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Motivation 

Band gap error 
 Huge errors in band gaps 
 Electronic properties: Prediction of defect properties 

is difficult  
(or impossible) 
 

Errors in total energies 
 Van der Waals bonding  
 Covalent bonding 
 Strong correlation 
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Motivation 

Accurate total energies for extended systems 
 
 
 

 

 
For solids no method yet  
available 
 Chemical accuracy 

 Lattice constants to within 0.1 % 
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Motivation: We do need more accurate methods 
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Available DFT methods for solids  
and surfaces have issues 
 Band gaps much too small 

 Van der Waals interactions 

 DFT far from chemical accuracy  
even for simple metals and  
simple covalent systems 

 Strongly correlated electrons 

We need something more accurate 
 In solid state physics, we almost exclusively compare with experiment 

rarely with more accurate methods 

 For small molecules validation exists: hierarchy of QC methods  
CI → coupled cluster → Møller Plesset perturbation theory 

 

 

ΔH (kJ/mol) PBE  EXP  

Al+N2→AlN  262  350 

Mg+H2→MgH2 52  78 

Si+C→SiC  51  69 

CO→CO@Rh 183 144 



Motivation: Why not only DFT 

DFT: Things users despise  
(Burke, JCP 136, 150901) 
 No simple rule for reliability 

 No systematic route to improve 

 Too many functionals to chose from 

 Can only be learned from a DFT guru 

No functional serving all needs is in sight,  
although the number of functionals is huge  

Our goal since about 2005:  
 Find something that works in most cases – black box 

 No strong correction in this talk 
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Overview 

Introduction 
Total energies from diagrammatic methods 
 Full CI methods 
 MP2, and coupled cluster methods 

Approximation methods 
 RPA 

Review of results 
 Prototypical systems 
 d-metals 
 Surface energy and adsorption energies 

Errors introduced by RPA 
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The problem of DFT: Correlation 

Electrons are correlated, when one electron is to the left the other one 
will try to avoid this region and move over to the right, and vice versa 

This is intrinsically non-local and although DFT should be able to 
handle this situation, it is very difficult to obtain this information from 
the density alone 

nucleus 
- electron 

+   hole 

P 

P 

Ψ(𝐫𝟏 − 𝐫𝟐, 𝐫𝟑, …) 
 

Cusp for non-equal spin 
 
Exchange for equal spin 

𝐫𝟏 − 𝐫𝐫 

- electron 

nucleus 1 

nucleus 2 

+   hole 

Van der Waals   



Correlation energy in quantum chemistry 

Correlation energy is defined as the difference between 
the exact energy and the Hartree Fock energy 

Often obtained by order by order perturbation theory 

As before, summing an infinite subset of diagrams is 
desirable:  
in many cases order by order perturbation theory 
diverges, whereas the infinite sum converges  

 

 Consider Taylor expansion of l𝑛 1 − 𝑥 : 

 l𝑛 1 − 𝑥 + 𝑥 = −𝑥2

2
 −𝑥3

3
− 𝑥4

4
− … 
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Overview 

Introduction 
Total energies from diagrammatic methods 
 Full CI methods 
 MP2, and coupled cluster methods 

Approximation methods 
 RPA 

Review of results 
 Prototypical systems 
 d-metals 
 Surface energy and adsorption energies 

Errors introduced by RPA 
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Converges slowly 
with number of 
excitations 

Not size extensive, 
if truncated 

Scales combinatorial 

 

32 orbitals/ 8 elect. 
32
8 ≈ 1026  

coefficients 

 

 

 

Quantum Chemistry methods: CI expansion 

14 9/23/2015 Total energy from many body perturbation theory 
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HF determinant 
or KS determinant 

0Ψ
a
iΨ

i 

a 

ab
ijΨ

a 

b 

i 

j 

...,...),,(
,,

0321 +Ψ+Ψ+Ψ=Φ ∑∑
abij

ab
ij

ab
ij

ai

a
i

a
i TTrrr

)()( rrh nnn φεφ =



The crux of CI expansion (including RPA) 

Energies and QP energies converge like  
1/total number of basis functions irregardless of basis func.  
This is known since decades in QC; 
alleviated using f12  methods and RI, Jastrow factor 
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Kutzelnigg, Theor. Chim. Acta 68, 445 (1985). 
Harl, Kresse,  PRB 77, 045136 (2008). 
Shepherd, et al. PRB 86, 35111 (2012). 
 
 
Klimes, Kaltak, Kresse, PRB 90, 075125 
(2014). 
 
 
 
 



Booth, Thom, A. Alavi, J. Chem. Phys. 131, 054106 (2009). 
 
 
 
 
 
 
 
 
 
 
 
32 one-electron orbitals → 32 bits to encode one walker = determinant  
+ counter to count number of walkers on that determinant 
    on some determinants (e.g. HF) millions of walkers are located 
    on other tiny probability to find any walker 

Full CI-QMC in a nutshell 
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Intro CI/CC RPA Conc. 



Game of live and death 

Master equation for spawning new walker on determinant I from 
a specific starting determinant J  
(Schrödinger equation in imaginary time) 
 
 
 
 
HIJ is the matrix element of the many electron Hamiltonian 
between determinant I and determinant J 
 Hamiltonian contains only 1- and 2-electron operator (v) 
 The determinants can only differ by at most 2 occupied and 2 

unoccupied indices 
 𝜀 > Eground-state number of walkers increases 
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−
𝑑Ψ𝐼

𝑑𝑑
= 𝐇𝐼𝐼 − 𝜀 Ψ𝐼 + �𝐇𝐼𝐼Ψ𝐽

𝐽

 

Intro CI/CC RPA Conc. 

Booth, Thom, A. Alavi, J. Chem. Phys. 131, 054106 (2009). 



Issues: why live is never simple 

There are two many electron wave functions that solve  
the Schrödinger 𝐻Ψ = 𝐸Ψ equation 
 

 
Walkers with positive and negative sign on the same 
determinant will annihilate each other 

Will sign coherence for wave functions ever be realized, or 
could a “phase” separation occur ? 

Yes, however, the number of necessary walkers grows 
weakly exponentially (NP hard problem) 

Initiator method helps to reduce pre-factors 
 
 18 9/23/2015 Total energy from many body perturbation theory 

ΨΨ± ϕiesolids in or;

S10-I8 Alavi; Cleland, Booth, and A. Alavi, J. Chem. Phys. 132, 041103 (2010). 



Perturbation theory:     H�DFT→H�many−body 
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Single 
excitation 

Double 
excitation 

Ground state orbitals: 
HF determinant 
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Start from density functional theory 

1st order perturbation theory is simple 
Evaluate the total many electron energy using the previously 
determined occupied DFT or HF one-electron orbitals 

For DFT orbitals 
 

 

HF energy using the DFT orbitals 

 

Diagrams: 

Perturbation theory, 1st order 
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EXX
i EiEH =∈=ΨΨ − occ})|({ˆ DFTHFDFT

0
bodymanyDFT

0 φ

Hartree              exchange 
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Perturbation theory: single excitations 
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Single 
excitation 

Double 
excitation 

Ground state orbitals: 
HF determinant 
or KS determinant 
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2nd order: “Singles”  
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Standard Rayleigh–Schrödinger 2nd order PT: 

 Singles 

 

 

 

For DFT orbitals 
 
 
 

Singles are zero for HF orbitals, since 𝑉�HF − 𝑉�HF = 0 

A. Szabo and N. S. Ostlund, Modern Quantum Chemistry (McGraw-Hill, 1989) 
X. Ren, A. Tkatchenko, P. Rinke, and M. Scheer, PRL 106, 153003 (2011). 



2nd order: “Singles” 

 
Change of one electron orbitals as a result of change from 
DFT to HF Hamiltonian 
 
 

 
Resultant change of HF energy 
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S6-I4: X. Ren, A. Tkatchenko, P. Rinke, and M. Scheer, PRL 106, 153003 (2011).  
A. Szabo and N. S. Ostlund, Modern Quantum Chemistry (McGraw-Hill, 1989). 



In 2nd  order already 11 diagrams containing 𝑉�𝑒𝑒𝑒: 
 
 
 
 
 
 
 
 

− sign from 𝑉�𝑒𝑒𝑒 
is given explicitly, sign related to topology not 

− in HF: 𝑉�𝑒𝑒𝑒 
cancels all 9 diagrams containing non-propagating 

connections (on the same Coulomb line), only MP2 remains 
In DFT diagrams need to be included 

Hartree-Fock refrence (2) 
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Diagrams and Green’s function 

Straight line = Green’s function describing the propagation of 
an electron or hole from position and time (𝐫1, 𝑡1) to (𝐫2, 𝑡2) 
Particle propagator G(1,2)= G(𝐫1, 𝐫2, 𝑡2 − 𝑡1)    𝑡2> 𝑡1 

 
 
 
 
 
Hole propagator      G(1,2)    𝑡2< 𝑡1 

∑
∈

−−−=
virta

))((
21

*
0

12)()()2,1( tti
aa

FaeG εεφφ rr

∑
∈

−−−−=
occ.i

))((
21

*
0

21)()()2,1( tti
ii

FieG εεφφ rr

a

))(( 12 tti Fae −−− εε

a

i

))(( 12 tti Fie −−− εε

i

QC: 
propagation by  
unperturbed H 

time 
𝑡1 

𝑡2 

𝑡2 

𝑡1 



The two first order diagrams (single Coulomb line) yield just the 
Hartree and exchange energy  
(sign depends on # of closed Fermi-loops) 
Hartree 
 
 
 
 
 
 
 
 
 
exchange 

Example two simple diagrams 
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2nd order or Møller–Plesset - MP2  
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Single 
excitation 

Double 
excitation 

Ground state orbitals: 
HF determinant 
or KS determinant 
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2nd order: Doubles  
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Again standard  2nd order PT 
 Doubles in 2nd order perturbation theory 

 
 

 
Vacuum fluctuations 

A. Szabo and N. S. Ostlund, Modern Quantum Chemistry (McGraw-Hill, 1989) 

Direct (from Hartree) Second order exchange 

v time 
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In 2nd  order already 11 diagrams containing 𝑉�𝑒𝑒𝑒: 
 
 
 
 
 
 
 
 

− sign from 𝑉�𝑒𝑒𝑒 
is given explicitly, sign related to topology not 

− in HF: 𝑉�𝑒𝑒𝑒 
cancels all 9 diagrams containing non-propagating 

connections (on the same Coulomb line), only MP2 remains 
In DFT diagrams need to be included 

Hartree-Fock refrence (2) 

29 9/23/2015 



How good is Hartree-Fock + MP2 

MP2 can be great for large band gap systems such as water, 
ice and small molecules 

For solids, low order perturbation theory is however bound to 
fail as already realized by L. Hedin 

MP2 over- or under-correlates in a non systematic manner 
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MP2 for solids: Atomization energies 

• Not bad 
• But universal “trends” not obvious 
• Divergent for systems without a gap 
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Solids are different  
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-1 

In solids the „other“ electrons strongly screen the interaction 
between any two particles: Nozières and Pines, L. Hedin 

Results for small molecules do not prove that a method can be 
applied to solids 

Intro CI/CC RPA Conc. 



RPA: all bubble diagrams   
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Intro CI/CC RPA Conc. 

Nozières and Pines, Phys. Rev. 111, 442  



Coupled cluster methods 

Scale only algebraically with systems size  
 
Kümmel (quote from wikipedia): 
 

Considering the fact that the CC method was well understood around the 
late fifties it looks strange that nothing happened with it until 1966, as Jiři 
Čížek published his first paper on a quantum chemistry problem. He had 
looked into the 1957 and 1960 papers published in Nuclear Physics by Fritz 
and myself. I always found it quite remarkable that a quantum chemist would 
open an issue of a nuclear physics journal. I myself at the time had almost 
gave up the CC method as not tractable and, of course, I never looked into 
the quantum chemistry journals. The result was that I learnt about Jiři's work 
as late as in the early seventies, when he sent me a big parcel with reprints 
of the many papers he and Joe Paldus had written until then. 
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Herman Kümmel, Fritz Coester (nuclear physicists) 



Coupled cluster methods 
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groundstate must be close to starting determinant 
Set of linked diagrams (coupled cluster) 
 
 

Coester & Kümmel;  Čížek, J. Chem. Phys 45, 4256 (1966); Monkhorst, Bartlett 
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Intro CI/CC RPA Conc. 
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Projected Coupled cluster methods 
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Linear coupled cluster doubles (LCCD) 
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Linear CCD: diagrammatic representation 
By means of this equation all bubble and ladder diagrams 

(p-h, p-p, h-h) are summed to infinity 
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LCCD: all diagrams with two particle-hole pairs 

Goldstone diagrams with two particle-hole pairs at any time point 
• Includes RPA 
• Includes particle-hole RPA of W. Yang, t-matrix 
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….. 

time RPA 

particle-hole ladder hole-hole ladder 

part.-part. ladder 

RPA 

2nd order in v 3nd order in v 4th order in v 



Anti-symmetry and particle-particle ladders 

All involved four orbital integrals are always  
anti-symmetrized, particle-hole ladders are bare in CCSD 
 
 
 

 
 
 
 
Particle-particle and hole-hole ladder diagrams are also 
included (with bare Coulomb interaction) 
Screened ladders enter in CCSDT and  
to 2nd order in CCSD(T) 
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The coupled cluster hierachy (rank) 
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Full CI versus MP2, CCSD and CCSD(T) 

MP2 underestimates correlation energies by 20 % 
CCSD lacks correlation energy by 5 % 
CCSD(T) over-correlates with maximum deviations of 2 % 
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Correlation energy in the solid 

Booth, A. Grüneis, G. Kresse, and A. Alavi, Nature 493, 365-370 (2013) 

To make FCI 
possible  
8 orbitals and 
(2x2x2) k-points 



CCSD(T) at the basis set limit 

CCSD(T) at basis set limit compared to experiment 
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LiH kJ/mol 
HF 346.3 

MP2 460.3 
CCSD 474.6 

CCSD(T) 479.5 
CCSDT 1  480.7* 

Exp. 479.0 

1 hierarchical approach 
using clusters:  
Nolan, Gillan, Alfe, Allan, 
Manby, PRB 80, 165109 
(2009) 

Booth, A. Grüneis, G. Kresse, and A. Alavi, Nature 493, 365-370 (2013) 



Small molecules: CCSD(T) & diffusion MC 

Diffusion MC has a “Fermion” sign problem 
Fixed node approximation: fix nodal surface to  
HF or DFT determinant and perform Bosonic QMC 
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Nemec, Towler, Needs, 
J. Chem. Phys. 132, 34111 (2010) 



What can we do for materials science 

Full CI-QMC is extremely powerful, but for the 
foreseeable future limited to small systems 
 Weakly exponential in the number of electrons N=50 

diffusion Monte-Carlo can go much larger 

Quantum Chemistry methods CCSD and CCSD(T) 
 Can be very accurate 1 kcal/mol 
 Unfavorable scaling with system size N6-N7 

 Unoccupied orbitals 𝑁4
unoccupied   

20.000 hours for two atoms in the unit cell 
 f12  methods and RI, Jastrow factor (Andreas Grüneis) 
 Chose selected diagrams  
 We absolutely need poor’s man methods 
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Booth, A. Grüneis, G. Kresse, and A. Alavi, Nature 493, 365-370 (2013) 



Outline 

Motivation: why do we need methods beyond DFT 
An introduction to quantum chemistry methods 
 Diagrams and Green’s functions 
 Full Configuration Interaction (Full CI) 
 Perturbational: CI singles and doubles 
 Resummation: coupled cluster methods 
 Simplified methods: RPA + SOSEX + singles 

Results: 
 Validation of coupled cluster methods for solids 
 Simplified methods: RPA + SOSEX + singles 

Outlook: the many things that remain to be done 
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Start from DFT add MBP 

Standard Quantum Chemistry: Hartree-Fock add correlation 
 The mean field approximation is Hartree-Fock 
 Add fluctuations from second order diagrams 

DFT is, in principle, an exact mean field approximation and 
should provide a better starting point than HF 

Try to add the most relevant diagrams 
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Intro CI/CC RPA Conc. 
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Start from DFT add MBP 

Standard Quantum Chemistry: Hartree-Fock add correlation 
 The mean field approximation is Hartree-Fock 
 Add fluctuations from second order diagrams 

DFT is, in principle, an exact mean field approximation and 
should provide a better starting point than HF 

Try to add the most relevant diagrams 

 

Intro CI/CC RPA Conc. 



Screened exchange 

Standard Quantum Chemistry: Hartree-Fock add correlation 
 The mean field approximation is Hartree-Fock 
 Add fluctuations from second order diagrams 

DFT is, in principle, an exact mean field approximation and 
should provide a better starting point than HF 

Try to add the most relevant diagrams 
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 RPA      SOSEX        Singles 

Intro CI/CC RPA Conc. 



RPA: all bubble diagrams   
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What do the individual diagrams do 

RPA is the main contribution; 
it accounts for 
 Covalent 
 Metallic 
 VdW bonding 

SOSEX reduces corr. energy by 30 % 
 Reduces spin-polarization energy 
 Stabilizes non-magnetic solutions 

Singles 
 Contract the charge density compared 

to DFT and reduce the Pauli repulsion 
 Important for the description of weak 

interactions 
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Here the crux starts 

RPA is reasonably good using DFT one electron orbitals 
But how to deal „best“ with exchange diagrams and singles 
contribution is still a matter of debate 
 For small molecules one might not need to screen exchange  

since HF+MP2 is excellent 
(use Vex instead of W)  (Ren, Görling) 

 Or approximate exchange by DFT (Olsen-Thygensen) 

 
Do all terms efficiently: little point in N5-N6 methods  
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Standard Best 

RPA N4 N3  

Screened-EX (SOSEX) N5 N3 - N4 

Singles N4 N3 

in progress 



Conventional RPA 

o DFT calculation with your favourite functional (PBE) 
o Calculate polarizability using auxiliary basis set 

 
 
 
 
 

 
 
o Calculate correlation energy using plasmon formula 
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Nω 
NoccNvirt 
NrNr 

Nω 
Nr

3 

resonant part 
poles at positive 
frequencies 

anti-resonant part 
poles at negative 
frequencies 

Nozières P and Pines D, 1958, PR 111, 442;   Gonze and Fuchs, PRB 65, 235109 

Intro CI/CC RPA Conc. 



RPA flow chart 
EDIFF = 1E-8 
ISMEAR = 0 ; SIGMA = 0.1   
 
NBANDS = maximum # of plane waves 
ALGO = Exact ; NELM = 1 
ISMEAR = 0 ; SIGMA = 0.1  
LOPTICS = .TRUE. 

 
ALGO = Eigenval ; NELM = 1 
LWAVE = .FALSE. 
LHFCALC = .TRUE. ; AEXX= 1.0 
ISMEAR = 0 ; SIGMA = 0.1  
 
NBANDS = maximum # of plane waves 
ALGO = ACFDT or ACFDTR 
NOMEGA = 12-16 
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DFT 
groundstate 

HF 
energy 

DFT 
virtual orbitals 

RPA 
energy 



𝑖 

𝑎 

𝐫 

𝐫′ 

𝑒−𝜏𝜖𝑎 

𝑒𝜏𝜖𝑖 

Alternative calculation of polarizability 

Polarizability in real space for a set of imag. frequencies 
 
 
 
 
 
Fourier transform polarizability to imaginary time 
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NoccNvirt 
NrNr 

Rojas, Godby, and Needs (1995), PRL 74, 1827 



IP polarizability = G G 

Fourier transform polarizability to  
imaginary time and rearrange 
 
 
 
 
 
And defining (Hedin) 
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𝐫, 𝜏1=0 

𝐫′, 𝜏2= 𝜏 

𝐺̅ (𝐫, 𝐫′, +i𝜏) 

𝐺(𝐫, 𝐫′, −i𝜏) 

𝑖 

𝑎 

Hedin L. (1965), Phys. Rev. 139, A796.  

NoccNvirt 
NrNr 

(Nocc+Nvirt) 
NrNr 

Rojas, Godby, and Needs (1995), PRL 74, 1827 
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Low scaling RPA code 

New RPA code is available 
Kaltak M., Klimeš J., Kresse G. ,  
JCTC 10, 2498 (2014). 

Scales linearly in the number 
 of k-points (as DFT) 
 Instead of quadratically as for  

conventional RPA and  
hybrid functionals 

Scales cubically in system size  
(as DFT)  
Pre-factors are much larger than in DFT (of course), but 
calculations for 200 atoms take less than 1 hour (128 cores) 

 

Si defect calculations 
64-216 atoms 

RPA how good is it ? 
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RPA Energies  

The improvement 
over HF is 
impressive 
in particular for 
metals 
 
 
But not much 
better than best 
DFT functionals 
 
 

J. Harl, G. Kresse, PRL 103, 056401  (2009), PRB (2010) 

Intro CI/CC RPA Conc. 



Heats of formation (dRPA) 

Heats of formation w.r.t normal state at ambient conditions 
in kJ/mol 
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Mg(bulk metal) + H2→ MgH2 

J. Harl, G. Kresse, PRL 103, 056401  (2009) 

kJ/mol PBE  RPA EXP  
Li+F2→LiF  570  609  621 
Mg+O2→MgO  516  577  604 
Mg+H2→MgH2 52  72  78 
Al+N2→AlN  262  291  321 
Si+C→SiC  51  64  69 
CO@Rh 183 139 144 



Lattice constants: metals and covalent solids 
 
Improvements 
compared to PBE are 
substantial 
 
Here results for a 
refined treatment 
beyond RPA are also 
shown (Singles) 
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Klimes, Kaltak, Maggio, Kresse,  
JCP in print  



Lattice constants of transition metals: NC PAW 
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Phys. Rev. B 87, 214102 (2013), Klimes, Kaltak, Kresse, PRB90, 075125 (2014) 

Lattice constants 
are consistently 
good for 3d, 4d 
and 5d metals 
 
All DFT flavours 
underestimate 3d 
lattice constants 
and most 
overestimate 4d 
and 5d 
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RPA for rare-gas solids: Ne, Ar and Kr 

J. Harl and G.Kresse, PRB 77, 045136 
(2008). 
Klimes, Kaltak, Maggio, Kresse,  
JCP in print  
 

 
 
 

v time 

v 

0χ0χ

- elec. 

+ hole 

P 



Singles for rare-gas solids: Ne, Ar and Kr 

Rare gas solids: CCSDT Rosciszewski, PRB 62, 5482 (2000) 
No difference between +rSE and GWSE 
Except for Ne, the results are excellent  
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Latt. 
Const. 

EXX+RPA +GWSE EXP 

Ne 4.35 4.38 4.30 
Ar 5.33 5.25 5.25 
Kr 5.68 5.61 5.63 
energies 
Ne 19 30 26.2 
Ar 66 87 87.9 
Kr 97 119 121.8 

Klimes, Kaltak, Maggio, Kresse,  JCP in print  
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Covalent versus Van der Waals: Carbon 

Graphite versus 
Diamond 
1/d4  behavior at short 
distances 
 
 

 
 
 
 
 
 
 
J. Harl, G. Kresse,  
 
PRL 103, 056401 (2009). 
S. Lebeque, et al.,  
PRL 105, 196401 (2010). 

 

QMC 
(Galli) 

RPA EXP 

d(Å) 3.426 3.34 3.34 
C33 36 36-40 
E(meV) 56 48 43-50  



Graphene adsorbed on Ni: RPA energetics 
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„Chemisorption minimum“ 
65 meV  at  2.1 Å 

Physisorption minimum 
60 meV at  3.3 Å 

exchange 

correlation 

Olsen,…, Thygesen, PRL 107, 156401.   
Mittendorfer, …, Kresse, PRB 84, 201401. 



Ice 
Low pressure phases  high pressure phases 
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Issues to describe energetics under pressure 

RPA is very close 
to DMC 
(diffusion MC) 
 
For ice VIII,  
markedly better 
agreement with 
DMC than 
PBE0+vdW(TS) 
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Macher M., Klimeš J., Franchini C., Kresse G. (2014), JCP 140, 084502.  



Ice: at ambient and high pressure 

69 9/23/2015 Total energy from many body perturbation theory 

EXX+RPA RPA+GWSE EXP 

volume 32.9 32.0 32.1 
energy 536 620 610 

Macher M., Klimeš J., Franchini C., Kresse G. (2014), JCP 140, 084502. 
Klimes, Kaltak, Maggio, Kresse, JCP in print  
 
  



Energetics of Si interstitials and vacancies 
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200 atoms in about 1 hour on 256 cores 
 
Kaltak M., Klimeš J., Kresse G.  
PRB 90, 054115 (2014). 
 
 
HSE, HSE+vdW & Pictures: 

Gao, Tkatchenko, PRL 111, 45501 
QMC:  Parker, Wilkins, Hennig, 

Phys. Status Solidi B 248, 267 (2011). 
rsRPA:  Bruneval, PRL 108, 256403 (2012). 
GW:  Rinke, PRL 102, 026402 (2009). 

PBE HSE HSE/vdW QMC RPA rsRPA GW 
Dumbbell X 3.56 4.43 4.41 4.4(1) 4.20 4.50 4.46 
Hollow H 3.62 4.49 4.40 4.7(1) 4.33 4.65 4.51 
Tetragonal T 3.79 4.74 4.51 5.1(1) 4.93 
Vacancy 3.65 4.19 4.38 4.33 4.24 
Diff.Barrier 0.50 0.29 0.35 0.49 



 DFT will remain the workhorse method 
 Full CI for solids is possible 

 FCI-QMC operating in the Slater  
determinant space 

 Quantum Chemistry for solids 
 CCSD(T) seems to be pretty much exact 

 RPA in combination with PBE orbitals 
 A lot of very promising results for a  

wide variety of systems 
 Forces soon to come in  

 The field is exciting and thriving 
 We need more people to work on codes 

71 9/23/2015 Total energy from many body perturbation theory 

Quantum Chemistry methods have a future 



QC Issues to be solved in future 

The slow basis set convergence is really a killer 
Coupled cluster methods (CCD) involve terms scaling like 

𝑁𝑣𝑣𝑣𝑣
4𝑁𝑜𝑜𝑜2 

 One needs to model the inter-electron CUSP condition 
explicitly using e.g. Jastrow factors (f12 method + RI) 

Rely on locality principle 
 RPA correlation stemming from symmetric part of 

wavefunction is long ranged, but fast to evaluate 
 Correlations related to anti-symmetry (e.g. second order 

exchange) are short ranged 
Locality principle can be exploited 

 Encouraging results for molecules: Werner, F. Neese 
RPA is good for prime time 
CC needs another 5-10 years in solids 
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The group for their 

great work 
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