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Lecture 1: Overview



PLAN

1. Conventional approach and its shortcomings

2. Off-shell amplitudes

3. 1PI effective string field theory



Standard formulation of heterotic / type II string
theory in a given background is based on a 2
dimensional (super-)conformal world-sheet field
theory

– matter system + ghost system with total central
charge zero.

On-shell states are described by BRST invariant
vertex operators

– can be chosen to be dimension zero primary
operators.



g-loop, n-point S-matrix elements

1. Compute certain CFT correlation functions on
genus g Riemann surfaces with n punctures (marked
points).

— insert vertex operators at the punctures

– insert a set of ghost operators following specific
rules (lectures 2,3)

– in superstring theory also insert a certain set of
‘picture changing operators’ made of ghost fields and
superstress tensor of the matter fields (lecture 3)

2. Integrate the result over the (6g-6+2n)-dimensional
moduli space of the corresponding Riemann surface.



However this approach is insufficient for addressing
many issues even within the perturbation theory.

1. Mass renormalization

2. Vacuum shift



LSZ formula for S-matrix elements in QFT

lim
k2

i → −m2
i,p

G(n)
a1 · · · an

(k1, · · · kn)
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{Z−1/2
i × (k2

i + m2
i,p)}

G(n): n-point Green’s function

a1, · · · an: quantum numbers, k1, . . .kn: momenta

mi,p: physical mass of the i-th external state

– given by the locations of the poles of two point
function in the −k2 plane.

Zi: wave-function renormalization factors, given by
the residues at the poles.



In contrast, string amplitudes compute ‘truncated
Greens function on classical mass-shell’

lim
k2

i → −m2
i

G(n)
a1 · · · an

(k1, · · · kn)
n∏

i=1

(k2
i + m2

i ) .

mi: tree level mass of the i-th external state.

k2
i → −m2

i condition is needed to make the vertex
operators conformally invariant.



String amplitudes:

lim
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i→−m2
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i ) ,

The S-matrix elements:

lim
k2

i→−m2
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G(n)
a1···an(k1, · · · kn)

n∏
i=1

{Z−1/2
i × (k2

i + m2
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The effect of Zi can be taken care of. Witten

The effect of mass renormalization is more subtle.

⇒ String amplitudes compute S-matrix elements
directly if m2

i,p = m2
i but not otherwise.

– Includes BPS states, massless gauge particles and
all amplitudes at tree level.



Problem with vacuum shift

Example: In many compactifications of SO(32)
heterotic string theory on Calabi-Yau 3-folds, one
loop correction generates a Fayet-Ilioupoulos term.

Effect: Generate a potential of a charged scalar φ of
the form

c(φ∗φ− K gs
2)2

c,K: positive constants, gs: string coupling
Dine, Seiberg, Witten; Atick, Dixon, A.S.; Dine, Ichinose, Seiberg

Atick, A.S.; Witten; D’Hoker, Phong; Berkovits, Witten

Correct vacuum: |φ| = gs
√

K

– not described by a world-sheet CFT

– conventional perturbation theory fails.



Even in absence of mass renormalization and
vacuum shift we have to deal with infrared
divergences in the integration over moduli space at
intermediate stages. Witten

Consider a tadpole diagram in a QFT:

This diverges if a massless state propagates along
the vertical propagator.

In the best possible scenario the result vanishes after
loop integration (possibly due to SUSY).



In string theory, this translates to a specific
regularization procedure for integration over moduli
spaces of Riemann surfaces.

1. Put an upper cut-off L on certain moduli
corresponding to the Schwinger parameter of the
vertical propagator.

2. Do integration over the other moduli first.

3. Then let L go to infinity. Witten



This works but requires an IR cut-off at the
intermediate stages of calculation.

How do we circumvent these difficulties / need for IR
cut-off?

Go off-shell.



Off-shell amplitudes · · · ; Nelson; Zwiebach; Pius, Rudra, A.S.

1. Relax the constraint of conformal and BRST
invariance on the vertex operators

– result will depend on the world-sheet metric around
the punctures where the vertex operators are
inserted.

2. Choose a local coordinate system wi around the
i-th puncture for each i and take the metric around the
puncture wi = 0 to be |dwi|2.

A different choice of the local coordinate system e.g.
yi = f(wi)⇒ different metric |dyi|2 = |f′(wi)|2 |dwi|2
⇒ different off-shell amplitudes for the same external
states.



For superstring theories we need insertion of picture
changing operators (PCO) on the Riemann surface.

Off-shell amplitudes depend not only on the choice of
local coordinates at the punctures but also on the
locations of the PCO’s.

Are the physical quantities computed from off-shell
amplitudes independent of the choice of local
coordinates and PCO locations?



Some notations:

Mg,n: (6g-6+2n) dimensional moduli space of genus g
Riemann surfaces with n punctures.

Pg,n: A fiber bundle with Mg,n as the base and the
choice of local coordinates at punctures and PCO
locations as fibers (infinite dimensional).

A choice of local coordinate system and PCO
locations corresponds to a section Sg,n of this fiber
bundle.

-

6

Mg,n

Fiber Pg,n

Sg,n

Dimension of Sg,n = 6g− 6 + 2n.



Procedure for constructing an off-shell amplitude

1. For a given set of external off-shell states
collectively called φ, construct p-forms ωp(φ) on Pg,n
satisfying

ωp(
∑

i

Q(i)
B φ) = (−1)pdωp−1(|φ〉)

Q(i)
B : BRST charge acting on i-th state

ωp is constructed from appropriate correlation
functions of off-shell vertex operators and ghost
insertions on the Riemann surface. (Lectures 2, 3)

2. Genus g, n-point amplitude∫
Sg,n

ω6g−6+2n(|φ〉)



U

If U is the region bounded by the two sections then
the difference in the integral over the two sections is∫

U
dω6g−6+2n(|φ〉) = −

∫
U
ω6g−5+2n(

∑
i

Q(i)
B φ)

– vanishes for ‘on-shell’ states for which Q(i)
B |φ〉 = 0.

However it does not vanish for off-shell states.

⇒ the off-shell amplitudes depend on the choice of
the local coordinates at the punctures and PCO
locations.



Goal: Prove that all physical quantities computed
from the off-shell amplitudes are independent of the
choice of local coordinates even though the
amplitudes themselves are not.

For this we work within a specific class of local
coordinates

– gluing compatible local coordinate system.



Gluing compatible sections

and

1PI amplitudes



Consider a genus g1, m-punctured Riemann surface
and a genus g2, n-punctured Riemann surface.

Take one puncture from each of them, and let w1,w2
be the local coordinates around the punctures at
w1 = 0 and w2 = 0.

Glue them via the identification (plumbing fixture)

w1w2 = e−s+iθ, 0 ≤ s <∞, 0 ≤ θ < 2π

– gives a family of new Riemann surfaces of genus
g1 + g2 with (m+n-2) punctures.

g1 g2
x

x
xx

x
x



Gluing compatibility: Choice of local coordinates at
the punctures and the PCO locations on the genus
g1 + g2 Riemann surface must agree with the one
induced from the local coordinates at the punctures
and PCO locations on the original Riemann surfaces.

g1 g2
x

x
xx

x
x



Gluing compatibility allows us to divide the
contributions to off-shell Green’s functions into
1-particle reducible (1PR) and 1-particle irreducible
(1PI) contributions.

Two Riemann surfaces joined by plumbing fixture
m

Two amplitudes joined by a propagator

Riemann surfaces which cannot be obtained by
plumbing fixture of two or more Riemann surfaces
contribute to 1PI amplitudes.



Put another way, for a gluing compatible choice of
sections, we can identify a subspace Rg,n of the full
section Sg,n which we can call the 1PI subspace.

Lectures 2 and 3

-

6

Mg,n

Fiber Pg,n

Rg,n

All the Riemann surfaces corresponding to the full
section Sg,n are given by the Riemann surfaces in Rg,n
and their plumbing fixture in all possible ways.



Once this division has been made, we can define the
1PI amplitudes as ∫

Rg,n

ω6g−6+2n

Generating function of these amplitudes is 1PI
effective action. Lecture 4

Tree amplitudes computed from 1PI action

= full off-shell string amplitude including loop
corrections, given by integrals over the whole section
Sg,n

We can now apply standard field theory methods to
compute renormalized masses and S-matrix from the
1PI action.



In this approach we

– first determine the vacuum by solving classical
equations of motion derived from 1PI effective action,

– then do perturbation expansion around the vacuum.

As a result the perturbation expansion is free from
any IR divergence associated with tadpoles.

– no need to regulate infrared divergences even at
intermediate stages of the calculation.

– perfectly suitable for dealing with the vacuum shift.



The 1PI action depends on the choice of Sg,n.

However one finds that 1PI actions for different
choices of Sg,n are related by a field redefinition.

– all physical quantities remain unchanged under this.

– generalizes old result of Hata and Zwiebach in
string field theory.



A bonus

One finds that this 1PI action automatically has
infinite dimensional gauge invariance! (Lecture 4)

– includes general coordinate transformation, local
supersymmetry etc.



Our task

1. Find a parametrization of the space Pg,n and its
tangent space.

2. For n given external states, collectively denoted as
φ, construct p-forms ωp on Pg,n with the desired
properties:

ωp(
∑

i

Q(i)
B φ) = (−1)pdωp−1(|φ〉)

Q(i)
B : BRST charge acting on i-th state

3. Construct gluing compatible sections Sg,n and 1PI
subspaces Rg,n of Pg,n.



Lecture 2: Warm-up with

bosonic string theory



Our task

1. Find a parametrization of the space Pg,n and its
tangent space.

2. For n given external states, collectively denoted as
φ, construct p-forms ωp on Pg,n with the desired
properties:

ωp(
∑

i

Q(i)
B φ) = (−1)pdωp−1(|φ〉)

Q(i)
B : BRST charge acting on i-th state

3. Construct gluing compatible sections Sg,n and 1PI
subspaces Rg,n of Pg,n.



Parametrization of Pg,n

Given a genus g Riemann surface with n-punctures,
consider this as a union of n disks {Da} and 2g-2+n
spheres {Si} each with three holes.

3g-3+2n circles {Cs} form boundaries between these
different regions.



wa: complex coordinate on Da with a-th puncture at
wa = 0

zi: complex coordinate on Si.

If Si and Da share a common boundary then on the
boundary zi = fia(wa)

If Si and Sj share a common boundary then on the
boundary zi = Fij(zj)



zi = fia(wa), zi = Fij(zj)

The transition functions fia and Fij contain complete
information on the Riemann surface and the choice of
local coordinates.

– can be used as coordinates of Pg,n.

1. Changes induced by arbitrary reparametrization of
zi’s give the same point in Pg,n.

2. In general reparametrizations of wa give different
points in Pg,n, but wa → eiαawa for constant αa’s are
defined to give the same point in Pg,n.

⇒ Pg,n contains information on local coordinates up
to phases.



Tangent vectors of Pg,n correspond to infinitesimal
changes in fia and fij.

e.g. under fia → fia − δfia we have

zi = fia(wa) → zi = fia(wa)− δfia(wa)

Introduce infinitesimal vector field on the Riemann
surface around the common boundary of Si and Da

v(zi) = δfia(fia
−1(zi))

– labels an infinitesimal tangent vector of Pg,n.



Reparametrization of zk for any k does not induce a
change in the Riemann surface or the local
coordinates at the punctures

– should give a zero tangent vector.

However it is represented by a collection of vector
fields on the three circles forming the boundary of Sk.

These must be declared as zero tangent vectors of
Pg,n.

This finishes our brief introduction to parametrization
of Pg,n and its tangent space.



Construction of ωp(|φ〉) on Pg,n Nelson; Zwiebach

A bosnic string theory is based on

1. A matter CFT of c=26

2. A ghost CFT of c = −26 containing b, c, b̄, c̄ fields.

H: Hilbert space of the combined CFT annihilated by

b0−b̄0, L0−L̄0

H⊗n: n-fold tensor product of H.

〈A|B〉: BPZ inner product between CFT states



Consider a point in Pg,n

– a Riemann surface S of genus g and n punctures
with choice of local coordinates at each puncture.

Given any |φ〉 ∈ H⊗n, 〈φ〉S is defined to be the
correlation function of the n vertex operators of |φ〉 on
the Riemann surface, inserted with the chosen local
coordinate system.

ω0(|φ〉) ≡ (2πi)−3g+3−n〈φ〉S



ωp(|φ〉) is a p-form on Pg,n.

Given p tangent vectors (V1, · · ·Vp) of Pg,n, contraction
of ωp with these tangent vectors is a number.

We shall now prescribe this number ωp(|φ〉)[V1, · · ·Vp]

Recall that a tangent vector Vi of Pg,n can be labelled
by a vector field vi on S around some circle Csi

seperating two regions.

Define

B[Vi] ≡
∮

Csi

dz b(z)vi(z) +

∮
Csi

dz̄ b̄(z̄)v̄i(z̄)

ωp(|φ〉)[V1, · · ·Vn] ≡ (2πi)−3g+3−n〈B[V1] · · ·B[Vp]φ〉S



Using the standard manipulation involving CFT on
Riemann surfaces one can prove that ωp(|φ〉) defined
this way satisfies the desired properties.

1. If any of the tangent vectors is zero tangent vector
induced by reparametrization of one or more zi then
ωp(|φ〉)[V1, · · ·Vn] vanishes.

2. ωp(
∑

i

Q(i)
B φ) = (−1)pdωp−1(|φ〉)



-

6

Mg,n

Fiber Pg,n

Sg,n

3. If |φ〉 ∈ H⊗n is a tensor product of BRST invariant
states of ghost number 2, then∫

Sg,n

ω6g−6+2n(|φ〉)

for any section Sg,n of Pg,n gives the usual on-shell
amplitudes in string theory.



Choosing gluing compatible sections of Pg,n

1. Begin with 3-punctured sphere and one punctured
torus.

The first one has 0-dimensional moduli space and the
second one has two dimensional moduli space.

Choose local coordiates at the punctures arbitrarily
consistent with symmetries

– exchange of punctures on the 3-punctured sphere

– modular transformation for the 1-punctured torus.



Choosing specific local coordinate system

⇒ choosing sections of P0,3 and P1,1 respectively.

-
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Mg,n

Fiber Pg,n

Sg,n

Declare these to be 1PI subspaces of P0,3 and P1,1 and
the corresponding Riemann surfaces with local
coordinates as 1PI Riemann surfaces.

R0,3 = S0,3, R1,1 = S1,1



Now take two 3-punctured spheres and glue them
using plumbing fixture.

x

x
x x

x

x

w1w2 = q, q ≡ e−s+iθ, 0 ≤ s <∞, 0 ≤ θ < 2π

Declare these to be 1PR 4-punctured spheres and
choose the local coordinates to be those induced
from 3-punctured spheres.

Repeat this for inequivalent permutations of the four
punctures i.e. ‘sum over s, t and u-channel diagrams’.



Explicit form

On each of the two 3-punctured spheres labelled by
z1, z2, choose the punctures to be at 0, 1,∞.

Choose local coordinates around zi = 0 on each to be
w1 = f(z1) and w2 = f(z2), with f(0) = 0.

Plumbing fixture:

w1w2 = q ⇒ z1 = f−1(q/f(z2))

This gives a four punctured sphere with punctures at

z1 = 1, ∞, f−1(q/f(1)) , f−1(q/f(∞))



Locations of the punctures in z1 plane

x1 = 1, x2 =∞, x3 = f−1(q/f(1)) , x4 = f−1(q/f(∞))

The cross ratio

x ≡ (x1 − x2)(x3 − x4)/(x1 − x3)(x2 − x4)

= −(f−1(q/f(1))− f−1(q/f(∞))/(1− f−1(q/f(1)))

labels moduli space of 4-punctured sphere.

t and u-channel contributions are obtained by the
exchange x2 ⇔ x3 and x2 ⇔ x4

For |q| ≤ 1, these cover some subspace of the moduli
space of 4-punctured sphere.

Declare these to be 1PR 4-punctured spheres.



On these 1PR 4-punctured spheres choose the local
coordinates at the punctures to be what is induced
from the 3-punctured spheres.

On the rest of the 4-punctured spheres choose local
coordinates arbitrarily consistent with symmetries
and continuity and declare them to be 1PI
4-punctured spheres.



Similarly gluing 3-puntured spheres with 1-punctured
tori we get a set of 2-punctured tori.

x

x
x x

Declare them to be 1PR and choose local coordinates
on them to be those induced from the constituents

– covers part of the moduli space of 2-punctured tori.

Declare the rest of the 2-punctured tori to be 1PI and
choose local coordinates on them arbitrarily
maintaining symmetries and continuity.



Proceeding this way, for all Pg,n we can choose

1. Gluing compatible sections Sg,n

2. Identify part of the section Sg,n as 1PI subspace
Rg,n of Pg,n

-
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Mg,n

Fiber Pg,n

Rg,n

Off-shell 1PI ampitudes are then defined as∫
Rg,n

ω6g−6+2n(|φ〉)

Full amplitudes are given by
∫

Sg,n
ω6g−6+2n(|φ〉)



One subtle point

Choosing local coordinates consistent with all
symmetries is a strong constraint.

e.g. for a three punctured sphere, if we make an
SL(2,C) transformation that permutes the three
punctures, the local coordinates will have to be
permuted.

It may not be convenient to make a single choice of
local coordinates compatible with all symmetries.



Remedy: We can allow Sg,n to be weighed average of
several subspaces

Sg,n =
∑

i

ai S
(i)
g,n,

∑
i

ai = 1

S(i)
g,n correspond to different sections of Pg,n.∫

Sg,n

ω6g−6+2n(|φ〉) ≡
∑

i

ai

∫
S(i)

g,n

ω6g−6+2n(|φ〉)

The notion of gluing compatibility and construction of
1PI subspaces can be generalized to these cases as
well.



Lecture 3: Heterotic and
Type II Strings



World-sheet theory

We shall focus on heterotic string theory but the
generalization to type II string theories is
straightforward.

The world-sheet theory contains a matter
super-conformal field theory (SCFT) with central
charge (26,15).

Ghost system contains:

Left-moving b̄, c̄ ghosts of central charge −26.

Right-moving b, c ghosts of central charge −26 and β,
γ ghosts of total central charge 11.



‘Bosonization’ of β, γ system:

γ = η eφ, β = ∂ξ e−φ, δ(γ) = e−φ, δ(β) = eφ

ξ, η are fermions and φ is a scalar with background
charge.

(ghost number, picture number, GSO) assignments of
various fields are:

c,c̄: (1,0,+), b,b̄ : (−1,0,+), γ : (1,0,−), β : (−1,0,−)

ξ : (−1,1,+), η : (1,−1,+), eqφ : (0,q, (−1)q) .

Picture changing operator (PCO)

X (z) = {QB, ξ(z)} = c∂ξ + eφTF −
1
4
∂ηe2φb− 1

4
∂
(
ηe2φb

)
.

TF: superpartner of matter stress tensor



Recall: H is defined to be the Hilbert space of states
annihilated by

b0−b̄0, L0−L̄0

Off-shell NS sector states are states in H of picture
number −1.

Off-shell R-sector states are states in H of picture
number −1/2.

Getting non-zero amplitude on a genus g Riemann
surface requires total picture number 2g− 2 carried
by all the operators

– requires insertion of PCO’s, e.g. 2g-2+n PCO’s on
genus g with n NS-punctures.



Our task now is the same as in bosonic string theory

1. Find a parametrization of the space Pg,m,n and its
tangent space.

(m,n): number of (NS,R) punctures

2. For given external states, collectively denoted as φ,
construct p-forms ωp on Pg,m,n with the desired
properties:

ωp(
∑

i

Q(i)
B φ) = (−1)p dωp−1(|φ〉)

Q(i)
B : BRST charge acting on i-th state

3. Construct gluing compatible sections and 1PI
subspaces of Pg,m,n.



Parametrization of Pg,m,n

This involves:

1. Parametrization of moduli space of (m+n)
punctured Riemann surfaces and choice of local
coordinates at the punctures.

– same as in the case of bosonic string theory.

2. Locations of the PCO’s

2g-2+m + n/2 complex coordinates {yj} parametrizing
the PCO locations.



Construction of ωp(|φ〉)

We now have two kinds of tangent vector

1. Tangent vectors associated with deformations of
the moduli of the punctured Riemann surface or local
coordinates at the punctures.

– parametrized in the same way as in bosonic string
theory.

2. ∂/∂yj describing deformation of PCO locations.



1. Contraction of ωp(|φ〉) with the tangent vectors of
the first kind has the same expresssion as in bosonic
string theory except for insertions of PCO’s

ωp(|φ〉)[V1, · · ·Vp]

≡ (2πi)−3g+3−n〈B[V1] · · ·B[Vp]

2g−2+m+n/2∏
j=1

X (yj)φ〉S

2. Contraction of ωp(|φ〉) with ∂/∂yk has the effect of
replacing the X (yk) factor by −∂ξ(yk).

The p-form ωp(|φ〉) on Pg,m,n defined this way satisfies
all the required identities.



Construction of gluing compatible sections

– proceeds in the same way as in the case of bosonic
string theory.

Extra condition: on a 1PR Riemann surface obtained
by plumbing fixture of one or more Riemann
surfaces, the PCO locations should agree with those
on the 1PI Riemann surfaces that are glued.

g1 g2
⊗
⊗

⊗⊗
⊗
⊗



An exercise in counting:

Consider a genus g1 surface with m1 NS and n1 R-punctures,
glued to a genus g2 surface with m2 NS and n2 R-punctures.

Total number of PCO’s on the two surfaces is

(2g1 − 2 + m1 + n1/2) + (2g2 − 2 + m2 + n2/2)

If the gluing is at NS puncture then the glued surface has genus
g1 + g2, (m1 + m2 − 2) NS punctures and (n1 + n2) R-punctures.

– required number of PCO’s

2(g1 + g2)− 2 + (m1 + m2 − 2) + (n1 + n2)/2
√

If the gluing is at R puncture then the glued surface has genus
g1 + g2, (m1 + m2) NS punctures and (n1 + n2 − 2) R-punctures.

– required number of PCO’s

2(g1 + g2)− 2 + (m1 + m2) + (n1 + n2 − 2)/2 ×

– one more than what is induced from the component Riemann
surfaces.



Question: Where should we insert the extra PCO
when we glue two Riemann surfaces at R-punctures
via

z w = e−s+iθ 0 ≤ s <∞, 0 ≤ θ < 2π

A consistent prescription: Insert

X0 ≡
∮

dz
z
X (z) =

∮
dw
w
X (w)

around either puncture.

X0 has been used earlier for other purposes.
Berkovits, Zwiebach; Erler, Konopka, Sachs



A technical issue: Spurious poles

The correlation function used for defining ωp diverges
at points where no vertex operators or PCO’s
coincide. Verlinde, Verlinde

f({yi}, {wj}, {mk}) = 0

yi: location of PCO’s {mk}: moduli

wj: locations of vertex operators

– a real codimension two subspace on the section

– appears even for on-shell amplitudes

– related to the fact that the gauge choice for the
world-sheet gravitino breaks down at these points.



We could try to avoid it by judicious choice of section

– impossible for high enough genus when the
supermoduli space is not holomorphically projected.

Donagi, Witten

How to integrate through these poles?



Resolution: Use ‘vertical segment’

C2

C1

C
L

-
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Mg,n

yi

:

S1
C C

S1

S2

Integrate over a section S1 outside C1, then along C
and then along a section S2 inside C2.

L: Path of the spurious pole.

We intercept the spurious pole along the vertical
segment.



Along the vertical segment we have to contract
ω6g−6+2n with ∂/∂yi

⇒ PCO at yi is replaced by −∂ξ(yi).

Thus the vertical integration inserts

−
∫ v

u
∂ξ(yi)dyi = ξ(u)− ξ(v)

– depends only on the initial and final points and has
no singularity or ambiguity.



This is only the tip of the iceberg!

In general we have to add corrections not only on
codimension 1 subspaces of Mg,n but also on
codimension 2 and higher subspaces all the way up
to codimension K subspaces. A.S., Witten

K: number of PCO’s

This finishes our description of construction of ωp on
Pg,m,n, gluing compatible ‘sections’ Sg,m,n of Pg,m,n and
hence also the 1PI subspaces Rg,m,n of Pg,m,n.



Lecture 4: 1PI effective
action and its
applications



Definitions and identities

NS-sector vertex operators are grassman even for
even ghost number and grassmann odd for odd ghost
number

For R-sector it is opposite.

Given N states |A1〉, · · · |AN〉 in the CFT Hilbert space
H, of which m are NS states and n = N−m are
R-states we define a multi-linear function

{A1 · · ·AN} =
∞∑

g=0

gs
2g
∫

Rg,m,n

ω6g−6+2(m+n)(|A1〉, · · · |AN〉)

We also define [A1 · · ·AN] ∈ H via

〈A0|c−0 |[A1 · · ·AN]〉 = {A0A1 · · ·AN}, c−0 ≡ (c0−c̄0)/2



1. Under exchange of Ai and Aj, {A1 · · ·AN} pick up a sign

(−1)γiγj

γi: grassmannality of Ai i.e. 0 if Ai is grassmann even and 1 if Ai
is grassmann odd.

2.
N∑

i=1

(−1)γ1+···γi−1{A1 · · ·Ai−1(QBAi)Ai+1 · · ·AN}

= −1
2

∑
`,k≥0
`+k=N

∑
{ia ;a=1,···`},{jb ;b=1,···k}
{ia}∪{jb}={1,···N}

σ({ia}, {jb})

{Ai1 · · ·Ai`(G[Aj1 · · ·Ajk ])}

σ({ia}, {jb}): the sign that one picks up while rearranging
b−0 ,A1, · · ·AN to Ai1 , · · ·Ai` ,b

−
0 ,Aj1 , · · ·Ajk

G|s〉 ≡

{
|s〉 if |s〉 ∈ HNS

X0 |s〉 if |s〉 ∈ HR
,

3. {A1 · · ·Ak(G[Ã1 · · · Ã`])} = (−1)γ+γ̃+γγ̃{Ã1 · · · Ã`(G[A1 · · ·Ak])} .

γ, γ̃: total grassmannality of the Ai’s, Ãi’s.



NS sector string field: An arbitrary state |ψNS〉 ∈ H
carrying ghost number 2 and picture number −1.

R sector string field: An arbitrary state |ψR〉 ∈ H
carrying ghost number 2 and picture number −1/2.

|ψ〉 ≡ |ψNS〉+ |ψR〉

If |φr〉 is a basis in H−1 + H−1/2, then we can expand

|ψ〉 =
∑

r

ar|φr〉

The coefficients ar are the dynamical variables
labelling the string field (in momentum space).

Coefficients of NS sector basis states are grassmann
even and the coefficients of R-sector basis states are
grassmann odd.



We shall first describe the 1PI effective action for NS
sector fields.

S(|ψNS〉) = gs
−2

[
1
2
〈ψNS|c−0 QB|ψNS〉+

∞∑
n=1

1
n!
{ψNS

n}

]

{ψNS
n}: {ψNSψNS · · ·ψNS} with n copies of ψNS inside { }.

Infinitesimal gauge transformation law

δ|ψNS〉 = QB|λNS〉+
∞∑

n=0

1
n!

[ψNS
nλNS]

|λNS〉: is an element of H with ghost number 1, picture
number −1.

Gauge invariance of S(|ψNS〉) can be proved using the
identities involving {· · · } and [· · · ].



Equations of motion:

QB|ψNS〉+
∞∑

n=1

1
(n− 1)!

[ψNS
n−1] = 0

Note: {ψNS} and [ ] are non-zero from genus 1
onwards

|ψNS〉 = 0 is not a solution to equations of motions.

We have to first solve the equations of motion and
then expand the 1PI action around the solution.

Special importance: Vacuum solution carrying zero
momentum



Iterative construction of the vacuum solution:

Suppose |ψk〉 is the solution to order gs
k. (|ψ0〉 = 0)

P: projection operator to L+
0 ≡ L0+L̄0 = 0 states.

Then

|ψk+1〉 = −
b+

0

L+
0

∞∑
n=1

1
(n− 1)!

(1− P)[ψn−1
k ] + |φk+1〉 ,

|φk+1〉 is an L+
0 = 0 state satisfying

QB|φk+1〉 = −
∞∑

n=1

1
(n− 1)!

P[ψn−1
k ] +O(gs

k+2) .



|ψk+1〉 = −
b+

0

L+
0

∞∑
n=1

1
(n− 1)!

(1− P)[ψn−1
k ] + |φk+1〉 ,

QB|φk+1〉 = −
∞∑

n=1

1
(n− 1)!

P[ψn−1
k ] +O(gs

k+2) .

Possible obstruction to solving these arise from the
last equation.

rhs could contain a component along a non-trivial
element of BRST cohomology.

– reflects the existence of zero momentum massless
tadpoles in perturbation theory.

Unless this equation can be solved we have to
declare the vacuum inconsistent.



|ψk+1〉 = −
b+

0

L+
0

∞∑
n=1

1
(n− 1)!

(1− P)[ψn−1
k ] + |φk+1〉 ,

QB|φk+1〉 = −
∞∑

n=1

1
(n− 1)!

P[ψn−1
k ] +O(gs

k+2) .

Once these equations have been solved, we do not
encounter any further tadpole divergence in
perturbation theory.

Note: The full solution |ψv〉 is |ψ∞〉, but in practice we
shall stop at some fixed order in gs.



This also allows us to deal with the cases involving
vacuum shift, e.g. when a scalar field χ in low energy
theory has potential

c(χ2 − K gs
2)2 .

At order gs we have three solutions χ = 0,±gs
√

K.

In 1PI effective feld theory this will be reflected in the
existence of multiple solutions for |φ1〉.

The solution corresponding to χ = 0 will have
non-zero dilaton one point function at higher order

⇒ an obstruction to extending the corresponding 1PI
effective field theory solution to higher order.

The solutions corresponding to χ = ±gs
√

K will not
encounter such obstructions.



For Ramond sector states it is not possible to write
down an action with local kinetic term.

We can only write down the equation of motion.

– related to the fact that Ramond sector states carry
picture number −1/2 and the inner product between
two such states vanish by picture number
conservation.

For a string field theory this would be problematic
since we would not know how to quantize the theory.

However for 1PI theory this is not a problem since we
only need to work at the tree level.



General structure (including NS and R-sector):

A general string field configuration corresponds to a
state |ψ〉 ∈ H of ghost number 2 and picture number
(−1,−1/2) in (NS,R) sector.

1PI equation of motion:

QB|ψ〉+
∞∑

n=1

1
(n− 1)!

G[ψn−1] = 0

QB: BRST operator

G: identity in NS sector X0 ≡
∮

z−1dzX (z) in R
sector



Gauge transformations

The infinitesimal gauge transformation parameters
correspond to states |λ〉 of ghost number 1 and
picture number (−1,−1/2) in (NS,R) sector.

Gauge transformation law

δ|ψ〉 = QB|λ〉+
∞∑

n=0

1
n!

G[ψn λ]



Once we have a vacuum solution |ψv〉 we can expand
the equations of motion around |ψv〉.

Define: |χ〉 ≡ |ψ〉 − |ψv〉

{A1 · · ·Ak}′ ≡
∞∑

n=0

1
n!
{ψn

vA1 · · ·Ak} , for k ≥ 3 ,

[A1 · · ·Ak]′ ≡
∞∑

n=0

1
n!

[ψn
vA1 · · ·Ak] , for k ≥ 2 ,

{A1}′ ≡ 0, [ ]′ ≡ 0, {A1A2}′ ≡ 0, [A1]′ ≡ 0 ,

Q̂B|A〉 ≡ QB|A〉+
∞∑

k=0

1
k!

G[ψv
kA] .

New ‘shifted’ equations of motion

Q̂B|χ〉+
∞∑

n=2

1
n!

G[χn]′ = 0



1. Under exchange of Ai and Aj, {A1 · · ·AN}′ pick up a sign

(−1)γiγj

γi: grassmannality of Ai i.e. 0 if Ai is grassmann even and 1 if Ai
is grassmann odd.

2.
N∑

i=1

(−1)γ1+···γi−1{A1 · · ·Ai−1(Q̂BAi)Ai+1 · · ·AN}′

= −1
2

∑
`,k≥0
`+k=N

∑
{ia ;a=1,···`},{jb ;b=1,···k}
{ia}∪{jb}={1,···N}

σ({ia}, {jb})

{Ai1 · · ·Ai`(G[Aj1 · · ·Ajk ]
′)}′

σ({ia}, {jb}): the sign that one picks up while rearranging
b−0 ,A1, · · ·AN to Ai1 , · · ·Ai` ,b

−
0 ,Aj1 , · · ·Ajk

G|s〉 ≡

{
|s〉 if |s〉 ∈ HNS

X0 |s〉 if |s〉 ∈ HR
,

3. {A1 · · ·Ak(G[Ã1 · · · Ã`]′)}′ = (−1)γ+γ̃+γγ̃{Ã1 · · · Ã`(G[A1 · · ·Ak]
′)}′ .

γ, γ̃: total grassmannality of the Ai’s, Ãi’s.



Linearized equations of motion around |ψv〉:

Q̂B|χ〉 = 0

– has two kinds of solution:

1. Solutions which exist for all momentum k of |χ〉

– have the form Q̂B|λ〉 for some |λ〉 and are pure
gauge.

2. Solutions which exist for special values of k2

– represent physical states with the corresponding
values of −k2 giving renormalized mass2.



This abstract definition can be developed into a fully
systematic perturbative scheme.

A similar procedure can be given for the S-matrix
elements starting from the LSZ formalism.

Pius, Rudra, A.S.



Section dependence

The definition of {A1 · · ·AN} and all subsequent
analysis depends on the choice of 1PI subspace
Rg,m,n.

A different choice of gluing compatible ‘sections’

⇒ a different choice of Rg,m,n

⇒ a different set of equations of motion.

Do the renormalized masses and S-matrix elements
depend on this choice?



We shall consider the case of infinitesimal deformations from
Rg,m,n to R′g,m,n labelled by some tangent vector Û of Pg,m,n at
every point of Rg,m,n.

]
Û

Rg,m,n

R′g,m,n

Result: The change in the equation of motion can be
compensated by a field redefinition |ψ〉 → |ψ〉+ δ|ψ〉 where

〈φ|c−0 |δψ〉 = −
∞∑

g=0

gs
2g

∞∑
m,n=0

1
m!n![∫

Rg,m+1,n

ω6g−5+2m+2n+2[Û](G|φNS〉〉, |ψNS〉⊗m, |ψR〉⊗n)

∫
Rg,m,n+1

ω6g−5+2m+2n+2[Û](|ψNS〉⊗m,G|φR〉, |ψR〉⊗n)

]
Thus renormalized masses and S-matrix elements remain
unchanged.



Future prospects

1. Demand of infinite dimensional gauge invariance
more or less fixes the perturbative scattering
amplitude

– integral over the full integration cycle Sg,m,n.

Could it constrain the structure of non-perturbative
corrections to the 1PI effective action?

2. Can we use the off-shell action to study string
theory in weak RR background field perturbatively?
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Translation of convention from slides⇒ the papers
(used for simplifying notation in the slides)

Mg,n ⇒Mg,n

Pg,n ⇒ P̂g,n for bosonic string theory
Pg,n ⇒ P̃g,n (also P̃g,m,n) for heterotic / type II string theory
Rg,n ⇒ Rg,n (also Rg,m,n) for heterotic / type II string theory
{· · · }′ ⇒ {· · · }′′, [· · · ]′ ⇒ [· · · ]′′


