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Simulations that describe matter at the level of individual atoms offer a very high
level of accuracy, transferability and predictive power. In order to make them prac-
tically feasible, a number of approximations are often introduced that trade off the
accuracy in describing some physical effects in exchange for a reduced complexity and
computational cost. Perhaps the most widely adopted approximation is the decoupling
of the electronic structure problem from that of the statistical and dynamical behavior
of the atomic nuclei. This can take the form of Born-Oppenheimer approximation [1] –
where the ground-state electronic structure problem is solved for a given configuration
of the nuclei – or can be realized by modeling the interaction between the atoms using
an empirical force field that represent effectively (and inexpensively) the potential
energy surface for the atoms treated as point particles.
The Born-Oppenheimer approximation is generally very satisfactory, except when

the system evolves in an electronic excited state or for a few ultra-fast chemical
reactions. However, it only consists in a factorization of the combined electronic-
nuclear wavefunction, and in principle the nuclei should be treated as quantum
particles. The vast majority of atomistic simulations are performed with an additional
approximation, that is to treat the nuclei as classical particles that evolve in time
following Hamilton’s equations and that are subject to Boltzmann, classical statistics.
These are certainly reasonable approximations at high temperature, and when dealing
with heavy nuclei. If however one compares the thermal energy kBT and the quantum
of harmonic energy ~ω for a molecular vibration of frequency ω at temperature T ,
it will become clear that for many compounds ~ω/kBT � 1 even well above room
temperature, which casts some shadows on the consequences of neglecting the quantum
nature of the nuclear degrees of freedom in simulations. cases
There are several examples of the impact of the quantum mechanical behavior

of nuclei on experimental observables. The heat capacity of substances deviates
from the Dulong-Petit prediction of 3kBT per atom (that corresponds to classical
statistics for a harmonic crystal), in particular for stiff bonds (as in diamond) or for
hydrogen-containing compounds. The kinetic energy distribution of atomic nuclei,
as measured by neutron Compton scattering, differs dramatically from the Maxwell-
Boltzmann distribution [2]. Reaction rates at low temperature do not follow an
Arrhenius behavior. The stability of different compounds or phases varies with isotope
composition, and one can for instance estimate (based on the values measured for
1H2O, 2H2O, 3H2O) that the pH of water would be around 8.5 if nuclei behaved
classically. Some of these phenomena – isotope substitution effects in particular –
simply cannot be observed in the absence of a quantum mechanical treatment of the
nuclear degrees of freedom, while others entail a deviation of computed properties
from their experimental counterparts. Neglecting nuclear quantum effects (NQEs)
is particularly detrimental in the case of ab initio molecular dynamics, where the

1These lecture notes are distributed under a Creative Commons Attribution-ShareAlike 4.0
International License.
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ground-state electronic structure problem is solved on the fly, and the nuclei evolve on
the bare Born-Oppenhemier potential energy surface. Simulations employing empirical
force fields can include NQEs indirectly, by fitting the parameters of the inter-atomic
potential to experimental observables, or more directly using approximate techniques
such as Feynman-Hibbs effective potentials [3].
Solving the Schrödinger equation for the nuclei is impractical except for very simple

systems. Here we will discuss how the imaginary-time path integral formalism [4–7] can
be used to evaluate accurately NQEs in complex condensed-phase applications [8–10].
We will focus on static, equilibrium properties, but will briefly mention extensions
to the path integral formalism that can be used to treat approximately quantum
dynamics [11, 12]. We will focus on the case in which different nuclei can be treated as
distinguishable particles, which is the case except for cases at cryogenic temperatures.
Particle exchange statistics can be included within a path integral formalism, but at
the cost of considerable complication and an increase of the computational cost [5, 13].

1 Imaginary time Path Integrals
The path integral formulation of quantum mechanics makes it possible to express all

the quantities that describe a physical system in terms of averages the exponential
of an action over the possible paths joining two points in phase space – much like
the minimum action principle makes it possible to formulate classical mechanics as
the minimization of the action over a tentative path [4]. Furthermore, it makes it
possible to express the quantum mechanical partition function at inverse temperature
β = 1/kBT 2

Z = Tr e−βĤ

as the path integral

Z =
˛
D [q (τ)] e−

1
~
´ β~

0 [ 1
2mq̇(τ)2+V (q(τ))]dτ . (1)

The symbol
¸
D [q (τ)] · is a functional integral over all the possible closed paths in

configuration space, weighed with the exponential of an action-like integral over the
path. In the following we will discuss how to give a practical definition of Eq. (1), and
how to use this formalism to compute experimental observables including NQEs.

1.1 Trotter Factorization
Start by writing the partition function in the position representation

Z =
ˆ

dq1

〈
q1

∣∣∣e−βĤ ∣∣∣q1

〉
.

The Hamiltonian can be written as the sum of a potential and kinetic energy terms, Ĥ =
V̂ + T̂ , and the position ket is an eigenstate of the potential energy, so that e−βV̂ |q1〉 =
e−βV (q1) |q1〉. Unfortunately, one cannot factor e−βĤ into the product e−βV̂ e−βT̂ ,
because potential and kinetic energy are not commuting operators. However, the error
in doing such a factorization decreases when βĤ becomes small. So, one could write3

e−βĤ =
(
e−βĤ/P

)P
≈
(
e−βP V̂ /2e−βP T̂ e−βP V̂ /2

)P
+O

(
β2
P

)
,

which becomes exact in the P → ∞ limit. Note that we have also introduced the
shorthand βP = β/P . One can show that the partition function converges to the exact
quantum mechanical result with a leading error of O

(
β2/P 2), and in practice for a

2We consider for simplicity the case of a single particle with position q and mass m in an external
potential V

3Note that we use the Trotter splitting eA+B ≈ eA/2eBeA/2, which has a lower error than the
asymmetric splitting eAeB .

2



system with a maximum frequency ωmax one needs a number of imaginary time slices
that is at least a small multiple of β~ωmax.
One can then introduce P − 1 closure relations

´
dqj |qj〉 〈qj |, obtaining

Z ≈ ZP =
ˆ

dq1 . . . dqP
[〈
q1

∣∣∣e−βPV (q1)/2e−βP T̂ e−βPV (q2)/2
∣∣∣q2

〉
. . .

. . .
〈
qP

∣∣∣e−βPV (qP )/2e−βP T̂ e−βPV (q1)/2
∣∣∣q1

〉]
.

(2)

The terms with the potential energy are just numbers, that can be brought outside
the expectation values. One is then left with a series of terms corresponding to the
off-diagonal elements of the kinetic energy operator, that are readily evaluated by
transforming in the momentum representation:〈

qi

∣∣∣e−βP T̂ ∣∣∣qj〉 =
ˆ

dp
〈
qi

∣∣∣e−βP T̂ ∣∣∣p〉 〈p|qj〉 =

= 1
2π~

ˆ
dpe−βP p

2/2meip(qi−qj)/~ = 1
2π~

√
2πm
βP

e−
1
2βPmω

2
P (qi−qj)2

(3)

where we have used 〈p|q〉 = e−ipq/~/
√

2π~, performed the integral over the momentum
and introduced the spring constant ωP = 1/βP~. Plugging Eq. (3) into Eq. (2) one
finally obtains the path integral configuration partition function

ZP =
(

m

2π~2βP

)P/2 ˆ
dq1 . . . dqP e−βP

∑P

i=1[V (qi)+ 1
2mω

2
P (qi−qi+1)2] (4)

where cyclic boundary conditions are implied in the sum, i+ P ≡ i.
Ignoring for a second the immaterial pre-factor, let us discuss the connection between

Eq. (4) and the Feynmann path integral (1). Consider qi to be a discrete sample
from a continuous path, taken at τi = β~i/P . Then one can see the sum in the
exponential as a discretization of a Riemann integral, and (qi+1 − qi) / (τi+1 − τi) as
a finite-difference approximation to q̇ (τi)

β

P

P∑
i=1

(τi+1 − τi)
β~/P

[
V (qi) + 1

2m
(qi − qi+1)2

(τi+1 − τi)2

]
≈ 1

~

ˆ β~

0
dτ
[
V (q (τ)) + 1

2mq̇ (τ)2
]
,

and the multiple integrals over the qj coordinates as the discrete equivalent of the path
integral

¸
D [q (τ)]. Even though most path integral simulations can be implemented

and understood without reference to the formulation in terms of a functional integral,
it is useful to keep this limit in mind, particularly when writing estimators for physical
observables, that are usually better behaved when they can be written as the discretized
version of a corresponding continuous estimator.
Eq. (4) corresponds precisely tot the classical partition function of a cyclic polymer

composed of P atoms, each of which is subject to the potential V and of a harmonic
attractive interaction with its nearest neighbors. This isomorphism explains the use
of referring to the set of replicas for one atom as a “ring polymer” or a “necklace”
and to each replica as a “bead”. While this is a very suggestive metaphor, and can
also be extended to give a pictorial representation of the Monte Carlo moves that are
introduced to treat particle exchange effects [5], one has to keep in mind that in a
real system it is better to regard the path integral partition function as describing a
collection of “parallel universes”, with atoms interacting with each other within each
imaginary time slice and the kinetic part of the action corresponding to springs that
connect each atom to its counterpart in the two adjacent time slices (see Figure (1)).
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Figure 1: (Left panel) Cartoon representation of a classical ring polymer corresponding
to the discretized path integral partition function (4). (Right panel) In a multi-atom
setting, the ring polymer metaphor can be somewhat misleading. The path integral
partition function is best seen as a sequence of imaginary-time slices: atoms within each
replica interact with the physical potential, and the spring terms connect corresponding
atoms in adjacent slices.

1.2 Estimators
Having defined an isomorphism between the quantum partition function of a system

of distinguishable nuclei and the ring-polymer configurational partition function (4),
one may proceed to extract experimental observables. To do so, one has to introduce
appropriate estimators, functions of the coordinates of the ring polymer that correspond
to physical quantities. The simplest case is that of the potential energy, or of any
observable that depends solely on the position Â (q) such as a bond length, a radial
distribution function, or the relative stability of two configurations of atoms. The
quantum mechanical expectation value can be written as 〈A〉 = Tr

[
Âe−βĤ

]
/Tr e−βĤ .

The operator Â can be kept on the left, so that after the Trotter factorization and the
splitting of the integral it appears close to the 〈q1| in Eq. (2), yielding a term A (q1).
Since all the replicas are equivalent, one may as well average over the value of the
observable computed on all the beads, so that the expectation value reads

〈A〉P =
´

dq1 . . . dqP e−βP
∑P

i=1[V (qi)+ 1
2mω

2
P (qi−qi+1)2] 1

P

∑P
i=1A (qi)´

dq1 . . . dqP e−βP
∑P

i=1[V (qi)+ 1
2mω

2
P

(qi−qi+1)2]
. (5)

This average can be computed easily by sampling the ring polymer configurations
consistently with the ring polymer energy

∑P
i=1

[
V (qi) + 1

2mω
2
P (qi − qi+1)2

]
at the

inverse temperature βP , with Monte Carlo or (as it will be discussed in Section (2))
molecular dynamics, and accumulating statistics for each replica. Note that this does
not necessarily mean that averages will converge faster then if one was sampling just
one replica, as in classical sampling: different path integral replicas are typically highly
correlated with one another, which means that in practice very little is gained by
averaging over all the replicas.
While it is relatively simple to write an estimator for observables that depend only on

the positions, it is typically more complex to extract momentum-dependent quantities.
A good example is that of the total energy, that contains both the position-dependent
potential energy, but also a kinetic energy term. The simplest form of an estimator for
the total energy of the system can be obtained recalling the thermodynamic relation
between the partition function and the mean energy 〈E〉 = −Z−1∂Z/∂β. Once applied
to Eq. (2), this reads

〈E〉 =
´

dq1 . . . dqP e−βP
∑P

i=1[V (qi)+ 1
2mω

2
P (qi−qi+1)2]ETD (q1, . . . qP )´

dq1 . . . dqP e−βP
∑P

i=1[V (qi)+ 1
2mω

2
P

(qi−qi+1)2]
,

4



the ensemble average of the so-called thermodynamic energy estimator4

ETD (q1, . . . qP ) = P

2β −
1
P

P∑
i=1

1
2mω

2
P (qi − qi+1)2 + 1

P

P∑
i=1

V (qi) .

One can immediately recognize the estimator for the potential energy, and infer that
the thermodynamic estimator for the kinetic energy alone reads

TTD (q1, . . . qP ) = P

2β −
1
P

P∑
i=1

1
2mω

2
P (qi − qi+1)2

. (6)

Note that this estimator does not depend solely on the distribution of individual beads,
but also on the cross-correlations between different replicas in the ring polymer. This
is a general feature for non-local estimators that also contain a kinetic energy (or
momentum) contribution.
Unfortunately, the thermodynamic kinetic energy estimator (6) is not very efficient,

because its variance grows with the number of beads as P/β2 [14]. This means that
computing the average to a given accuracy becomes more difficult as the number of
replicas is increased, making the simulation even more computationally demanding.
Luckily, it is possible to exploit the virial theorem and do an integration by part to

derive the so-called centroid-virial kinetic energy estimator

TCV (q1, . . . qP ) = 1
2β + 1

2P

P∑
i=1

(qi − q̄)
∂V

∂qi
, q̄ = 1

P

P∑
i=1

qi, (7)

that does not exhibit this pathological behavior of the fluctuations [14]. This case
is a typical example of a recurring theme in path integral methods: one can write
estimators that yield the same average value, but have very different statistical
convergence properties. See for instance Ref. [15] for a discussion of efficient estimators
for the heat capacity, Ref. [16] for an estimator of the distribution of particle momenta,
and Ref. [17] for a comparison of different estimators for the isotope fractionation ratio
– the relative propensity of the isotopes of the same element for different stable phases.

1.3 High-order Path Integrals
We have seen that Eq. (2) can be seen as a discretized form of a line integral over

closed paths in configuration space. The error arising from using a finite P can be
seen as a discretization error, so one might wonder if it is possible to increase the
order of convergence by employing a different summation rule. The crux is the error
arising from splitting the exponential of the Hamiltonian, neglecting the commutator[
T̂ , V̂

]
. Hence, one can hope to increase the order of convergence by including extra

terms that also contain the commutator. A considerable amount of research has been
devoted to this topic, in part also because of a connection with algorithms to propagate
Hamiltonian dynamics in real time [15, 18–22]. Among the many factorizations that
have been proposed, one of the simplest and most successful is the Suzuki-Chin
propagator

e−2βĤ/P = e−
1
3βP V̂ee−βP T̂ e−

2
3βP V̂oe−βP T̂ e−

1
3βP V̂e +O

(
β5
P

)
, (8)

in which one introduces two distinct modified potential energy operators that act on
the odd and the even beads:

V̂e = V̂ + α

6mω2
P

∣∣∣∣∂V∂q
∣∣∣∣2 , V̂o = V̂ + 1− α

12mω2
P

∣∣∣∣∂V∂q
∣∣∣∣2 .

4When doing the derivation keep in mind that ωP = 1/βP ~ and that the constant scaling of ZP

also depends on β
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The parameter α ∈ [0, 1] can be tuned to optimize the prefactor for the discretization
error. The square modulus of the force can typically be computed without additional
effort, in particular when using molecular dynamics to sample the ring polymer
partition function, as we will discuss in Section 2. However, the factorization (8)
becomes problematic precisely when one wants to integrate the dynamics that arises
from V̂e,o: the derivative of |∂V/∂q|2 contains the second derivative of the potential,
which generally is considerably more computationally demanding than the force. In
these cases, one can get around this difficulty by sampling the Trotter partition function,
and using statistical reweighing to recover statistics consistent with the Suzuki-Chin
modified potential [15, 23–25]. This technique works very well for small clusters;
however, the difference between the Trotter and the Suzuki-Chin potential energy
is size-extensive, which means that it becomes progressively less efficient to include
reweighing factors in the averages as the number of atoms is increased, somewhat
limiting the applicability of this approach [24].

2 Path Integral Molecular Dynamics
As it has been already discussed at length, the ring polymer partition function (2)

only needs to depend explicitly on coordinates, and it can be sampled by Monte
Carlo techniques. While Monte Carlo moves can be very effective in sampling phase
space – and for instance they are used extensively in techniques to include particle
exchange statistics [13, 26] – they typically do not exploit the possibility of obtaining
the inter-atomic forces with little overhead over the calculation of the potential. In
many cases, particularly when one does not want to develop custom-tailored Monte
Carlo moves for the specific system at hand, it can be much more effective to sample
the Boltzmann distribution by integrating in time Hamilton’s equations

q̇ = ∂H

∂p
= p

m
, ṗ = −∂H

∂q
= −∂V

∂q
. (9)

In practice, it is easy to see that the constant pre-factor in Eq. (2) corresponds to a
Gaussian integral over a set of auxiliary variables that can be taken to be the conjugate
momenta to qi’s, so that one can equivalently write the ring polymer partition function
as

ZP = 1
(2π~)P

ˆ
dp1 . . . dpP

ˆ
dq1 . . . dqP e

−βP
∑P

i=1

[
V (qi)+

p2
i

2m+ 1
2mω

2
P (qi−qi+1)2

]
.

(10)
Note that the momenta pi are exclusively sampling devices, and are in no way related
to the physical momentum. Among other things, this means that one could change
the inertial mass in the p2

i /2m term to be something different from the physical
mass, with no other effect than changing the partition function by an immaterial,
temperature-independent scaling.

2.1 Implementation: Normal Modes Propagator
While the underlying idea behind path integral molecular dynamics (PIMD) is very

simple, there are some technical aspects that should be considered in order to obtain
an efficient implementation. Start by splitting the path integral Hamiltonian into a
“free-particle” component, and one that depends on the physical potential:

HP = H0 + VP =
P∑
i=1

[
p2
i

2m + 1
2mω

2
P (qi − qi+1)2

]
+

P∑
i=1

V (qi) .
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The free ring-polymer Hamiltonian H0 is just a multi-dimensional harmonic oscillator,
and therefore it can be diagonalized exactly by the unitary transformation

p̃j =
∑
i

piCij , q̃j =
∑
i

qiCij , Cij =
√

2
P
·


1/
√

2 j = 0
cos 2πij/P j < P/2
(−1)i /

√
2 j = P/2

sin 2πij/P j > P/2

.

q̃j and p̃j are the position and momentum of the j-th free-particle normal mode, which
has an associated frequency

ωj = 2ωP sin jπ/P (11)
. Considering that for a physical system that contains a normal mode of frequency
ωmax one has to use at least 2β~ωmax replicas, a converged PIMD calculation will
involve normal-mode vibrational frequencies larger than 4ωmax. This implies that in
principle one should use a much smaller time step to integrate the equation of motion
for PIMD compared to conventional classical molecular dynamics, adding further
computational burden to the technique.
Luckily, one can exploit the possibility of diagonalizing the free ring-polymer Hamilto-

nian to avoid reducing the time step. This can be achieved by doing a so-called staging
transformation [27], which will not be discussed here, or by performing the integration
in the normal modes basis. In the latter case, one can for instance manipulate the
inertial mass of the conjugate momenta in the normal modes representation, so as to
artificially slow down the dynamics of the fast ring-polymer normal modes without
changing the sampling properties. In most cases, however, this is not necessary:
one can perform a multiple time step procedure [28] to integrate the normal modes
analytically based on the evolution of a free ring polymer and then include the physical
potential using a velocity Verlet algorithm [29].
This is based on the symmetric Trotter splitting of the Liouville operator for HP

into the part related to H0 and that related to the physical potential L = L0 + LV .
Considering the evolution of the ring polymer over a time step ∆t

e−∆tL ≈ e−∆tLV /2e−∆tL0e−∆tLV /2.

This corresponds to the following recipe for the evolution across a time step:

pi ←pi −
∆t
2
∂V (qi)
∂qi

p̃j ←
∑
i

piCij q̃j ←
∑
i

qiCij(
p̃j
q̃j

)
←
(

cosωj∆t −mωj sinωj∆t
[1/mωj ] sinωj∆t cosωj∆t

)(
p̃j
q̃j

)
pi ←

∑
j

Cij p̃j qi ←
∑
j

Cij q̃j

pi ←pi −
∆t
2
∂V (qi)
∂qi

.

(12)

In practice, one could reduce the number of normal modes transformations (that can
be performed by fast Fourier transform, and therefore are not dramatically demanding
anyway) by keeping the momenta in the normal modes representation, and transforming
the physical forces in the normal modes basis. See for instance Ref. [30] for a discussion
of Eq. (12) in a many-atoms context.
It is also worth mentioning that whenever the inter-atomic potential can be split

in a part that varies on a short length scale (such as intra-molecular bends and
stretches) and a long-range scale (such as electrostatics) it is possible to use a so-called
ring-polymer contraction scheme [31, 32], that reduces the cost of the simulation by
computing the long-range part of the potential on a reduced number of replicas.
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2.2 Efficient Stochastic Thermostatting
Molecular dynamics generates trajectories that are consistent with Boltzmann distri-

bution. However, they do not yield ergodic sampling, because they conserve the total
energy and so a single MD simulation cannot account for the thermal fluctuations that
are characteristic of a constant-temperature ensemble, and that are needed to converge
averages based on the partition function (10). This fact has been recognized for a long
time, and led to the development of modified dynamical equations that describe the
heat exchange with a reservoir, and generate ergodic canonical trajectories [33–39]. In
principle, any of these techniques could be applied to PIMD, which is just classical
molecular dynamics in an extended phase space. Perhaps, the simplest technique to
be used in conjunction with the normal-modes propagation in Eq. (12) is one that
applies Langevin dynamics in the normal modes representation, so that the friction
can be tuned to match the critical-damping value for the free ring-polymer normal
modes. We introduce a Langevin term in the equation of motion for the momenta,
corresponding to a further term Lγ in the Liouvillian, that can therefore be split as

e−∆tL ≈ e−∆tLγ/2e−∆tLV /2e−∆tL0e−∆tLV /2e−∆tLγ/2.

This splitting corresponds to applying the following step

˙̃pj ← e−γj∆t/2p̃j +
√

(1− e−γj∆t)m/βnξj

twice per time step, immediately before and immediately after the Hamiltonian propa-
gator (12). ξj ’s are uncorrelated Gaussian random numbers, such that 〈ξj (t) ξj′ (t′)〉 =
δjj′δ (t− t′). Note that in the most naive implementation this step requires also to
transform forth and back to normal modes representation, a problem that is easily
circumvented by propagating the momenta in the normal modes form. The friction can
be taken to be γj = λωj , where ωjs are the free ring polymer normal mode frequencies,
and λ is a scaling that can be set to one to have critical damping of harmonic oscilla-
tions, or to a smaller value when one needs a more gentle thermostatting. The centroid
mode (that has zero frequency in the free particle limit) can be treated separately,
using either a white-noise Langevin thermostat or stochastic velocity rescaling [30, 38].

2.3 Approximate Quantum Dynamics
Even though path integral molecular dynamics is strictly speaking just a sampling

technique to obtain static, equilibrium averages, it can be used as the basis to compute
approximate time correlation functions that include some of the nuclear quantum
effects on dynamical properties. Examples of time-dependent properties that can
be estimated in this way include diffusion coefficients, reaction rates, vibrational
spectra. The two main techniques are centroid molecular dynamics (which amounts
at performing microcanonical molecular dynamics on the centroid potential of mean
force [11, 40]) and ring-polymer molecular dynamics (which corresponds to molecular
dynamics on the ring polymer potential energy surface, using the physical masses in
the definition of the Hamiltonian [12, 41, 42]. The use of both these techniques can be
only partially justified based on how they can capture quantum mechanical behavior
in some limits [43–47]. They typically behave similarly for dynamical properties that
evolve on a long time scale, but exhibit evident artefacts for short-time dynamics, e.g.
for the stretching modes in IR spectra [48]. Interestingly, using physical masses but
thermostatting the internal modes of the ring polymer – an approach that is half-way
between centroid and ring polymer molecular dynamics – eliminates the most apparent
artefacts of both techniques [49], providing a reliable albeit approximate technique to
probe the impact of quantum nuclei on vibrational properties.

3 Accelerating Convergence with Colored Noise
An alternative approach to accelerate the convergence of physical observables in

path integral molecular dynamics combines a simulation with a small number of
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replicas with correlated-noise Langevin dynamics [50, 51]. The idea is that a non-
equilibrium Langevin dynamics generates frequency-dependent fluctuations, that can
be used to mimic the effect of zero-point energy on a multi-dimensional harmonic
oscillator, without the need of knowing the normal modes frequencies or eigenvectors.
By combining colored noise with path integral molecular dynamics one can obtain a
simulation protocol that, in the harmonic limit, yields exact results for any number of
beads. As the number of replicas is increased, this protocol converges by construction
to PIMD, and so the method can be made as accurate as one wishes, and in most
cases has smaller errors than plain PIMD for any number of replicas.

3.1 A Brief Introduction to Colored Noise
Stochastic differential equations (SDEs) combine a random/noisy term together with

deterministic prescriptions for the time evolution of a system [52]. The prototypical
example for the application of SDEs to a physical problem is the Langevin equation,
that was originally introduced as a model for Brownian motion [53], and has been
used extensively to describe the coupling between an open system and an external
bath [54]. Langevin dynamics introduce a friction term −γp and a Gaussian random
force ξ on top of Hamiltonian dynamics

q̇ =p/m

ṗ =− V ′(q)− γp+
√

2mγ/βξ(t).
(13)

The balance between the noisy force (which is uncorrelated in time, 〈ξ (t) ξ (t′)〉 =
δ (t− t′)) and the friction guarantees canonical sampling at inverse temperature β.
If the problem of integrating out the degrees of freedom associated with the bath is

considered carefully [55, 56], one will find that in the general case it is not possible to
represent the effect of the bath by equations as (13), but that the friction and the noisy
form have to be associated to a finite memory kernel, leading to the non-Markovian
dynamics

q̇ = p/m

ṗ = −V ′(q)−
ˆ t

−∞
K(t− s)p(s)ds+

√
2m/βζ(t).

(14)

The autocorrelation of the noisy force H (t) = 〈ζ (t) ζ (0)〉 must be related to the
memory of the friction K (t) by a fluctuation-dissipation relation H (t) = K (t) to
guarantee constant-temperature sampling. Besides giving the possibility of modeling
the statistical mechanics and the dynamical behavior of an open system [57, 58], a
generalized Langevin equation of this form gives a great deal of freedom for manipulat-
ing the sampling properties of a molecular dynamics simulation by changing the form
of the memory kernels K (t) and H (t). However, integrating an equation of motion of
this form is not very practical, since one would need to generate Gaussian random
numbers with prescribed correlation [59], to store the past trajectory of p (t) and to
perform an integral over the past history to compute the friction term.
However, one can reverse the reasoning that leads to Eqs. (14) starting fromMarkovian

equations for the combined system/bath ensemble to show that a non-Markovian
dynamics for (q, p) can be obtained by supplementing the physical variables with a
vector s of ns fictitious momenta [60–62], and integrating the Markovian equations

q̇ =p/m(
ṗ
ṡ

)
=
(
−V ′(q)

0

)
−
(
app aTp
āp A

)(
p
s

)
+
√
m

(
bpp bTp
b̄p B

)(
ξ

)
,

(15)

in the extended phase space comprising (q, p, s). Let Ap and Bp be the full (ns + 1)×
(ns + 1) matrices in Eq. (15). The fluctuation-dissipation relation that guarantees
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canonical sampling is then Ap + AT
p = β−1BpBT

p . Eq. (15) corresponds to a non-
Markovian dynamics (14) with K (t) = 2appδ (t)− aTp e−|t|Aāp.
Formulating the Generalized Langevin Equation (GLE) in this Markovian form is

not only convenient for the sake of integrating the dynamics on a computer. If one
considers a harmonic model, for which the force V ′ (q) = mω2q is linear, the whole set
of dynamical equations for (q, p, s) constitutes a linear, Markovian stochastic differential
equation (an Ornstein-Uhlenbeck process [52]) that can be solved analytically. The
opportunity of computing exactly and inexpensively the response of a normal mode of
frequency ω to a given set of GLE parameters Ap and Bp makes it possible to optimize
iteratively the parameters to fulfill the desired sampling properties (e.g. ergodicity,
small disturbance on the dynamics, etc.) as a function of the normal mode frequency.
A crucial feature of Eqs. (15) that makes this approach very useful is that, when

applying identical equations with independent random terms to a set of degrees of
freedom, the behavior is invariant to a unitary transformation of the coordinates. This
property, that is a consequence to the linear nature of the SDE and to the Gaussian
statistics of ξ, means that one can apply the GLEs to the Cartesian coordinates of a
set of atoms and obtain the same response as if the GLEs had been applied to the
normal modes of the system. Hence, one can optimize Ap and Bp based on a simple,
one-dimensional harmonic oscillator model, but the predictions will be realized in a
real application without the need of knowing explicitly the normal modes. This idea
has been applied to obtain efficient sampling of many frequencies at the same time, and
to avoid disrupting adiabatic decoupling in Car-Parrinello molecular dynamics [39, 63],
but also to thermostat efficiently PIMD [30] and to stabilize resonances in multiple
time step integration [64].

3.2 Quantum thermostats
Generalized Langevin dynamics that satisfy the fluctuation-dissipation relation can

be used to alter the dynamical properties of a trajectory, and also to make sampling
more efficient in PIMD [30]. By releasing the constraint Ap + AT

p = β−1BpBT
p ,

one is effectively in a non-equilibrium scenario, that can be understood in terms of
simultaneous coupling to multiple heat baths at different temperature. The practical
effect of this simulation protocol is that a steady state will be reached, in which normal
modes of different frequency will have fluctuations that are consistent with different
values of the temperature. This peculiar non-equilibrium GLE is particularly useful to
model inexpensively the quantum nature of atomic nuclei.

Figure 2: The phase-space distribution of positions for a harmonic oscillator at finite
temperature T is a Gaussian, both in classical and quantum mechanical treatments.
The only difference between the two cases is the amplitude of the distribution. Quantum
fluctuations can be mimicked in a classical context by increasing the temperature T ?,
that however will be frequency dependent.

To see how, consider a one-dimensional harmonic oscillator of frequency ω, sampled
canonically at inverse temperature β = 1/kBT . The phase-space distribution of
position and momentum are Gaussian distributions ρ(p) ∝ exp−p2/2σ2

p and ρ(q) ∝

10



exp−q2/2σ2
q , irrespective of the underlying classical or quantum description. However,

the classical and quantum distributions differ because of the magnitude of fluctuations:
for a classical oscillator σ2

p = m/β and σ2
q = 1/βmω2, while for a quantum oscillator

σ2
p = m~ω

2 coth β~ω
2 and σ2

q = ~
2mω coth β~ω

2 . A classical oscillator would exhibit the
very same behavior as the quantum mechanical one if it were modelled at an effective
temperature

T ?(ω) =
〈
p2〉
mkB

=
m
〈
q2〉

kB
= ~ω

2kB
coth ~ω

2kBT
. (16)

such that the fluctuations match those predicted by quantum mechanics at temperature
T (see Figure 2).
The problem with this idea is that the effective temperature T ?(ω) depends on the

oscillator frequency as well as on the physical target temperature. In the case of a
multi-dimensional oscillator (that can be taken to be a decent model for a solid at
low temperature) one would need to associate a different temperature to each normal
mode. If one wanted to do so using conventional thermostatting, one would need to
know the normal modes frequencies and phonon displacement patterns, and apply
tailored white-noise thermostats at different temperatures working in the normal
modes representation. The advantage of a non-equilibrium GLE formulation, instead,
is that the dynamical response of the system determines the fluctuations along different
directions automatically, without the need of knowing the normal modes of the system
being studied. If one can fit a set of Ap and Bp parameters that enforce the frequency-
dependent temperature (16) for any frequency within a range that encompasses the
vibrational modes relevant for the system at hand, then it suffices to apply the same
GLE to each Cartesian degree of freedom. The quantum T ?(ω) is then enforced
automatically, giving quantum fluctuations at the cost of conventional molecular
dynamics.
This “quantum thermostat” (QT) idea [63, 65] works surprisingly well also for strongly

anharmonic potentials, and the main limitation when applying it to real systems does
not depend much on failure to describe strongly anharmonic behaviour. One can see
that large deviations from quantum behavior are due to zero-point energy leakage,
i.e. to the fact that due to weak anharmonic coupling between normal modes energy
flows from the fast normal modes, that are thermostatted at high T ? to account
for the large zero-point energy, to slow normal modes that are nearly classical [63].
This energy flow was not accounted for when designing T ?(ω), and so there will be
a (significant) deviation between the desired quasi-harmonic quantum fluctuations
and the actual fluctuations. This problem is common to semi-classical methods to
treat quantum nuclear effects [66], and has been also recognized in other stochastic
approaches to obtain approximate quantum effects [67, 68]. Rather than trying to
remedy this problem by exploiting information on the anharmonic couplings – which
would be an ad-hoc, non-transferable solution, requiring in-depth knowledge of the
system – one can control zero-point energy leakage by exploiting the tunability of the
GLE thermostats, enforcing a strong coupling across the whole frequency range so as
to counterbalance effectively the zero-point energy leakage. This approach improves
significantly the performance of the quantum thermostat when applied to anharmonic
problems [63, 69], and made it possible to describe qualitatively the role of NQEs in
several real applications.

3.3 Combining Generalized Langevin Equations and PIMD
The approximations behind the quantum thermostat and related semi-classical

methods are basically uncontrolled, and very hard to gauge unless it is possible to
perform a harmonic analysis. Therefore, the quantum thermostat can be regarded
as an inexpensive technique to assess qualitatively the importance of NQEs, but it
is not recommend if one wants to infer quantitative conclusions. One could think to
combine colored-noise and path integral molecular dynamics: the former is only exact
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in the harmonic limit, while the latter converges systematically but often requires a
large number of replicas and is therefore computationally demanding.
The crux is designing a GLE thermostat that enforces exact quantum fluctuations

in the harmonic limit for any number of replicas, even in cases where PIMD alone
would be far from converged. Such a PI+GLE method inherit from the quantum
thermostat the property of being exact for harmonic problems, and naturally converge
to (Boltzmann-sampled) PIMD when the number of beads is large enough to have a
converged result in the absence of correlated noise.
In order to work out the properties of the GLE that would achieve this goal, one can

proceed in the same way as with the quantum thermostat, only considering that now, in
the presence of a harmonic potential of frequency ω, the normal mode frequencies will
be changed from the free-particle value (11) and become ωj =

√
ω2 + 4P 2 sin2 jπ/P .

These are the frequencies that will be picked up by the colored-noise dynamics. Intro-
ducing a frequency-dependent configurational temperature T ∗(ω) =

〈
q2〉 (ω)mω2/kB

(momentum fluctuations are not important per se in a PIMD framework), one gets
the requirement for having quantum fluctuations of the beads to be

mω2

kBT

〈
q2〉 = mω2

PkBT

∑
i

〈
q2
i

〉
= mω2

PkBT

∑
j

〈
q̃2
j

〉
= 1
P

∑
j

T ∗(ωj)/T
ω2
j /ω

2 = ~ω
2kBT

coth ~ω
2kBT

.

(17)
Since ωj depends on the physical frequency ω, Eq. (17) must be seen as a functional
equation that defines the T ∗(ω) curve. As shown in Ref.[50], Eq. (17) can be conve-
niently written as a function of the a-dimensional parameter x = β~ω/2, that expresses
qualitatively how much an oscillator deviates from a classical behavior, and can be
solved numerically with an iterative technique. As the number of path integral replicas
is increased, the curve remains constant up to a larger value of x, that corresponds to
the fact that PI+GLE behaves as conventional PIMD with Boltzmann sampling of the
ring-polymer Hamiltonian for oscillators with larger and larger frequency. This implies
that PI+GLE is bound to converge to the exact quantum averages, just because in
the large P limit it converges to PIMD.
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Figure 3: The average value of the potential energy, the virial kinetic energy and the
constant-volume heat capacity for a simulation of a flexible water model [70] at T
= 298 K, plotted as a function of the number of beads. The results obtained with
conventional PIMD and PI+GLE are compared, and the value of V obtained with the
original quantum thermostat (QT) is also reported.
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Figure 3 shows the convergence with number of beads of potential and kinetic energy
for a quantum simulation of an empirical water model [70] at room temperature,
comparing plain PIMD and PI+GLE. Colored noise accelerates dramatically the
convergence of observables to the quantum expectation values, and the possibility
of converging results systematically makes it possible to assess the error. A careful
examination of Figure 3 shows that the mean kinetic energy 〈T 〉 converges somewhat
more slowly than 〈V 〉.
This is due to a specific shortcoming of PI+GLE, that becomes clear when one

considers the expression for the centroid-virial kinetic energy estimator 7 in a one-
dimensional harmonic potential, that reads:

〈T 〉 = 1
2β + 1

2P ω
2
P−1∑
i=0

〈
q2
i

〉
− 1

2ω
2 〈q̄2〉 =

= 〈V 〉+ 1
2β −

1
2ω

2 〈q̄2〉 . (18)

The quantum mechanical expectation values for potential and kinetic energy of a
harmonic oscillator of frequency ω read

〈V 〉 = 〈T 〉 = ~ω
4 coth β~ω2 , (19)

so it is not sufficient that the fluctuations of q are consistent with 〈V 〉 = ~ω
4 coth β~ω

2 ,
but it is also necessary to make sure that the fluctuations of the centroid satisfy
1
2ω

2 〈q̄2〉 = 1
2β . This observation is a sign of a general limitation of the PI+GLE

scheme, that enforces only quantum fluctuations for the “marginal” distribution of the
beads, which is sufficient to guarantee accelerated convergence of any observable that
depends only on q but does not necessarily help converging more complex estimators
that also depend on the correlations between different beads.
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Figure 4: The quantum contribution to the potential energy, and to the kinetic energy
of hydrogen and oxygen atoms as computed by the centroid virial estimator for a
simulation of a flexible water model [70] at T = 298 K, plotted as a function of the
number of beads. Note the much accelerated convergence rate of the kinetic energy
when using PIGLET compared to PI+GLE.

Fortunately, it is relatively easy to extend the PI+GLE idea to include further
correlations. When PIMD is propagated in the normal modes representation as
discussed in Section 2 one can apply different thermostats to the various normal
modes, and tune them separately to warrant faster convergence of multiple estimators
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simultaneously. This idea is used for instance in the PIGLET scheme [51] to converge
simultaneously structural observables and the centroid-virial kinetic energy estimator,
obtaining a further improvement over the PI+GLE scheme, as shown in Figure 4.
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