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Hands-on exercises on a Lennard-Jones 38 cluster

The system that will be examined is a clusters of 38 atoms interacting with a simple
Lennard-Jones (LJ) potential:
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where ε is the well depth and 2 1
6σ is the equilibrium separation for a diatomic molecule.

This potential describes dipole fluctuation attractive interactions that decay as r−6, and a
somewhat arbitrary r−12 repulsive wall at short inter-atomic separations, that models the
Pauli repulsion between electron clouds. The Lennard-Jones potential is a good model for
the interaction between noble gases atoms, but here we will use it just as an inexpensive
model of an isotropic pair-wise interaction between atoms. In all the exercises reduced
units will be used, that correspond to measuring energies and temperatures in units of ε,
distances in units of σ, time in units of t∗ =

(
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)
, and temperature in units of T ∗ =
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)
.

In practice this amounts at setting to one most constants: in principle all results can be
scaled to the physical values for a particular system by setting the appropriate mass, well
depth and equilibrium distance.
A LJ cluster provides a particularly useful model system since for small LJ clusters

a complete enumeration of the minima and transition states allows a detailed view of
the potential energy landscape [1]. In particular the LJ38 , the cluster which we study
here, has a double-funnel landscape: the global minimum is a face-centered-cubic (fcc)
truncated octahedron (Fig. 1(a)) and the second lowest energy minimum is an incomplete
Mackay icosahedron (Fig. 1(b)).

Figure 1: (a) The LJ38 global minimum, an fcc truncated octahedron. (b) and (c) Second
lowest energy minimum of LJ38. Figure adapted from [2].

There is thus a solid–solid transition at moderate temperatures and a subsequent solid–
liquid transition at higher temperatures. The solid–solid transition occurs because the
energy landscape in the high-temperature phase is flatter, resulting in a larger entropic
contribution to the free energy of this structure, and to its stabilization at moderate
temperatures relative to the fcc minimum [3]. Figure 2 shows a few selected configurations
for this system, together with the free energy computed close to the solid-liquid transition
temperature. The stability of different configurations depends dramatically on the sim-
ulation temperature, and the time scales for transitions is long, but accessible to direct



simulation thanks to the small size and inexpensive potential. This makes LJ38 an ideal
example to show the strength and pitfalls of different sampling techniques in atomistic
simulations.

Figure 2: A number of representative configurations of the LJ38 cluster are projected
together with the free energy surface computed at 0.18T ∗. Figure adapted from [3]

Sketch-map analysis
In this exercise we will focus on post-processing the results of molecular dynamics

simulations to determine machine-learning collective variables (CV) that can give you
a better understanding of the configuration space of LJ38, and of the shortcomings of
conventional CVs even in such a simple system.
We will use the sketch-map method [3], and the suite of programs that can be downloaded

from http://epfl-cosmo.github.io/sketchmap.
We will first extract a set {Xi} of reference configurations, described in terms of the

set of all coordination counts between 4 and 13, and find their sketch-map projection by
minimizing the objective function

χ2 =
N∑

i,j=1
[s (|Xi −Xj |)− s (|xi − xj |)]2 . (1)

Having obtained this map, one can more easily find the out-of-sample embedding of the
remaining points, and analyze the simulation based on the map obtained by machine-
learning.
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Extracting landmark points
Since the cost of minimizing iteratively Eq. (1) grows quickly with the number of reference

points, so it is important to select a sub-set of the data from which one wants to build the
map. The mdcode generates a set of configurations by running molecular dynamics, and
also compute a smooth histogram of the coordination numbers of the atoms in the cluster

nc =
N∑
i=1

e− (ci−c)2

2σ2 ,

where ci is the coordination number of atom i, defined in turn as

ci =
∑
j

C (|qi − qj |) , C (d) =


0 d > r0

1 d < r1

(y − 1)2 (2y + 1) r1 < d < r0, y = d−r1
r0−r1

.

The variable nc corresponds approximately to the number of atoms in the structure with
a coordination number around the value c. Run the code with
$ mdcode input . cv > log

Then, use dimlandmark to extract 500 reference points from the dataset:
$ awk ’{ i f (NR%10==0) p r i n t $0 } ’ out . a l l | \

dimlandmark −D 10 −n 500 −w −unique −mode staged \
−gamma 0 .5 −wgamma 0 .5 > l j 3 8 . lm

Read the help string of the program (dimlandmark -h) to get a description of the options.
Note that we pre-select a subset of the data set to speed up the evaluation. The staged
mode of selecting the landmarks is a two-step procedure in which a larger set of points is
chosen, approximately uniformly spaced one from another. Then, the probability density
in the D dimensional space is estimated, and it is used to select the n landmark points
according to P (X)γ . You can try to visualize the selected landmarks with gnuplot, to
see how they change when the value of γ is modified
gnuplot> p ’ l j 3 8 . lm ’ u 3 :5 w p

Analyzing the distribution of data points
Sketch-map is based on restricting the similarity matching that underlies MDS methods

to the range of distances that characterize adjacent meta-stable states. Compute the
distribution of individual CVs, e.g. by
$ awk ’{ p r i n t $3 } ’ out . a l l | \

histogram −x i 0 −xf 25 −n 500 −t 0 . 1 > n6

and look at the amplitude of fluctuations around maxima of the histogram in each
dimension. Note that there are multiple scales in the fluctuations in probability density –
sharp peaks with a width of about 3 units, superimposed with broad features with much
larger breadth of about 5 units. This is a common problem when analyzing atomistic data
in a glassy free-energy landscape – multiple shallow minima are grouped together to form
extended regions of similar, closely-related structures. Also, consider that fluctuations in
D dimensions are approximately

√
D times broader than their one-dimensional projections,

so depending on the resolution one wants to achieve one might want to select a threshold
parameter for sketch-map between 1.5 and 10 units.
You may also want to compute the histogram of D-dimensional distances. Typically

one wants to select a cutoff somewhere before the maximum of the distribution, which is
dominated by long-range features
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$ awk ’{ i f (NR%10==0) p r i n t $0 } ’ out . a l l > tmp
$ dimdist −D 10 −P tmp −maxd 20 −nbin 200 −lowmem > l j 3 8 . h i s t o

Sketch map uses a sigmoid function defined as

s (r) = 1−
(

1 +
(

2a/b − 1
)

(r/σ) a
)

−b/a.

You may want to plot it superimposed with the histogram of pairwise distances to get a
feeling of how different sets of distances are transformed by the function:

gnuplot> f ( r , s , a , b)=1−(1.0+(2∗∗(a ∗1 .0/b)−1)∗( r / s )∗∗ a)∗∗−(b∗1 .0/ a )
gnuplot> p ’ j38 . h i s to ’ u 1 : ( $2 ∗10) w l , f (x , 5 , 8 , 1 )

Run sketch-map
Being an iterative minimization scheme, sketch-map requires a decent starting configura-

tion and an optimizer that can get out of local minima to approach a global optimum.
Without getting into details, you can use a simple script that takes care of the optimization
procedure. Remember to delete the two-lines header of lj38.lm before proceeding.

$ sketch−map . sh
Please ente r the d imens i ona l i t y o f input data 10
Are po in t s weighted [ y/n ] ? y
Please ente r the p e r i o d i c i t y o f input data [ 0 i f non−pe r i o d i c ] 0
Please ente r the input data f i l e name l j 3 8 . lm
Please ente r the output data p r e f i x l j 3 8 . 5_8_1−5_2_2
Please ente r high dimension sigma , a , b [ e . g . 6 . 0 2 6 ] 5 8 1
Please ente r low dimension sigma , a , b [ e . g . 6 . 0 2 6 ] 5 2 2

You can then remove intermediate files and diagnostics, and assemble a file with just the
low-dimensional coordinates of the landmarks

$ rm log g l oba l .∗ l j 3 8 . 5_8_1−5_2_2.∗ [ 0 −9 ]
$ awk ’!/#/{ pr in t $1 , $2 } ’ l j 3 8 . 5_8_1−5_2_2 . gmds > l j 3 8 . ld

• Visualize the projected points, and verify by coloring how the sketch-map coordinates
separate clearly points with different nks

gnuplot> p ’< paste l j 3 8 . ld l j 3 8 . lm ’ u 1 : 2 : 5 w p pt 7 l t pa l

• [OPTIONAL] Try to run projections with different parameters – σ, a, b – and verify
how much the projection changes

Out-of-sample embedding
Having obtained a map that assigns to each of the high-dimensional landmark points a

corresponding embedding, one can proceed to project all the data in the original trajectory.
You should use the utility dimproj to do so, specifying the high and low-dimensional
references, the sketch-map parameters and giving in input the full trajectory:

$ dimproj −D 10 −d 2 −P l j 3 8 . lm −p l j 3 8 . ld −w −g r id 15 ,16 ,151 \
−cgmin 3 −fun−hd 5 ,8 ,1 −fun−ld 5 ,2 ,2 < out . a l l > \
out . p ro j 2> /dev/ nu l l

Make sure to discard the error log: this is development code and outputs a lot of junk
that you don’t need to worry about at this stage.

• Compute the free energy from the sketch-map projection. A (long) one-liner to do
this is as follows
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$ awk ’{ p r i n t $1 , $2 } ’ out . p ro j | ndhistogram −d 2 −g −x i −15,−15 \
−xf 15 ,15 −n 150 ,150 −t 0 . 2 , 0 . 2 −adapt ive 0 .25 | \
awk −v kt=0.168 ’BEGIN{ pr in t "# s1 s2 F( s1 , s2 ) " } \
!/#/{ i f (NF==0) pr in t " " ; e l s e p r i n t f "%15.7 e %15.7 e %15.7 e\n " , \
$1 , $2 , −kt∗ l og ( $3 ) } ’ > smap . f e s
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