) : [Huse \& Oganesyan 'I3, Serbyn, Papic, Abanin 'I3]

- All 2^{L} many-body eigenstates given by a "quasi local" unitary
- Efficient representation as Matrix-Product Operator ???

Disordered Anisotropic Heisenberg Chain

- Toy model to study the MBL phases [Anderson '58]

$$
H=J_{\perp} \sum_{i}(\underbrace{S_{i}^{x} S_{i+1}^{x}+S_{i}^{y} S_{i+1}^{y}}_{\text {hopping }})+\underbrace{\sum_{i} h_{i} S_{i}^{z}}_{\text {random potential }}+\underbrace{\sum_{i} S_{i}^{z} S_{i+1}^{z}}_{\text {interaction }}
$$

with $h_{i} \in[-W, W]$

- All single particle states localized for $W \neq 0$
- $J_{\perp}=J_{z}=1$: fully MBL for $W \gtrsim 3.5$ [Pal\& Huse' 10]

Quasi local integrals of motion

- Compression using exact diagonalization (ED) [Pekker \& Clark' 14$]$

- ED exponential in size! Gauge of $U_{\tau_{1}, \ldots, \tau_{L}}^{\sigma_{1}, \ldots, \sigma_{L}}$? Unitarity?

Variational Ansatz:

- Finite depth local $\tilde{U}_{\tau_{1}, \ldots, \tau_{L}}^{\sigma_{1}, \sigma_{L}}=$ unitary network

Different unitary networks possible...

- Locally minimize the cost function using CG

$$
f\left(\left\{A^{[n]}\right\}\right)=\sum_{\{\boldsymbol{\tau}\}}\left\langle\psi_{\boldsymbol{\tau}}\right| H^{2}\left|\psi_{\boldsymbol{\tau}}\right\rangle-\left\langle\psi_{\boldsymbol{\tau}}\right| H\left|\psi_{\boldsymbol{\tau}}\right\rangle^{2} \geq 0
$$

Scaling: Linear in L and exponential in $N_{\text {Layer }}$

Comparison with exact results

- Deep in localized phase with $W=8$ and $L=8$:

FP, Khemani, Cirac, Sondhi, arXiv: I 506.07I79 (20I5)

Comparison with exact results

- Linear scaling of the mean variance: Constant error density

FP, Khemani, Cirac, Sondhi, arXiv: I 506.07I79 (20 I5)

Comparison with exact results

- Spectral function: $\left.A(\omega)=\frac{1}{2^{L}} \sum_{\left\{\boldsymbol{\tau}_{1}\right\},\left\{\boldsymbol{\tau}_{2}\right\}}\left|\left\langle\boldsymbol{\tau}_{\mathbf{1}}\right| S_{L / 2}^{z}\right| \boldsymbol{\tau}_{2}\right\rangle\left.\right|^{2} \delta\left(\omega-E_{\boldsymbol{\tau}_{1}}+E_{\boldsymbol{\tau}_{2}}\right)$
-•ED full - ED MPO $-N_{\text {layer }}=0 \quad-N_{\text {layer }}=1 \quad-N_{\text {layer }}=2$

