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Classical computers have come a long way

Antikythera mechanism 
astronomical positions 

(100 BC)

ENIAC  
(1946)

Kelvin’s harmonic analyzer 
prediction of tides 

(1878) 

analog devices 
conceptually simple 

calibration and scaling problems

digital devices 
more complex 

but general purpose  
and error correcting

天河-2 
(2013)
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How long will Moore’s law continue?

#1

#500

sum of top 500

CPU cores: 1024 8’192 3’120’000
Power: 1 MW 3 MW 20 MW

Amdahl’s law: 99.99993% parallel

1 MW ≈ 1 M€ / year
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HPC 2014 

  
HIGH PERFORMANCE COMPUTING 

  

FROM CLOUDS AND BIG DATA TO EXASCALE AND BEYOND
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� We are not referring to 10**21 flops

� “Beyond exascale” systems as we are defining them will be 
based on new technologies that will finally result in the 
much anticipated (but unknown) phase change to truly new 
paradigms/methodologies. The session will therefore also 
include presentations on architecture advances that may be 
enabled as a consequence of technology progress.

� The focus of this session is principally on forward‐looking 
technologies that might determine future operational 
opportunities and challenges for computer systems beyond 
the exascale regime.  

What is “Beyond Exascale Computing?”
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Quantum computing

International Journal of Theoretical Physics, VoL 21, Nos. 6/7, 1982 

Simulating Physics with Computers 
Richard P. Feynman 

Department of Physics, California Institute of Technology, Pasadena, California 91107 

Received May 7, 1981 

1. INTRODUCTION 

On the program it says this is a keynote speech--and I don't  know 
what a keynote speech is. I do not intend in any way to suggest what should 
be in this meeting as a keynote of the subjects or anything like that. I have 
my own things to say and to talk about and there's no implication that 
anybody needs to talk about the same thing or anything like it. So what I 
want to talk about is what Mike Dertouzos suggested that nobody would 
talk about. I want to talk about the problem of simulating physics with 
computers and I mean that in a specific way which I am going to explain. 
The reason for doing this is something that I learned about from Ed 
Fredkin, and my entire interest in the subject has been inspired by him. It 
has to do with learning something about the possibilities of computers, and 
also something about possibilities in physics. If we suppose that we know all 
the physical laws perfectly, of course we don't  have to pay any attention to 
computers. It's interesting anyway to entertain oneself with the idea that 
we've got something to learn about physical laws; and if I take a relaxed 
view here (after all I 'm here and not at home) I'll admit that we don't  
understand everything. 

The first question is, What kind of computer are we going to use to 
simulate physics? Computer theory has been developed to a point where it 
realizes that it doesn't make any difference; when you get to a universal 
computer, it doesn't matter how it's manufactured, how it's actually made. 
Therefore my question is, Can physics be simulated by a universal com- 
puter? I would like to have the elements of this computer locally intercon- 
nected, and therefore sort of think about cellular automata as an example 
(but I don't  want to force it). But I do want something involved with the 
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Beyond exascale computing: quantum devices

Quantum random numbers
perfect randomness

Quantum encryption

secure communication

Analog quantum simulators
solve quantum models

Quantum annealer

solve hard optimization problems?

Quantum computers?

Q
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▪ Need 2N complex numbers to store the wave function of N qubits 
▪ O(2N) classical operations to perform a quantum gate on N qubits

8

Simulating quantum computers

Qubits Memory Time for one gate

10 16 kByte microseconds on a smart watch

20 16 MByte milliseconds on smartphone

30 16 GByte seconds on laptop

40 16 TByte minutes on supercomputer

50 16 PByte days on top supercomputer

60 16 EByte long long time

80 size of visible universe age of the universe
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▪ Use the motional states of well isolated ions to encode a qubit 

▪ up to 20 qubits (Innsbruck) 
▪ life time of hours when isolated 
▪ 10 µs gate times 
▪ survive about 100 gate operations 

▪ Advantages and disadvantages 
▪ Well isolated from environment and thus 

very long lived 
▪ Relatively slow 
▪ Hard to scale  beyond O(20) qubits

9

The best qubits: ion traps

Image: group of R. Blatt, Innsbruck



||Matthias Troyer

▪ Use superconducting current loops to encode a qubit 

▪ State of the art 
▪ O(10) qubits (UCSB, IBM) 
▪ life time of 100 µs  
▪ 10 ns gate times 
▪ survive about 100 gate operations 

▪ Advantages and disadvantages 
▪ scalable 
▪ fast 
▪ can be built in semiconductor foundries  
▪ but lots of coupling to the chip and  

thus short lifetimes
10

Superconducting qubits
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▪ Encode the qubit in a topological property of a quantum state 

▪ Intrinsic protection due to topology 
▪ No local noise can detect or destroy the state 
▪ No expensive error correction needed 

▪ Most promising: Majorana particles 
(Microsoft and TU Delft) 

▪ may exist at ends of  
superconducting nanowires 

▪ string evidence but not yet  
confirmed 

▪ Operations done by “braiding” 
isolated particles

11

Topological qubits (Microsoft and TU Delft)

Ettore 

Majorana



||Matthias Troyer

What are the important applications …  

… that we can solve on a quantum computer … 

… but not special purpose post-exa-scale classical 
hardware that we may build in ten years?

12

Quantum computing beyond exa-scale
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▪ Search an unsorted database of N entries in √N time 
▪ Rare case of provable quantum speedup given an oracle 

▪ However, the oracle needs to be implemented! 

▪ N-entry database needs at least O(N) hardware  
resources to store the data 

▪ Can perform the same search classically in  
log(N) time with special purpose hardware 

▪ Grover search is only useful if the database  
can be calculated on the fly 

▪ Are there important real-world applications?

13

Grover search
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▪ Factoring is hard classically: O(exp(N1/3)) time for N bit - numbers 

▪ But is polynomial time on a quantum computer 
▪ O(N3) using minimal number of 2N+3 qubits 
▪ O(N2) using O(N) qubits 
▪ O(N) using O(N2) qubits 

▪ Shor’s algorithm suddenly made quantum computing interesting

14

Shor’s algorithm for factoring

53693968364269119460795054153326005186041818389302311662023173188470613584169777981247775554355964649
04452615804209177029240538156141035272554197625377862483029051809615050127043414927261020411423649694
63096709107717143027979502211512024167962284944780565098736835024782968305430921627667450973510563924

02989775917832050621619158848593319454766098482875128834780988979751083723214381986678381350567167  
= 

43636376259314981677010612529720589301303706515881099466219525234349036065726516132873421237667900245
9135372537443549282380180405548453067960658656053548608342707327969894210413710440109013191728001673

* 
12304864190643502624350075219901117888161765815866834760391595323095097926967071762530052007668467350
6058795416957989730803763009700969113102979143329462235916722607486848670728527914505738619291595079
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▪ Shor’s algorithm can be used to crack RSA encryption 
▪ assuming 10 ns gate time and minimal number of 2N+3 qubits 
▪ much faster (seconds) when using more qubits 

▪ But use of quantum computers to crack RSA is limited since we can 
anytime switch to post-quantum encryption 
▪ quantum cryptography 
▪ lattice based cryptography

15

Shor’s algorithm and encryption

RSA cracked in CPU years Shor

453 bits 1999 10 1 hour

768 bits 2009 2000 5 hours

1024 bits 1000000 10 hours
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Quantum page rank

Adiabatic Quantum Algorithm for Search Engine Ranking

Silvano Garnerone,1,2,5 Paolo Zanardi,2,5 and Daniel A. Lidar2,3,4,5

1Institute for Quantum Computing, University of Waterloo, Waterloo, ON N2L 3G1, Canada
2Department of Physics & Astronomy, University of Southern California, Los Angeles, California 90089, USA
3Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, USA

4Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
5Center for Quantum Information Science & Technology, University of Southern California, Los Angeles, California 90089, USA

(Received 25 October 2011; published 4 June 2012)

We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the

PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We

present extensive numerical simulations which provide evidence that this algorithm can prepare the

quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web

pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling

is the out-degree distribution. The top-ranked logðnÞ entries of the quantum PageRank state can then be

estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in

‘‘q-sampling’’ protocols for testing properties of distributions, which require exponentially fewer

measurements than all classical schemes designed for the same task. This can be used to decide whether

to run a classical update of the PageRank.

DOI: 10.1103/PhysRevLett.108.230506 PACS numbers: 03.67.Ac, 03.67.Lx, 89.20.Hh

Introduction.—Quantum mechanics provides computa-
tional resources that can be used to outperfom classical
algorithms [1]. Problems for which a polynomial or expo-
nential quantum speed-up is achievable have been sought in
quantum computation since its inception, and their ranks
are swelling slowly [2]. Yet, while ranking the results
obtained in response to a user query is one of the most
difficult tasks in searching the web [3], so far no efficient
quantum algorithms have been proposed for this task [4].

Here we present an adiabatic quantum algorithm [8]
which prepares a state containing the same ranking infor-
mation as the PageRank vector. The latter is a central tool
in data mining and information retrieval, at the heart of
the success of the Google search engine [3,9–12]. The
best available classical algebraic and Markov Chain
Monte Carlo (MCMC) techniques used to evaluate the
full PageRank vector require a time which scales as OðnÞ
and O½n logðnÞ$, respectively, where n is the number of
pages, i.e., the size of the web graph. We investigate the
size of the gap of the adiabatic Hamiltonian numerically
using a wide range of web-graph sizes (n 2 f22; . . . ; 214g),
and present evidence that our quantum algorithm prepares
the PageRank state in a time which scales on average as
O½polylogðnÞ$. We argue that while extraction of the full
PageRank vector cannot in general be done more effi-
ciently than when using the aforementioned classical algo-
rithms, there are particular graph-topologies and specific
tasks of relevance in the use of search engines for which the
quantum algorithm, combined with other known quantum
protocols [13–16], may provide a polynomial, or even
exponential speed-up. We discuss the underlying graph
structure which we believe is responsible for this potential

speed-up, and provide evidence that it is the power-law
distribution of the out-degree nodes that plays the key role.
A proof of this fact would be very interesting.
Model of the web-graph.—The PageRank algorithm,

introduced by Brin & Page [9], is probably the most promi-
nent ranking measure using the query-independent hyper-
link structure of the web. The PageRank vector is the
principal eigenvector of the so-called Google matrix, which
encodes the structure of the web-graph via its adjacency
matrix. The humongous size of the World Wide Web
(WWW), with its ever growing number of pages and links,
makes the evaluation of the PageRank vector one of the
most demanding computational tasks ever [12]. In practice
PageRank is evaluated over real data providing the structure
of the actual WWW. On the other hand the use of models of
the web-graph has proved to be useful in testing new ideas
concerning structure measures and dynamical properties of
theweb [11]. To accurately capture theWWWgraph a good
candidate model network should be (i) sparse (the number
of edges is proportional to the number of nodes), (ii) small-
world (the network diameter scales logarithmically in the
size of the network), and (iii) scale-free (the in- and
out-degree probability distributions obey a power law). To
analyze the scaling properties of our algorithmwe used two
well known models of the web graph: the preferential
attachment model [17], and the copying model [18].
These models are based on two different network evolution
mechanisms, both of which yield sparse random graphs
with small-world and scale-free (power-law) features.
We implemented a version [19] of the preferential attach-

ment model that provides a scale-free network withNðdÞ /
d%3, where NðdÞ is the number of nodes of degree d.

PRL 108, 230506 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
8 JUNE 2012

0031-9007=12=108(23)=230506(6) 230506-1 ! 2012 American Physical Society
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▪ log(N) qubits are sufficient, but are not practical 
▪ N qubits allow for a straightforward unary encoding 

▪ Page rank then solved by adiabatic evolution of a spin model 

▪ Needs O(Na) time with a ≈ 0.2…1  
when implementing N2 couplings in parallel 
using O(N2) hardware resources 

▪ Classical page rank needs O(1) matrix-vector multiplications,  
each of complexity O(dN) where d is the mean number of links

17

Complexity of quantum page rank

H (s) = h
i=1

n

∑ (s)iiσ i
+σ i

− + h
i< j

n

∑ (s)ij σ i
+σ j

− +σ j
+σ i

−( ),
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▪ Quantum speedup vanishes when comparing parallel quantum hardware 
to parallel special purpose classical hardware 

▪ Classical hardware requirements increase slower classically than quantum 
18

Compare to classical hardware
Quantum 
custom hardware

Classical  
general purpose

Classical  
custom hardware

Serial time 
complexity O(N2 polylog(N)) O(dN log(N)) O(dN)

Memory required O(N) qubits O(N) bits O(N) bits

Parallel time 
complexity O(N0.2) – O(N)

O(N1/3)  
on 3D crossbar 
network

O(log(N))

Hardware 
required O(N2) O(dN) O(dN)
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▪ Solve linear system Ax=b in log(N) time  

▪ Requirements 
▪ Only log (N) bits of the answer are needed 
▪ Problem is well conditioned 
▪ Time evolution using the matrix A can be implemented efficiently

19

Solving linear systems of equations

e− iAt b

Harrow, Hassidim, Lloyd, PRL (2009)
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▪ In general we always need O(N2) gates if matrix A has N2 different entries 

▪ Lloyd, Mohseni and Rebentrost (Nature Physics 2014) propose an 
O(log(N)) implementation using QRAM to store square root of the matrix 
▪ needs O(N2) gates and qubits to implement the QRAM 
▪ needs O(N3) effort in classical preparation to calculate the square root 

▪ How does it compare to classical approaches? 
▪ Gaussian elimination solves a linear system in O(N3) time using O(N2)  memory 
▪ Using O(N2) classical hardware we can do a matrix-vector multiplication in O(log(N)) 

time and solve the problem iteratively 

▪ Furthermore, using O(N2) classical hardware we can classically emulate 
any quantum algorithms acting on 2 log N qubits. 

20

Implementing a general time evolution
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▪ Quantum speedup can only be realized if the evolution exp(-iAt) can be 
implemented using a short circuit, i.e. it does not depend on lots of data 

▪ Electromagnetic wave scattering problem (Clader et al, PRL, 2013)  
▪ finite difference discretization 
▪ represent shapes by splines 

▪ Competitive with classical hardware for runtimes beyond a millennium 
We need to speed this up and find better problems!

21

Solving linear systems of equations efficiently
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Incident Field

Scattered Field

FIG. 9. Two-dimensional finite element mesh with square finite elements. The scattering region is shown in grey, and can be
any arbitrary design. The incident field interacts with the metallic scatterer and scatters o↵ into all directions.

and less dense when lower accuracy is su�cient. However one of the key constraints with the QLSA is that the matrix
elements must be e�ciently computable. This restricts one to semi-regular or functionally defined meshes.

As a simple toy–problem example, we will model the scattering of a plane wave o↵ an arbitrary 2D metallic
scattering region with a uniform rectangular mesh, as shown in Fig. 9. Following standard FEM techniques[18], we
write the free-space Maxwell’s equation as a functional

F (E) =

Z
V

⇥
(r⇥E) · (r⇥E)� k2E ·E

⇤
dV + ik

Z
S

Et ·EtdS, (62)

where

E(x, y) = E
0

p̂e�ik·r(x,y) (63)

is the vector electromagnetic field propagating in direction k̂ = k/k = cos ✓x̂+ sin ✓ŷ, at position r(x, y) = xx̂+ yŷ,
with magnitude E

0

, wavenumber k, and polarization p̂ = r̂ ⇥ ẑ. The label Et indicates the component tangential to
the surface S, V is the volume of the computational region, and S is the outer surface of the computational region.
By taking �F = 0, the volume term gives Maxwell’s equation for the electric field, while the surface integral is an
artificial absorbing term used to prevent reflections o↵ the artificial computational boundary. On the inner metallic
scattering surface the boundary condition

n̂⇥E = �n̂⇥Ei (64)

where Ei is the incident field, and n̂ is the unit vector normal to the surface is applied.
Within an element labelled e the electric field can be expanded in terms of edge basis vectors [19],

Ee =
4X
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N e
i e
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i (65)

where eei is the magnitude of the electric field along edge i and
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▪ R.P. Feynman,Simulating Physics with Computers,  
Int. J. of Theor. Phys., 21, 467 (1982) 

▪ S. Lloyd, Universal Quantum Simulators,  
Science 273, 1073 (1996). 

▪ D.S. Abrams and S. Lloyd, Simulation of Many-Body Fermi Systems on a Universal 
Quantum Computer, Phys. Rev. Lett. 79, 2586 (1997) 

▪ M.A. Nielsen and I.C. Chuang, Quantum Computation and Quantum Information, 
Cambridge University Press (2001) 

▪ G. Ortiz et al., Quantum algorithms for fermionic simulations,  
Phys. Rev. A 64, 022319 (2001). 

▪ R. Somma et al., Simulating physical phenomena by quantum networks,  
Phys. Rev. A 65, 042323 (2002). 

▪ Simulation of electronic structure Hamiltonians using quantum computers. 
▪ J.D Whitfield, J. Biamonte and A. Aspuru-Guzik, Simulation of electronic structure 

Hamiltonians using quantum computers,  Molecular Physics 109, 735 (2011). 
▪ Our papers: http://arxiv.org/find.quant-ph/1/AND+au:+Troyer+au:+Hastings+au:

+Wecker/0/1/0/all/0/1/

22

Quantum simulations on quantum computers

http://arxiv.org/find.quant-ph/1/AND+au:+Troyer+au:+Hastings+au:+Wecker/0/1/0/all/0/
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1. Select a finite (generally non-orthogonal) basis set 

2. Perform a Hartree-Fock calculation to  
▪ get an approximate solution 
▪ get an orthogonal basis set 

3. Find the true ground state of the Hamiltonian in this new basis set 

4. Prepare a good guess for the ground state 

5. Perform quantum phase estimation to  
▪ get the ground state wave function 
▪ get the ground state energy

23

Solving quantum chemistry on a quantum computer

H = t pq
pq
∑ cp

†cq + Vpqrs
pqrs
∑ cp

†cq
†crcr

Whitfield, Biamonte, Aspuru-Guzik 
Molecular Physics (2011) 



||Matthias Troyer

1. Select a finite basis set (generally non-orthogonal) 

2. Perform a Hartree-Fock calculation to  
▪ get an approximate solution 
▪ get an orthogonal basis set 

3. Find the true ground state of the Hamiltonian in this new basis set 

4a. Prepare the Hartree Fock wave function 
4b. Adiabatically evolve from the Hartree-Fock Hamiltonian to the full one 

5. Perform quantum phase estimation to  
▪ get the ground state wave function 
▪ get the ground state energy

24

Solving quantum chemistry on a quantum computer

H = t pq
pq
∑ cp

†cq + Vpqrs
pqrs
∑ cp

†cq
†crcr

Whitfield, Biamonte, Aspuru-Guzik 
Molecular Physics (2011) 
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▪ Key ingredient: evolve the wave function under the Coulomb Hamiltonian 

▪ Use Trotter breakup to implement time evolution 
Whitfield, Biamonte, Aspuru-Guzik, Molecular Physics (2011)  

▪ Efficient circuits available for each of the M=N4 terms

25

Time evolution under the Coulomb Hamiltonian

H = t pq
pq
∑ cp

†cq + Vpqrs
pqrs
∑ cp

†cq
†crcr ≡ Hm

m=1

M

∑

e−ΔtH ≈
m=1

M

∏e−ΔτHm

M =O(N 4 ) terms
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▪ Map the occupation of each spin-orbital to the states of one qubit 

▪ Density operators get mapped to Pauli matrices 

▪ Hopping terms get mapped to spin flips with Jordan-Wigner strings 

▪ Time evolution gets mapped to circuits built from unitary gates

26

Representing fermion terms by quantum circuits

0 = ↑ 1 = ↓

ni =
1
2
1−σ i

z( )

cp
†cq =σ p

−

i=p+1

q−1

∏σ i
zσ p

+

e− iθ cp
†cq+cq

†cp( ) =
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Phys. Rev. A 90, 022305 (2014) 

Can a classically-intractable problem be solved  
on a small quantum computer? 

Can a classically-intractable problem be solved on  
a huge quantum computer? 

Can a classically-intractable problem be solved on  
the largest imaginable quantum computer?

27

http://link.aps.org/doi/10.1103/PhysRevA.90.022305
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▪ How many spin-orbitals do we need for an interesting problem? 

▪ What accuracy do we need?

28

Solving a small non-trivial problem

Cuprate high-Tc superconductor O(10000)

Active space of interesting reactions  200-400

Classically tractable by DMRG ≈ 70

Classically tractable by full-CI ≈ 50

Wish of my chemistry colleague 0.1mHa - 1µHa

Modest goal 1mHa

Note that the total energies are of the order of 1kHa 
We thus need at least six digits of precision
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▪ Estimates for an example molecule: Fe2S2 with 118 spin-orbitals  

▪ Attempting to reduce the horrendous runtime estimates we achieved 
Wecker et al., PRA (2014), Hastings et al., QIC (2014), Poulin et al., QIC (2014) 

▪ Cancelling of Jordan-Wigner strings:       O(N) reduction in gates 
▪ Nesting of terms:                                      O(N) reduction in circuit depth 
▪ Optimizing circuits:                                   4x reduction in gates 
▪ Smart interleaving of terms:                     10x reduction in Trotter steps 
▪ Multi-resolution Trotter:                            10x reduction in gates 
▪ Better quantum phase estimation:            4x reduction in rotation gates 

29

Improvements to the quantum algorithms:

Gate count 1018

Parallel circuit depth 1017

Run time @ 10ns gate time 30 years

New gate count 1011

Parallel circuit depth 1010

Run time @ 10ns gate time 2 minutes
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▪ Rearrange the circuits and use an optimized ordering of terms to cancel 
most of the Jordan-Wigner strings between terms 

▪ Reduces the cost of Jordan-Wigner strings from O(N) to amortized O(1)

30

Optimization 1: reducing Jordan-Wigner strings

Phase

P H H

Q H H

R H H

H H

S Z H �✓Z0/8 H Z

Z H �✓Z0/8 H Z

Phase

P H H H H

Q H H H H

R H H

H H

S Z H �✓Z0/8 H Z

Z H �✓Z0/8 H Z

M.B. Hastings et al., arXiv:1403.1539
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▪ Interleave terms that seem to interfere at first sight due to overlapping 
Jordan-Wigner strings 

▪ Can do O(N) terms in parallel for another power reduction

31

Optimization 2: Nesting of terms

6

5

4

3

2

1

= =

14
13
12
11
10
9
8
7
6
5
4
3
2
1

=

M.B. Hastings et al., arXiv:1403.1539
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▪ Standard phase estimation 
▪ propagates by time t 
▪ controlled rotation gates to implement evolution 

(need two normal rotations) 

▪ Improved phase estimation 
▪ propagates by time t/2 
▪ no controlled rotations are needed 
▪ 2x fewer gates, 4x fewer rotations

32

Optimization 3: faster phase estimation

1
2
0 + 1( ) φn → 1

2
0 φn + 1 e− iHt φn( ) = 1

2
0 + e− iφ 1( ) φn

1
2
0 + 1( ) φn → 1

2
0 e+ iHt /2 φn + 1 e− iHt /2 φn( ) = 1

2
e+ iφ /2 0 + e− iφ /2 1( ) φn
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What about a room temperature superconductor?

3D crystal structure Hubbard model

Full material Hubbard model
Bands per unit cell ≈ 50 1
Unit cells needed  20x20 20x20
Number of spin-orbitals N ≈ 80’000 N ≈ 800
Number of interaction terms N4 O(N)
Cirucit depth scaling O(N5.5) O(1)
Estimated runtime @ 10ns gate time age of the universe seconds
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▪ Abrams and Lloyd, PRL (1997) suggested to use quantum 
computers for the time evolution under the Hubbard Hamiltonian 

▪ Ortiz et al, PRA (2001) provided details on how to map fermions to 
qubits and how to measure some observables 

▪ These seminal papers do not yet address  some important parts 
▪ how to prepare a good trial wave function 
▪ mapping the time evolution onto actual quantum gates 
▪ estimating the circuit depth (gate count)
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Previous work on the Hubbard model
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▪ After preparing the ground state we can measure any desired quantity 
▪ However, every measurement only gives a single bit!

35

Direct measurements

ΔO = VarO
M

⇒ M =O 1
ε2

⎛
⎝⎜

⎞
⎠⎟ measurements are needed
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▪ Make use of the fact that the ground state is an eigenstate of the 
Hamiltonian to perform non-destructive measurements 

▪ Measurements using Hellman-Feynman theorem 

▪ Add the observable to be measured as a perturbation 

▪ Adiabatically evolve the wave function 

▪ Measure the energy and calculate the difference 

▪ Non-destructive and only                  measurements are needed
36

Nondestructive measurements (approach I)

dEGS (λ)
dλ

= ΨGS (λ)
dH (λ)
dλ

ΨGS (λ)

H (λ) = H + λO

ΨGS (0) → ΨGS (ε) → ΨGS (−ε)

ΨGS O ΨGS ≈ EGS (ε)− EGS (−ε)
2ε

O logε
ε

⎛
⎝⎜

⎞
⎠⎟

Wecker, Hastings et al, arXiv:1506.05135
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Nondestructive measurements (approach II)

▪ Recover the ground state (GS) after a destructive measurement

37

Wecker, Hastings et al, arXiv:1506.05135

Efficient if we measure only a single bit 
requires time                if performed coherently O 1/ ε( )

Check for ground state 
energy with QPE

Energy 
correct

Measure !"#$
and store result

Measure !"#$
and discard result

Prepare 
ground state

Yes No Incorrect 
for % >

'(’th time

Yes

No
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▪ Full ab-initio simulation of a correlated material is too complex even on 
quantum hardware 

▪ The Hubbard model is too simple 
▪ Solution: a hybrid approach using DMFT and quantum computers
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From the Hubbard model to materials

Material

Initial DFT solution
!DFT

Select orbitals
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Compute electron 
density !DMFT

Classical computation Quantum computation


