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Classical computers have come a long way

digital devices

more complex
but general purpose
and error correcting

Antikythera mechanism

astronomical positions
(100 BC) Kelvin’s harmonic analyzer R
prediction of tides

(1878)

ENIAC

analog devices (1946) Kin-2
conceptually simple (2013)
calibration and scaling problems

D PHYS Matthias Troyer | | 2



How long will Moore’s law continue?

Projected Performance Development

sum of top 500
#1

10 EFlopls
1 EFlop/s
100 PFlop/s
10 PFlopls #500

1 PFlop/s

100 TFlop/s

Performance

10 TFlop/s

1 TFlop/s

100 GFlop/s | %

10 GFlop/s

1 GFlop/s ™

100 MFlop/s
1995 2000 2005 2010 2015 2020

CPU cores: 1024 8192 3'120°000 Amdahl’'s law: 99.99993% parallel
Power: 1 MW 3 MW 20 MW 1 MW = 1 M€ / year
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HPC 2014

HIGH PERFORMANCE COMPUTING

FROM CLOUDS AND BIG DATA TO EXASCALE AND BEYOND

Enabling technologies for beyond exascale
computing

Paul Messina

Director of Science
Argonne Leadership Computing Facility
Argonne National Laboratory

July 9, 2014
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What is “Beyond Exascale Computing?”

= We are not referring to 10**21 flops

= “Beyond exascale” systems as we are defining them will be
based on new technologies that will finally result in the

much anticipated (but unknown) phase change to truly new
paradigms/methodologies.

DPHYS



Quantum computing

International Journal of Theoretical Physics, Vol. 21, Nos. 6/7, 1982

Simulating Physics with Computers

Richard P. Feynman

Department of Physics, California Institute of Technology, Pasadena, California 91107

Received May 7, 1981
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Beyond exascale computing: quantum devices

(iBa

Quantum Random
Number Generator

Made in Switzeriand
www.idquantique.com

US Patent No. 7,519,641

Quantum encryption

Quantum random numbers

perfect randomness secure communication

Quantum computers?

Analog quantum simulators

Quantum annealer

solve quantum models L
9 solve hard optimization problems?

D PHYS Matthias Troyer | | 7



Simulating quantum computers

= Need 2N complex numbers to store the wave function of N qubits
= O(2N) classical operations to perform a quantum gate on N qubits

10 16 kByte microseconds on a smart watch
20 16 MByte milliseconds on smartphone

30 16 GByte seconds on laptop

50 16 PByte days on top supercomputer

60 16 EByte long long time

80 size of visible universe age of the universe

D PHYS Matthias Troyer | | 8



The best qubits: ion traps

= Use the motional states of well isolated ions to encode a qubit

= up to 20 qubits (Innsbruck)

= life time of hours when isolated

= 10 us gate times

= survive about 100 gate operations

= Advantages and disadvantages

= Well isolated from environment and thus
very long lived

= Relatively slow
= Hard to scale beyond O(20) qubits

D PHYS Matthias Troyer | 9



Superconducting qubits

= Use superconducting current loops to encode a qubit

= State of the art
= O(10) qubits (UCSB, IBM)
= life time of 100 us
= 10 ns gate times
= survive about 100 gate operations

= Advantages and disadvantages
= Scalable
= fast
= can be built in semiconductor foundries

= but lots of coupling to the chip and
thus short lifetimes

D P H YS Matthias Troyer | | 10



Topological qubits (Microsoft and TU Delft)

= Encode the qubit in a topological property of a quantum state

= Intrinsic protection due to topology
= No local noise can detect or destroy the state
= No expensive error correction needed

= Most promising: Majorana particles
(Microsoft and TU Delft)

= may exist at ends of
superconducting nanowires

= string evidence but not yet
confirmed

= Operations done by “braiding”
Isolated particles

D PHYS Matthias Troyer | | 11



Quantum computing beyond exa-scale

What are the important applications ...
... that we can solve on a quantum computer ...

... but not special purpose post-exa-scale classical
hardware that we may build in ten years?

M= Microsoft E :=::E——==:; NDKI A (|n/téD
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Grover search

= Search an unsorted database of N entries in YN time
= Rare case of provable quantum speedup given an oracle

= However, the oracle needs to be implemented!

= N-entry database needs at least O(N) hardware
resources to store the data

= Can perform the same search classically in
log(N) time with special purpose hardware

= Grover search is only useful if the database
can be calculated on the fly

= Are there important real-world applications?

DPHYS



Shor’s algorithm for factoring

= Factoring is hard classically: O(exp(N'?3)) time for N bit - numbers

53693968364269119460795054153326005186041818389302311662023173188470613584169777981247775554355964649

04452615804209177029240538156141035272554197625377862483029051809615050127043414927261020411423649694

63096709107717143027979502211512024167962284944780565098736835024782968305430921627667450973510563924
02989775917832050621619158848593319454766098482875128834780988979751083723214381986678381350567167

43636376259314981677010612529720589301303706515881099466219525234349036065726516132873421237667900245
9135372537443549282380180405548453067960658656053548608342707327969894210413710440109013191728001673

12304864190643502624350075219901117888161765815866834760391595323095097926967071762530052007668467350
6058795416957989730803763009700969113102979143329462235916722607486848670728527914505738619291595079

= But is polynomial time on a quantum computer
=  O(N?®) using minimal number of 2N+3 qubits
= O(N?) using O(N) qubits
= O(N) using O(N?) qubits

= Shor’s algorithm suddenly made quantum computing interesting

Matthias Troyer | | 14
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Shor’s algorithm and encryption

= Shor’s algorithm can be used to crack RSA encryption
= assuming 10 ns gate time and minimal number of 2N+3 qubits
= much faster (seconds) when using more qubits

e o
m 1999 1 hour

2009 2000 5 hours
m 1000000 10 hours

= But use of quantum computers to crack RSA is limited since we can
anytime switch to post-quantum encryption

= quantum cryptography
= |attice based cryptography

D PHYS Matthias Troyer | | 15




Quantum page rank

week ending

PRL 108, 230506 (2012) PHYSICAL REVIEW LETTERS 8 JUNE 2012

5%

Adiabatic Quantum Algorithm for Search Engine Ranking

: 1,2 ) : .1 0234
Silvano Garnerone,*>> Paolo Zanardi,> and Daniel A. Lidar®>>*°

Ynstitute for Quantum Computing, University of Waterloo, Waterloo, ON N2L 3G1, Canada
“Department of Physics & Astronomy, University of Southern California, Los Angeles, California 90089, USA
3Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, USA

4Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA

>Center for Quantum Information Science & Technology, University of Southern California, Los Angeles, California 90089, USA
(Received 25 October 2011; published 4 June 2012)

We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the
PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We
present extensive numerical simulations which provide evidence that this algorithm can prepare the
quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web
pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling
is the out-degree distribution. The top-ranked log(n) entries of the quantum PageRank state can then be
estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in
“g-sampling” protocols for testing properties of distributions, which require exponentially fewer
measurements than all classical schemes designed for the same task. This can be used to decide whether
to run a classical update of the PageRank.

D PHYS Matthias Troyer | | 16



Complexity of quantum page rank

= log(N) qubits are sufficient, but are not practical
= N qubits allow for a straightforward unary encoding

= Page rank then solved by adiabatic evolution of a spin model

H(S):zn‘h(s)iigjgi_ +ih(s)lj (O-;FG;_I_G;GZ'_)’
i=1

i<j

= Needs O(N?) time witha=0.2...1
when implementing N? couplings in parallel
using O(N?) hardware resources

= Classical page rank needs O(1) matrix-vector multiplications,
each of complexity O(dN) where d is the mean number of links

D P H YS Matthias Troyer | 17



Compare to classical hardware

Quantum Classical Classical
custom hardware |general purpose |custom hardware

Serial time

2
complexity O(N< polylog(N))  O(dN log(N)) O(dN)
Memory required [SIG)EIIJIE O(N) bits O(N) bits
O(N1/3)

Parallel time

: O(N92) — O(N on 3D crossbar O(log(N
complexity (N9 -O(N)  on3DG (Iog(N))
Hardware O(N?) O(dN) O(dN)

required

= Quantum speedup vanishes when comparing parallel guantum hardware
to parallel special purpose classical hardware

= Classical hardware requirements increase slower classically than quantum

D PHYS Matthias Troyer | | 18



Solving linear systems of equations
Harrow, Hassidim, Lloyd, PRL (2009)

= Solve linear system Ax=b in log(N) time

= Requirements
=  Only log (N) bits of the answer are needed
= Problem is well conditioned
= Time evolution using the matrix A can be implemented efficiently

e—iAt ‘ b>

D P H YS Matthias Troyer | 19



Implementing a general time evolution

= In general we always need O(N?) gates if matrix A has N? different entries

= Lloyd, Mohseni and Rebentrost (Nature Physics 2014) propose an
O(log(N)) implementation using QRAM to store square root of the matrix

= needs O(N?) gates and qubits to implement the QRAM
= needs O(N°) effort in classical preparation to calculate the square root

= How does it compare to classical approaches?
= Gaussian elimination solves a linear system in O(N?®) time using O(N?) memory

= Using O(N?) classical hardware we can do a matrix-vector multiplication in O(log(N))
time and solve the problem iteratively

= Furthermore, using O(N?) classical hardware we can classically emulate
any quantum algorithms acting on 2 log N qubits.

D PHYS Matthias Troyer | | 20



Solving linear systems of equations efficiently

=  Quantum speedup can only be realized if the evolution exp(-iAt) can be
iImplemented using a short circuit, i.e. it does not depend on lots of data

= Electromagnetic wave scattering problerln (Clader et al, PRL, 2013)

= finite difference discretization B e
= represent shapes by splines l I%---r-x-%---i-

——————————————————————————————————————————————————————————————————————————————

=  Competitive with classical hardware for runtimes beyond a millennium
We need to speed this up and find better problems!

D PHYS Matthias Troyer | | 21



Quantum simulations on quantum computers

= R.P. Feynman,Simulating Physics with Computers,
Int. J. of Theor. Phys., 21, 467 (1982)

= S. Lloyd, Universal Quantum Simulators,
Science 273, 1073 (1996).

= D.S. Abrams and S. Lloyd, Simulation of Many-Body Fermi Systems on a Universal
Quantum Computer, Phys. Rev. Lett. 79, 2586 (1997)

= M.A. Nielsen and |.C. Chuang, Quantum Computation and Quantum Information,
Cambridge University Press (2001)

= G. Ortiz et al., Quantum algorithms for fermionic simulations,
Phys. Rev. A 64, 022319 (2001).

= R. Somma et al., Simulating physical phenomena by quantum networks,
Phys. Rev. A 65, 042323 (2002).

= Simulation of electronic structure Hamiltonians using quantum computers.

= J.D Whitfield, J. Biamonte and A. Aspuru-Guzik, Simulation of electronic structure
Hamiltonians using quantum computers, Molecular Physics 109, 735 (2011).

= Our papers: http://arxiv.org/find.quant-ph/1/AND+au:+Troyer+au:+Hastings+au:
+Wecker/0/1/0/all/0/1/

D P H YS Matthias Troyer |
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Solving quantum chemistry on a quantum computer
1. Select a finite (generally non-orthogonal) basis set

2. Perform a Hartree-Fock calculation to
= get an approximate solution
= get an orthogonal basis set

3. Find the true ground state of the Hamiltonian in this new basis set
H = ztpqc;cq + Zqumcgcgcrcr
4. Prepare a good guess for the ground state

5. Perform quantum phase estimation to

= get the ground state wave function Whitfield, Biamonte, Aspuru-Guzik
= get the ground state energy Molecular Physics (2011)
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Solving quantum chemistry on a quantum computer

1. Select a finite basis set (generally non-orthogonal)

2. Perform a Hartree-Fock calculation to
= get an approximate solution
= get an orthogonal basis set

3. Find the true ground state of the Hamiltonian in this new basis set
H = Etqu;Cq T 2 VPCIFSC;C;CFCF

4a. Prepare the Hartree Fock wave function
4b. Adiabatically evolve from the Hartree-Fock Hamiltonian to the full one

5. Perform quantum phase estimation to
= get the ground state wave function
= get the ground state energy

Whitfield, Biamonte, Aspuru-Guzik
Molecular Physics (2011)

D PHYS Matthias Troyer | | 24



Time evolution under the Coulomb Hamiltonian

= Key ingredient: evolve the wave function under the Coulomb Hamiltonian

H = thq c, q+2 s CrCAC,C, = ZH M =O(N") terms
pqrs
. . . M
= Use Trotter breakup to implement time evolution o NH He—ATHm
Whitfield, Biamonte, Aspuru-Guzik, Molecular Physics (2011) - b

« Efficient circuits available for each of the M=N* terms

........................

D PHYS Matthias Troyer | | 25



Representing fermion terms by quantum circuits

= Map the occupation of each spin-orbital to the states of one qubit
0)=|T)  [)=|4)

= Density operators get mapped to Pauli matrices

n. :%(I—O'f)

l

= Hopping terms get mapped to spin flips with Jordan-Wigner strings
qg—1
T

R T+
Cpcq o Gp Hgi Gp
i=p+1

= Time evolution gets mapped to circuits built from unitary gates

Phase . .

_ie(";cﬁcgcp) CET [ HiY 1 IFW
\u" *~
© b & &
Q {H GI)—OZ/:WI‘ HRY 11\_02/2{1\ ytl
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Can quantum chemistry be performed on a small quantum computer?

Dave Wecker,! Bela Bauer,? Bryan K. Clark,%3 Matthew B. Hastings,> ! and Matthias Troyer?

' Quantum Architectures and Computation Group, Microsoft Research, Redmond, WA 98052, USA
2Station Q, Microsoft Research, Santa Barbara, CA 93106-6105, USA
3 Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA
4 Theoretische Physik, ETH Zurich, 8093 Zurich, Switzerland

Phys. Rev. A 90, 022305 (2014)

Can a classically-intractable problem be solved
on a small quantum computer?

Can a classically-intractable problem be solved on
a huge quantum computer?

Can a classically-intractable problem be solved on
the largest imaginable quantum computer?

D PHYS Matthias Troyer | | 27
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Solving a small non-trivial problem

= How many spin-orbitals do we need for an interesting problem?

Cuprate high-T; superconductor O(10000)
Active space of interesting reactions 200-400
Classically tractable by DMRG =70
Classically tractable by full-Cl = 50

= What accuracy do we need?

Wish of my chemistry colleague 0.1mHa - 1TyHa

Modest goal 1mHa

Note that the total energies are of the order of 1kHa

We thus need at least six digits of precision
DPHYS Matthias Troyer | | 28



Improvements to the quantum algorithms:

= Estimates for an example molecule: Fe2S2 with 118 spin-orbitals

Gate count e New gate count 107
Parallel circuit depth Qe Parallel circuit depth e
Run time @ 10ns gate time 30 years Run time @ 10ns gate time 2 minutes

= Attempting to reduce the horrendous runtime estimates we achieved
Wecker et al., PRA (2014), Hastings et al., QIC (2014), Poulin et al., QIC (2014)

= Cancelling of Jordan-Wigner strings: O(N) reduction in gates

= Nesting of terms: O(N) reduction in circuit depth
= Optimizing circuits: 4x reduction in gates

= Smart interleaving of terms: 10x reduction in Trotter steps

= Multi-resolution Trotter: 10x reduction in gates

= Better quantum phase estimation: 4x reduction in rotation gates

D PHYS Matthias Troyer | | 29



Optimization 1: reducing Jordan-Wigner strings
M.B. Hastings et al., arXiv:1403.1539

= Rearrange the circuits and use an optimized ordering of terms to cancel
most of the Jordan-Wigner strings between terms

PPPPP

El
&

—
L]

&

&l
&
&
&

&
&

&
&

s - iy o ) )
{Z1 {A—e{=61 iz
A o
I, I,
Q [@} {H}
I, I,
[} I,
7 [H—e{=0,..14 A7 T
{001} [HlZle

= Reduces the cost of Jordan-Wigner strings from O(N) to amortized O(1)
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Optimization 2: Nesting of terms
M.B. Hastings et al., arXiv:1403.1539

= Interleave terms that seem to interfere at first sight due to overlapping
Jordan-Wigner strings

> A\ |\ VAN W
" 17 | | | I
5 |
. 1171 Y S AR S A
o' \\ 1\ N W VN W
1 17 | | | I
12, |
0 1111 ] 1 71 T

____________________________________________

= Can do O(N) terms in parallel for another power reduction
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Optimization 3: faster phase estimation

= Standard phase estimation
= propagates by time t
= controlled rotation gates to implement evolution
(need two normal rotations)

1

ﬁ(|0>+|1>)

1

¢n>%$(|0>

= Improved phase estimation
= propagates by time /2
= no controlled rotations are needed
= 2X fewer gates, 4x fewer rotations

(| O> e+th/2

(e+i¢/2 | O> n e—i¢/2

¢n> _|_| 1> e—th/z ¢n>

(0)+/1)6.) > 0))=75 0)
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What about a room temperature superconductor?

| Fullmaterial | Hubbard model

. o
o) o1

Estimated runtime @ 10ns gate time age of the universe seconds
G 2900
% P
oNJ? o > y, 4
o ¥ ° /‘(
! V)
0090“ Ooo ‘/ //
o © °
3D crystal structure Hubbard model
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Previous work on the Hubbard model

= Abrams and Lloyd, PRL (1997) suggested to use quantum
computers for the time evolution under the Hubbard Hamiltonian

= Ortiz et al, PRA (2001) provided details on how to map fermions to
gubits and how to measure some observables

= These seminal papers do not yet address some important parts
= how to prepare a good trial wave function

mapping the time evolution onto actual quantum gates

= estimating the circuit depth (gate count)

D P H YS Matthias Troyer | 34



Direct measurements

= After preparing the ground state we can measure any desired quantity
= However, every measurement only gives a single bit!

AO = = M =0(—j measurements are needed

D PHYS Matthias Troyer | 35



Nondestructive measurements (approach I)
Wecker, Hastings et al, arXiv:1506.05135

= Make use of the fact that the ground state is an eigenstate of the
Hamiltonian to perform non-destructive measurements

= Measurements using Hellman-Feynman theorem

dE ;(A)
dA

dH(l)|\P

= (W5 () os(A))

= Add the observable to be measured as a perturbation HA)=H +10

= Adiabatically evolve the wave function [P (0)) =W 5 () = | W s (—6))
= Measure the energy and calculate the difference (¥, O] W,) ~ Eqs(€)— Egs(—€)
GS GS
2€

loge

= Non-destructive and only 0( ) measurements are needed

€
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Nondestructive measurements (approach ll)

Wecker, Hastings et al, arXiv:1506.05135

= Recover the ground state (GS) after a destructive measurement

Efficient if we measure only a single bit

requires time O(1/¢) if performed coherently

Prepare
ground state

Incorrect
forn >
Np’th time

Energy
correct

Check for ground state
energy with QPE

Measure Uf:lﬁ Measure Uﬁf
and store result and discard result

DPHYS
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From the Hubbard model to materials

= Full ab-initio simulation of a correlated material is too complex even on
gquantum hardware

= The Hubbard model is too simple
= Solution: a hybrid approach using DMFT and quantum computers

Material
ﬂitial DFT solution
pDFT

Impurity model

J

! sy )

Select orbitals Compute DMFT S with bath 3 §

€ir, llhk U ol o 2 i parameters V,;, €; §_E

2 < S S

@) 4~

2l DMFT  )is

7 © S S

= 3 Q

g 8 E S

Repeat DF[T)I\lj[Sl;r'}‘g Compfjte e]I)el\c/:[tFr%n g Green’s function v 3
density p density p = G(i wy,) = 5/

N T /
Classical computation Quantum computation
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