

#### **NAA Software**

#### Radojko Jaćimović

Jožef Stefan Institute, Ljubljana, Slovenia

20.-24. April 2015 The Abdus Salam ICTP Trieste, Italy

Two features of  $(n, \gamma)$  reactor NAA are making its standardization potentially easy and accurate:

 the high penetrability of matter for neutrons
 existence of a delayed signal (besides the prompt gamma's).

Hence, standard and sample can be excited simultaneously and induced signals of both can be measured successively after a suited time following the end of irradiation.



#### Other consequences:

- NAA is a bulk analysis method with multi-element capability (element concentration and measured signal is nearly matrix-independent).
- Matrix preparation can be kept simple.
- Treatment of sample (and standard) after irradiation is possible (enabling etching, dissolution, chemical separation - RNAA).
- High sensitivity (down to the 10<sup>-6</sup>, 10<sup>-9</sup> or even to the 10<sup>-12</sup> g/g) attainable for many elements.
- Reference method for certification of new CRMs or RMs.

 $\gamma_{\rm p}$ 

Nuclear reactions: - direct (B + a  $\rightarrow$  Y + b); ~ 10<sup>-22</sup> - 10<sup>-21</sup> s - meta stable (B + a  $\rightarrow$  X\*  $\rightarrow$  Y + b); ~ 10<sup>-16</sup> - 10<sup>-14</sup> s

7B



ICTP-IAEA Workshop, 20.-24. April 2015, Trieste, Italy

A+1 Z+1



#### • NAA - four techniques:

- Prompt Gamma Neutron Activation Analysis (PGNAA) (usually with energies < 0.001 eV); prompt gammy rays (γ<sub>p</sub>) emitted by the compound nucleus X\* are measured
- Thermal Neutron Activation Analysis (TNAA); from reactions in a well-thermalised reactor spectrum, the decay gamma rays ( $\gamma_d$ ) are measured
- Epithermal Neutron Activation Analysis (ENAA); resonance reactions are utilised by using suitable filters to remove thermal neutrons from the reactor spectrum and measuring decay gamma rays
- Fast Neutron Activation Analysis (FNAA); high-energy neutron sources are used without the presence of a moderator for slowing down the neutrons and gamma rays are measured.

# (n, $\gamma$ ) reaction rate



# (n, $\gamma$ ) reaction rate



Cd total cross section and Cd transmission function T(E) for 1 mm Cd

Hogdahl convention:  $R_{X} = \int_{0}^{v_{Cd}} \sigma(v) \, \varphi'(v) \, dv + \int_{E_{Cd}}^{E_{2}} \sigma(E) \, \varphi(E) \, dE = R_{X,th} + R_{X,e}$ - all (n, $\gamma$ ) reactions are as follows:  $\sigma(V) \propto 1/V$ -  $E_{Cd} = 0.55 \text{ eV}$ 

$$R_X = \sigma_0 v_0 n_{th} + \varphi_e I_0(\alpha) = \sigma_0 \varphi_{th} + \varphi_e I_0(\alpha)$$

with:  $\sigma_0 = \sigma(v_0)$  at reference velocity  $v_0 = 2200$  m s<sup>-1</sup>,  $\phi_{th} = v_0 n_{th}$  fluence rate for thermal neutrons,  $n_{th}$  – thermal neutron density and

$$I_0(\alpha) = (1eV)^{\alpha} \int_{E_{Cd}}^{E_2} \frac{\sigma(E) dE}{E^{1+\alpha}}$$

**resonance integral** for epithermal part of spectra

# (n, $\gamma$ ) reaction rate

For better adjustment of  $(n,\gamma)$  reaction rate in Hogdahl convention it is necessary to introduce some correction factors:

- G<sub>th</sub> thermal neutron self-shielding (nucleus density)
- G<sub>e</sub> epithermal neutron self-shielding (density + resonance parameters)
- F<sub>Cd</sub> Cd transmission factor for epithermal neutrons

$$R_X = G_{th} \varphi_{th} \sigma_0 + G_e \varphi_e I_0(\alpha)$$

**Cd-ratio:** 

$$R_{Cd} = F_{Cd} R_{Cd}^* = 1 + \left(\frac{G_{th} f}{G_e Q_0(\alpha)}\right) \text{ with } f = \frac{\varphi_{th}}{\varphi_e} \text{ and } Q_0(\alpha) = \frac{I_0(\alpha)}{\sigma_0}$$

CONTRACTOR TO T

with R<sub>Cd</sub>\* - measured Cd ratio:

$$R_{Cd}^* = \frac{\int_0^\infty \sigma(E) \,\varphi(E) \,dE}{\int_0^\infty T(E) \,\sigma(E) \,\varphi(E) \,dE} = \frac{\int_0^{E_2} \sigma(E) \,\varphi(E) \,dE}{F_{Cd} \int_{E_{Cd}}^{E_2} \sigma(E) \,\varphi(E) \,dE}$$

# Activation equation

$$N_1^0 = \frac{w N_A \Theta}{M}$$

**1** \ T

$$\frac{dN_1}{dt'} = -N_1 R_{X,1}$$

$$N_1 = N_1^0 e^{-R_{X,1}t'}$$

taking into account the removal of nuclei of the nuclide produced

$$\frac{dN}{dt'} = N_1 R_{X,1} - N (\lambda + R_N) = R_{X,1} N_1^0 e^{-R_{X,1}t'} - N (\lambda + R_N)$$

$$N = \frac{N_1^0 R_{X,1} e^{-R_{X,1} t_{irr}}}{(\lambda + R_N - R_{X,1})} (1 - e^{(R_{X,1} - \lambda - R_N) t_{irr}})$$

$$N = \frac{N_1^0 R_{X,1}}{\lambda} (1 - e^{-\lambda t_{irr}})$$

**not taking into account** the removal of nuclei of the nuclide produced

#### **Burn-up factor**

$$F_{burn} = \frac{\lambda e^{-R_{X,1}t_{irr}} (1 - e^{(R_{X,1} - \lambda - R_N)t_{irr}})}{(\lambda + R_N - R_{X,1}) (1 - e^{-\lambda t_{irr}})}$$

- $N_{1}^{0}$  initial number of irradiated nuclei in the target
- N<sub>1</sub> number of target nuclide
- N number of radionuclide
- w mass of the investigated element
- N<sub>A</sub>- Avogadro constant=6.022045 10<sup>23</sup> mol<sup>-1</sup>
- M molar mass
- $\Theta$  isotopic abundance
- $\lambda$  decay constant =  $ln(2)/T_{1/2}$
- t<sub>irr</sub> irradiation time
- $R_{X,1}$  specific reaction rate of target nuclide
- R<sub>N</sub> specific reaction rate of radionuclide

# Activation equation

Due to radioactive decay, the number of radioactive nuclei *N* decreases with time

The reaction rate of the radioactive nuclei N

$$\frac{dN}{dt} = -\lambda N$$

$$N = \frac{N_1^0 R_{X,1}}{\lambda} (1 - e^{-\lambda t_{irr}}) e^{-\lambda t}$$

is proportional to the count rate measured by the detector.

The result is the **number of counts** in the full-energy peak ( $N_p$ ) with the start of detection at time  $t_d$  after the end of irradiation:

# **Activation equation**

$$\frac{N_p}{t_m} = \frac{w N_A \Theta}{M} R_{X,1} S D C \gamma \varepsilon_p$$

 ${\cal E}_p$  Full-energy peak detection efficiency, including gamma attenuation

Probability of γ emission

Activity, A [s<sup>-1</sup>] or the total count rate in the detector:

$$A = N_1^0 R_{X,1} \gamma \varepsilon_p = \frac{w N_A \Theta}{M} R_{X,1} \gamma \varepsilon_p$$

Specific count rate (s<sup>-1</sup> g<sup>-1</sup>)

$$A_{sp} = \frac{N_A \Theta}{M} R_{X,1} \ \gamma \ \varepsilon_p \quad \text{or} \quad A_{sp} = \frac{N_p \ / t_m}{S \ D \ C \ W}$$

# Activation equationSpecific count rate (s<sup>-1</sup> g<sup>-1</sup>) $A_{sp} = \frac{N_A \Theta}{M} \frac{1}{F_{hum}} (G_{th} \varphi_{th} \sigma_0 + G_e \varphi_e I_0(\alpha)) \gamma \varepsilon_p$

#### Specific count rate under Cd activation (s<sup>-1</sup> g<sup>-1</sup>)

$$(A_{sp})_{Cd} = \frac{N_A \Theta}{M} \frac{1}{F_{Cd}} G_e \varphi_e I_0(\alpha) \gamma \varepsilon_p$$

Nuclear research reactor TRIGA Mark II (250 kW)

- Short and long irradiation in the CC: φ<sub>th</sub> ~ 10·10<sup>12</sup> cm<sup>-2</sup> s<sup>-1</sup>

- Short irradiation in the PT and in the FPTS (up-to 30 min.)  $\varphi_{th} \sim 3.5 \cdot 10^{12} \text{ cm}^{-2} \text{ s}^{-1}$ 

- Long irradiation in the IC-40 (typically 20 hours) φ<sub>th</sub> ~ 1.1·10<sup>12</sup> cm<sup>-2</sup> s<sup>-1</sup>



# Nuclear data of the target and nuclide formed

| El.          | Nuclide            | T <sub>1,2</sub> | $\sigma_{0,1}, \mathbf{b}$ | I <sub>0,1</sub> , b | $\sigma_{0,N}$ , b | $\mathbf{I}_{0,\mathrm{N}},\mathbf{b}$ |
|--------------|--------------------|------------------|----------------------------|----------------------|--------------------|----------------------------------------|
| Ru           | <sup>105</sup> Rh  | 35.36 h          | 0.32                       | 4,3                  | 16000              | 17000                                  |
| Eu           | <sup>152</sup> Eu  | 13.516 y         | 5900                       | 1510                 | 12800              | 1580                                   |
| Eu           | <sup>152m</sup> Eu | 9.113 h          | 3304                       | 1790                 | 70000              | 1580                                   |
| Gd           | <sup>153</sup> Gd  | 240.4 d          | 735                        | 2020                 | 36000              | n. d.                                  |
| Au           | <sup>198</sup> Au  | 2.695 d          | 98.65                      | 1550                 | 25100              | 31031                                  |
| <b>n. d.</b> | : no data          |                  |                            |                      |                    |                                        |

#### Burn-up factor (F<sub>burn</sub>) in irradiation channels of the TRIGA reactor (calculations)

|                                                                              | <b>F</b> 1 | Muelida            | т        | F     | $F_{burn}(20\mathrm{h}$ | )     |
|------------------------------------------------------------------------------|------------|--------------------|----------|-------|-------------------------|-------|
| -10                                                                          | L'1.       | INGENICE           | 1,2      | IC-40 | $\mathbf{PT}$           | CC    |
| $\phi_{th} \sim 1.0 \ 10^{-10} \ \text{cm}^{-2} \text{s}^{-1}$               | Ru         | <sup>105</sup> Rh  | 35.36 h  | 0.999 | 0.998                   | 0.994 |
| <b>C</b> : $\omega_{\rm th} \sim 10 \cdot 10^{12} {\rm cm}^{-2}{\rm s}^{-1}$ | Eu         | <sup>152</sup> Eu  | 13.516 y | 0.999 | 0.998                   | 0.993 |
| φ <sub>th</sub> rono on o                                                    | Eu         | <sup>152m</sup> Eu | 9.113 h  | 0.998 | 0.993                   | 0.980 |
| manifettes estata and set to a state of the                                  | Gd         | <sup>153</sup> Gd  | 240.4 d  | 0.999 | 0.995                   | 0.987 |
|                                                                              | Au         | <sup>198</sup> Au  | 2.695 d  | 0.999 | 0.997                   | 0.991 |

| El. | Nuclide            | F <sub>burn</sub> in the CC channel |       |       |       |       |       |  |  |  |
|-----|--------------------|-------------------------------------|-------|-------|-------|-------|-------|--|--|--|
|     | INGELIGE           | 1 h                                 | 10 h  | 20 h  | 50 h  | 100 h | 200 h |  |  |  |
| Ru  | <sup>105</sup> Rh  | 1.000                               | 0.997 | 0.994 | 0.988 | 0.980 | 0.973 |  |  |  |
| Eu  | <sup>152</sup> Eu  | 1.000                               | 0.997 | 0.993 | 0.983 | 0.967 | 0.935 |  |  |  |
| Eu  | <sup>152m</sup> Eu | 0.999                               | 0.988 | 0.980 | 0.966 | 0.958 | 0.946 |  |  |  |
| Gd  | <sup>153</sup> Gd  | 0.999                               | 0.993 | 0.987 | 0.968 | 0.937 | 0.879 |  |  |  |
| Au  | <sup>198</sup> Au  | 1.000                               | 0.995 | 0.991 | 0.978 | 0.961 | 0.938 |  |  |  |

 $(n, \gamma)$  Activation Analysis: **Principles of standardization** 

The mass of the element:

### $\left(\frac{N_p / t_m}{S D C}\right)$ $w_{a} = \frac{M_{a}}{N_{A}\Theta_{a}\gamma_{a}} \frac{(SDC)_{a}}{(G_{th,a}\varphi_{th,a}\sigma_{0,a} + G_{e,a}\varphi_{e,a}I_{0,a}(\alpha))\varepsilon_{p,a}}$

#### **Relative standardization:**

$$w_{a} = \frac{\left(\frac{N_{p}/t_{m}}{DC}\right)_{a}}{\left(\frac{N_{p}/t_{m}}{DCw}\right)_{s}} \frac{G_{th,s} f + G_{e,s} Q_{0,s}(\alpha)}{G_{th,a} f + G_{e,a} Q_{0,a}(\alpha)} \frac{\varepsilon_{p,s}}{\varepsilon_{p,a}}$$

Concentration in relative standardization:

$$\rho_{a} = \frac{\left(\frac{N_{p} / t_{m}}{DC w}\right)_{a}}{\left(\frac{N_{p} / t_{m}}{DC w}\right)_{s}}$$

## (n, γ) Activation Analysis: Principles of standardization

 $k_c(s) = \frac{A_{sp,s}}{A}$ 



$$k_{c}(s) = \frac{M_{c} \Theta_{s} \gamma_{s} \sigma_{0,s}}{M_{s} \Theta_{c} \gamma_{c} \sigma_{0,c}} \frac{G_{th,s} f + G_{e,s} Q_{0,s}(\alpha)}{G_{th,c} f + G_{e,c} Q_{0,c}(\alpha)} \frac{\varepsilon_{p,s}}{\varepsilon_{p,c}}$$

$$\rho_{a} = \frac{\left(\frac{N_{p} / t_{m}}{S D C w}\right)_{a}}{\left(\frac{N_{p} / t_{m}}{S D C w}\right)_{c}} \cdot \frac{1}{k_{c}(s)}$$

## (n, γ) Activation Analysis: Principles of standardization

Absolute (parametric) standardization:

$$\rho_{a} = \frac{\left(\frac{N_{p} / t_{m}}{S D C w}\right)_{a}}{\left(\frac{N_{p} / t_{m}}{S D C w}\right)_{m}} \frac{M_{a} \Theta_{m} \gamma_{m} \sigma_{0,m}}{M_{m} \Theta_{a} \gamma_{a} \sigma_{0,a}} \frac{G_{th,m} f + G_{e,m} Q_{0,m}(\alpha)}{G_{th,a} f + G_{e,a} Q_{0,c}(\alpha)} \frac{\varepsilon_{p,m}}{\varepsilon_{p,a}}$$

a - analyte m - flux monitor Condition that  $\phi_{th}$ , f and  $\alpha$  remain constant during irradiation Parameters M,  $\Theta$ ,  $\gamma$ ,  $\sigma_0$  for both taken from literature (accurate known !)

# **k**<sub>0</sub>-standardization: KAYZERO/SOLCOL Thermal and epithermal activation: $\rho_{a} = \frac{\left(\frac{N_{p}/t_{m}}{SDCw}\right)_{a}}{\left(\frac{N_{p}/t_{m}}{SDCw}\right)_{Au}} \frac{1}{k_{0,Au}(a)} \frac{G_{th,Au} f + G_{e,Au} Q_{0,Au}(\alpha)}{G_{th,a} f + G_{e,a} Q_{0,a}(\alpha)} \frac{\varepsilon_{p,Au}}{\varepsilon_{p,a}}$ **Only epithermal activation:** $\rho_{a} = \frac{\left[ \left( \frac{N_{p} / t_{m}}{S D C w} \right)_{Cd} \right]_{a}}{\left[ \left( \frac{N_{p} / t_{m}}{S D C w} \right)_{Cd} \right]_{Au}} \frac{1}{k_{0,Au}(a)} \frac{F_{Cd,Au} G_{e,Au} Q_{0,Au}(\alpha)}{F_{Cd,a} G_{e,a} Q_{0,a}(\alpha)} \frac{\varepsilon_{p,Au}}{\varepsilon_{p,a}}$

# $k_0$ -standardization

$$k_{0,Au}(a) = \frac{M_{Au} \Theta_a \gamma_a \sigma_{0,a}}{M_a \Theta_{Au} \gamma_{Au} \sigma_{0,Au}} \operatorname{Compons}_{\text{cons}}$$

bound nuclear tant

Tabulated constant:

$$Q_0(\alpha) = \frac{Q_0 - 0.429}{\left(\bar{E}_r\right)^{\alpha}} + \frac{0.429}{(2\alpha + 1)(0.55)^{\alpha}}$$

 $k_0, Q_0, E_r$ (experimentally measured)

Q<sub>0</sub>-factor:  $Q_0 = I_0 / \sigma_0$ 

 $\alpha$ Epithermal fluence rate deviation from 1/E

Ē

Effective resonance energy



ICTP-IAEA Workshop, 20.-24. April 2015, Trieste, Italy

.429

# **k**<sub>0</sub>-library info:

# http://www.kayzero.com/k0naa/k0naa/News/News.html

J Radioanal Nucl Chem (2014) 300:589–592 DOI 10.1007/s10967-014-3085-2

#### The 2012 recommended $k_0$ database

R. Jaćimović · F. De Corte · G. Kennedy · P. Vermaercke · Z. Revay

Received: 31 October 2013/Published online: 16 March 2014 © Akadémiai Kiadó, Budapest, Hungary 2014

**Abstract** Many overview papers have been published with recommended nuclear data for use in the  $k_0$  method of NAA and made available in scientific journals or in the form of a downloadable database. In September 2009, the  $k_0$ -International Scientific Committee formed the  $k_0$ -Nuclear Data Committee ( $k_0$ -NDC) whose first task was to collect all these data at a single place to facilitate updating and to correct any evident errors. This task of the  $k_0$ -NDC was successfully completed in March 2012 when the 2012 recommended  $k_0$  database was published in the form of an Excel file.

**Keywords**  $k_0$  method of NAA  $\cdot k_0$  database  $\cdot$  Nuclear data  $\cdot$  The IUPAC  $k_0$  database

[1], whereby absolute nuclear data were replaced by  $k_0$  factors, which were experimentally determined. Compared to the relative method, the  $k_0$  method greatly reduces the need for the preparation of standards. It uses gold as the standard and composite nuclear constants for analytically interesting nuclides are normalised to gold nuclear data. During the last 30 years the  $k_0$  method has been introduced in many laboratories around the world for multi-element NAA and the method is continuously improving, along with its nuclear data [2–7]. In 2003, these data were made available by the International Union of Pure and Applied Chemistry (IUPAC) in the form of the Access database (http://www.iupac.org/home/projects/project-db/project-details.html?tx\_wfqbe\_pi1%5Bproject\_nr%5D=2001-075-1-500) created by Kolotov and De Corte [8, 9]. In the process of validation of the consistency of the

# **k**<sub>0</sub>-library info:

http://www.kayzero.com/k0naa/k0naa/News/News.html

□ The  $k_0$ -Nuclear Data Committee ( $k_0$ -NDC) is responsible for reviewing all new developments in the nuclear data used with the  $k_0$  method of NAA, which includes ensuring the consistency in the  $k_0$  database.

The latter task was successfully fulfilled in March 2012 when the 2012 recommended k<sub>0</sub> database was published in the form of an Excel file dated 2012-03-14.

# Periodic table of the elements (elements in the *k*<sub>0</sub>-library)

| IA                    | IIA                   |                                                                        |                            |                                          |                           |                                          |                     |                      |                                            |          |                      | IIIA                        | IVA                         | VA       | VIA      | VIIA     | VIIIA |
|-----------------------|-----------------------|------------------------------------------------------------------------|----------------------------|------------------------------------------|---------------------------|------------------------------------------|---------------------|----------------------|--------------------------------------------|----------|----------------------|-----------------------------|-----------------------------|----------|----------|----------|-------|
| 1                     |                       |                                                                        |                            |                                          |                           |                                          |                     |                      |                                            |          |                      |                             |                             |          |          |          | 2     |
| H                     |                       |                                                                        |                            |                                          |                           |                                          |                     |                      |                                            |          |                      |                             |                             |          |          |          | He    |
| 3                     | 4                     |                                                                        |                            |                                          |                           |                                          |                     |                      |                                            |          |                      | 5                           | 6                           | 7        | 8        | 9        | 10    |
| Li                    | Be                    |                                                                        |                            |                                          |                           |                                          |                     |                      |                                            |          |                      | В                           | С                           | Ν        | 0        | F        | Ne    |
| 11                    | 12                    |                                                                        |                            |                                          |                           |                                          |                     |                      |                                            |          |                      | 13                          | 14                          | 15       | 16       | 17       | 18    |
| Na                    | Mg                    | IIIB                                                                   | IVB                        | VB                                       | VIB                       | VIB                                      | {                   | VIII                 | }                                          | IB       | IIB                  | Al                          | Si                          | Р        | S        | Cl       | Ar    |
| 19                    | 20                    | 21                                                                     | 22                         | 23                                       | 24                        | 25                                       | 26                  | 27                   | 28                                         | 29       | - 30                 | - 31                        | 32                          | 33       | - 34     | 35       | 36    |
| K                     | Ca                    | Sc                                                                     | Ti                         | V                                        | Cr                        | Mn                                       | Fe                  | Co                   | Ni                                         | Cu       | Zn                   | Ga                          | Ge                          | As       | Se       | Br       | Kr    |
| 37                    | - 38                  | 39                                                                     | 40                         | 41                                       | 42                        | 43                                       | 44                  | 45                   | 46                                         | 47       | 48                   | 49                          | 50                          | 51       | 52       | 53       | 54    |
| Rb                    | Sr                    | Y                                                                      | Zr                         | Nb                                       | Mo                        | Τc                                       | Ru                  | Rh                   | Pd                                         | Ag       | Cd                   | In                          | Sn                          | Sb       | Te       | Ι        | Xe    |
|                       |                       |                                                                        |                            |                                          |                           |                                          | 70                  |                      | =0                                         | =0       | 00                   |                             | 00                          |          |          | 05       | 96    |
| 55                    | 56                    | 57                                                                     | 72                         | 73                                       | 74                        | 75                                       | 76                  | //                   | 78                                         | 79       | 80                   | 81                          | 82                          | 83       | 84       | 63       | 00    |
| 55<br><b>Cs</b>       | 56<br><b>Ba</b>       | 57<br>* <b>La</b>                                                      | 72<br><b>Hf</b>            | 73<br><b>Ta</b>                          | 74<br>W                   | 75<br><b>Re</b>                          | 76<br>Os            | Ir                   | 78<br>Pt                                   | 79<br>Au | $\mathbf{Hg}^{80}$   | 81<br>Tl                    | <sup>82</sup><br>Pb         | 83<br>Bi | 84<br>Po | At       | Rn    |
| 55<br><b>Cs</b><br>87 | 56<br><b>Ba</b><br>88 | 57<br>* <mark>La</mark><br>89                                          | 72<br><b>Hf</b>            | 73<br><b>Ta</b>                          | 74<br>W                   | 75<br><b>Re</b>                          | <sup>76</sup><br>Os | Ir                   | 78<br>Pt                                   | Au       | 80<br>Hg             | 81<br>Tl                    | 82<br>Pb                    | 83<br>Bi | 84<br>Po | as<br>At | Rn    |
| 55<br>Cs<br>87<br>Fr  | 56<br>Ba<br>88<br>Ra  | 57<br>*La<br>89<br><sup>D</sup> Ac                                     | 72<br><b>Hf</b>            | 73<br><b>Ta</b>                          | 74<br>W                   | 75<br><b>Re</b>                          | Os                  | Ir                   | Pt                                         | Au       | 80<br>Hg             | 81<br>Tl                    | 82<br>Pb                    | 83<br>Bi | 84<br>Po | At       | Rn    |
| 55<br>Cs<br>87<br>Fr  | 56<br>Ba<br>88<br>Ra  | 57<br>*La<br>89<br><sup>D</sup> Ac                                     | 72<br><b>Hf</b>            | 73<br><b>Ta</b>                          | 74<br>W                   | 75<br><b>Re</b>                          | <sup>76</sup><br>Os | Ir                   | Pt                                         | Au       | 80<br>Hg             | 81<br>Tl                    | 82<br>Pb                    | 83<br>Bi | 84<br>Po | At       | Rn    |
| 55<br>Cs<br>87<br>Fr  | 56<br>Ba<br>88<br>Ra  | 57<br>*La<br>89<br><sup>D</sup> Ac                                     | 72<br><b>Hf</b><br>59      | 73<br><b>Ta</b><br>60                    | 74<br>W                   | 75<br><b>Re</b><br>62                    | 76<br>Os            | 64                   | 78<br>Pt                                   | 79<br>Au | 80<br>Hg<br>67       | 81<br>Tl<br>68              | 82<br>Pb                    | 83<br>Bi | 84<br>Po | At       | Rn    |
| 55<br>Cs<br>87<br>Fr  | 56<br>Ba<br>88<br>Ra  | <sup>57</sup><br><b>La</b><br>89<br><b>Ac</b><br>58<br><b>Ce</b>       | 72<br>Hf<br>59<br>Pr       | 73<br>Ta<br>60<br>Nd                     | 74<br>W<br>61<br>Pm       | 75<br>Re<br>62<br>Sm                     | <sup>76</sup><br>Os | 64<br>Gd             | <sup>78</sup><br>Pt<br><sup>65</sup><br>Tb | Au       | 80<br>Hg<br>67<br>Ho | 81<br>Tl<br>68<br>Er        | 82<br>Pb<br>69<br>Tm        | Bi       | 84<br>Po | At       | Rn    |
| 55<br>Cs<br>87<br>Fr  | 56<br>Ba<br>88<br>Ra  | <sup>57</sup><br><b>La</b><br>89<br><b>Ac</b><br>58<br><b>Ce</b><br>90 | 72<br>Hf<br>59<br>Pr<br>91 | 73<br><b>Ta</b><br>60<br><b>Nd</b><br>92 | 74<br>W<br>61<br>Pm<br>93 | 75<br><b>Re</b><br>62<br><b>Sm</b><br>94 | 76<br>Os            | 64<br>64<br>64<br>96 | 78<br>Pt<br>65<br>Tb<br>97                 | 49<br>Au | 67<br>Hg<br>99       | 81<br>Tl<br>68<br>Er<br>100 | 82<br>Pb<br>69<br>Tm<br>101 | 83<br>Bi | 84<br>Po | At       | Rn    |

Short irradiation (1-5 min)

Long irradiation (15 - 20 hours)

#### ✓ Westcott factor g ≠ 1



Activation and decay types in the *k*<sub>0</sub>-method

ICTP-IAEA Workshop, 20.-24. April 2015, Trieste, Italy

# Decay scheme of the radionuclide



# Decay scheme of the radionuclide



ICTP-IAEA Workshop, 20.-24. April 2015, Trieste, Italy



HPGe closed end coaxial detector (OR4) 40% relative efficiency at 1332.5 keV (60Co) ("fine tuning" dimensions are in mm)

ICTP-IAEA Workshop, 20.-24. April 2015, Trieste, Italy

# Full-energy peak detection efficiency $\varepsilon_{p,x} = \varepsilon_{p,ref} \frac{\bar{\Omega}_x}{\bar{\Omega}_{ref}}$ Point sources at reference distance (20 cm):<br/>Am-241, Ba-133, Bi-207, Cd-109, Co-57, Co-60,<br/>Cr-51, Cs-137, Eu-152, Mn-54, Na-24, Ra-226, Sr-85<br/>Fitting curve: $\log \varepsilon_p = a_0 + a_1(\log E_\gamma) + a_2(\log E_\gamma)^2 + a_3(\log E_\gamma)^3 + ... + a_n(\log E_\gamma)^n$





#### True coincidence correction factors True coincidence effects occur when two or more cascading radiations give rise to a total or partial energy deposition in the HPGe detector 1. $\gamma$ - $\gamma$ coincidence summing 2. $\gamma$ - $\gamma$ coincidence loss Μ Ν D $S(\underline{A} = B + C) = \frac{\gamma_B}{\gamma_A} a_C c_C \frac{\varepsilon_{p,B} \varepsilon_{p,C}}{\varepsilon_{p,A}}$ $L(\underline{A} - D) = a_D c_D \mathcal{E}_{t,D}$ $\gamma$ - absolute gamma-intensity, a - branching ratio, $\mathcal{E}_{t,D} = \frac{\mathcal{E}_{p,D}}{P/T}$ Total efficiency $c = 1/(1+\alpha_{t}), \alpha_{t} = total internal conversion coefficient (= \alpha_{K}+\alpha_{L}+...),$ ε<sub>p</sub> - full-energy peak efficiency

- 3. y K X (IC) Coincidence loss
- 4. γ-KX(EC) Coincidence loss
- 5.  $\gamma$  511 keV ( $\beta$ <sup>+</sup>) Coincidence loss
- 6.511 keV ( $\beta$  <sup>+</sup>)-511 keV ( $\beta$  <sup>+</sup>) Coincidence loss

ICTP-IAEA Workshop, 20.-24. April 2015, Trieste, Italy

30

 $COI = [1-L(\underline{A})] \cdot [1+S(\underline{A})]$ 

 $N_{p,A}$  =

 $\frac{N_{p,A}}{CC}$ 

# Effective solid angle



$$F_{att} = e^{\left(-\sum_{i=1}^{m}\mu_i\delta_i\right)}$$

Gamma attenuation caused by incoherent interaction in the absorbing material interposed between source and detector body

Probability for a photon with  $E_{\gamma}$  to interact incoherently with the detector material

$$\bar{\Omega} = \frac{4}{r_0^2 L} \int_0^L (d+l) dl \int_0^{r_0} r dr \int_0^{\pi} d\Phi \int_0^{R_0} \frac{F_{att} F_{eff} R dR}{\left[R^2 - 2Rr\cos\Phi + r^2 + (d+l)^2\right]^{3/2}}$$

|                                      | С                       | OI factors                                     | for OR                  | 4 detecto               | or     |                    | ••    |
|--------------------------------------|-------------------------|------------------------------------------------|-------------------------|-------------------------|--------|--------------------|-------|
|                                      |                         |                                                |                         | φ=                      | =8 mm  | Ĭ                  | •     |
| Volume<br>Aantai<br>Coinc:<br>Detect | e mor<br>lposi<br>ident | nsterhouder =<br>lties = 5<br>liefactoren voor | .25701 cm<br>spronk AAA | .3 h=<br>. 0905 sedimen | =5 mm  |                    | •     |
| Pulse                                | shap<br>z mat           | oing time = 4.0                                | 00 microsec             | -                       | ρ=1    | g cm <sup>-3</sup> |       |
| Aantal                               | l isc                   | topen in het be                                | stand : 1               | .39 _                   |        |                    |       |
| C060                                 | 2                       | 1 cm                                           | 3 cm                    | 5 cm                    | 7 cm   | 21 cm              |       |
| 1173.2                               | keV                     | .84229                                         | .93254                  | .96304                  | .97584 | .99504             |       |
| 1332.5                               | keV                     | .83850                                         | .93095                  | .96219                  | .97530 | .99499             | ( and |
| BR82                                 | 16                      |                                                |                         |                         |        |                    |       |
| 92.2                                 | keV                     | .71242                                         | .86605                  | .92468                  | .95029 | .98996             |       |
| 221.3                                | keV                     | .71846                                         | .86725                  | .92514                  | .95056 | .99013             |       |
| 273.5                                | keV                     | .56291                                         | .79297                  | .88315                  | .92282 | .98467             |       |
| 554.3                                | keV                     | .64272                                         | .83524                  | .90777                  | .93928 | .98791             |       |
| 606.3                                | keV                     | .55354                                         | .78808                  | .88086                  | .92162 | .98496             |       |
| 619.1                                | keV                     | .61022                                         | .81808                  | .89786                  | .93270 | .98674             |       |
| 698.4                                | keV                     | .56301                                         | .79293                  | .88329                  | .92303 | .98497             |       |
| 776.5                                | keV                     | .64971                                         | .83883                  | .90991                  | .94074 | .98831             |       |
| 827.8                                | keV                     | .69618                                         | .86372                  | .92427                  | .95021 | .99001             |       |
| 952.0                                | keV                     | .59131                                         | .80856                  | .89297                  | .92980 | .98672             |       |
| 1007.5                               | keV                     | .69403                                         | .86261                  | .92369                  | .94987 | .98996             |       |
| 1044.0                               | keV                     | .67435                                         | .85256                  | .91804                  | .94621 | .98942             |       |
| 1081.3                               | keV                     | .59743                                         | .81057                  | .89593                  | .93322 | .98811             |       |
| 1317.5                               | keV                     | .74287                                         | .88845                  | .93841                  | .95911 | .99168             |       |
| 1474.8                               | keV                     | .77573                                         | .90533                  | .94805                  | .96526 | .99281             |       |
| 1650.3                               | keV                     | .75036                                         | .89536                  | .94329                  | .96242 | .99268             |       |

# **k**<sub>0</sub>-standardization: KAYZERO/SOLCO

- k<sub>0</sub>-standardization method of NAA was launched in the 1970s
- SINGCOMP program: 1987 written for VAX
- KAYZERO/SOLCOI program: 1994, 1996, 2003 written for DOS and in 2004 written for Windows
- Current status: Kayzero for Windows (KayWin<sup>®</sup>) ver.
   2.42 from March 2011
- KAYZERO library 144 nuclides (68 elements)
- k<sub>0</sub>-NAA became widespread as a practical analytical tool used to analyse different sample matrices

## KAYZERO/SOLCOI (KayWin) software

#### Kayzero for Windows V2.42

File Samples Monitors Library History Reports SOLCOI Archive Tools Window Help

#### 💹 About Kayzero for Windows.....

This program is the Windows equivalent for the DOS programs Kayzero/Solcoi developed by Robbert van Sluijs.

This DOS software was developed from 1987 to 2002 at DSM Research (NL).

Kayzero for Windows was developed by k0-ware (NL) in 2002-2003 and distributed by Prof. F. De Corte until june 2007.

All data from previous versions can be used.

The library is equivalent to the 2002 IUPAC database.

Kayzero for Windows is now supported and distributed by k0-ware, Heerlen The Netherlands. 

# KayWin: http://www.kayzero.com/

| ⊽ C Q Search 📩 📩 🖨 🔗                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| or Windows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Vindows available (Version 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ro/Solcoi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| thod developed by Frans De Corte and Andras Simonits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>* Spectrum Deconvolution         Spectrum Deconvolution         Spectrum deconvolution (determination of peak locations and areas) is not implemented in Kayzero for Windows, file formats for spectrum and peak table         files from Sampo90, Hypermet, Hyperlab and Genie are supported, other formats on request (free of charge).</li> <li>Information on the software         Recent presentations on Kayzero for Windows: at the <u>NAMES</u>, at the <u>4th Reserver</u> Workshop and at the <u>MARC-VII</u>. Have a look at <u>Screen Castures</u>         from Kayzero for Windows or download the program and use it as a Demo version. Or have a look at <u>some integrated</u> on Kayzero.         At the 4th k0-users workshop Kayzero for Windows Version 2 was presented. This version includes: integrated direct SOLCOI calculations, multi-monitor         f and alpha determination, reactor fluxvariation during irradiation and improved gamma interference correction. This upgrade, as well of all minor updates         were free of charge for all "Kayzero for Windows" version.     </li> </ul> |
| <ul> <li>Demo Find the demo program (it turns into the full version if you have the Dongle), the dataset (KayV5A), the Vademecum (old, but is being updated) and the first draft of the new updated manual. New updates of Kayzero for Windows are also always available on the <u>download page</u>.</li> <li>Newest upgrade: Version 3 The major upgrade of Kayzero for Windows, Version 3, is finally ready, sorry for the delay. This upgrade is not free of charge. Please mail me for a quotation and more information.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

# **k**<sub>0</sub>-INAA analytical procedure



- Sample and standard are prepared in sandwich form and irradiated in the carousel facility of the TRIGA Mark II reactor (250 kW)

- Measurement on an HPGe absolutely calibrated detector

- Evaluation of the spectrum by HyperLab program
- Calculation of the effective
   Solid angle between sample and
   Al-Au wire HPGe detector
  - Calculation of element concentration by KayWin<sup>®</sup>

# k<sub>0</sub>-IAEA software

- A new k0\_IAEA software for k<sub>0</sub>-NAA appeared in 2004 in collaborations between the IAEA (M. Rossbach), M. Blaauw, M. Bacchi, beta testers (L. Xilei, R. Jaćimović, G. Kenedy and M.C. Freitas) and additional programmer A. Trkov
- Current status: k0\_IAEA software ver. 7.16 from June 2013
- From ver. 4.01 of k0\_IAEA software the Kayzero library has been updated. The new data have been obtained from:
  - [DECORTE2003]: Recommended nuclear data for use in the k0-standardization of neutron activation analysis, Atomic Data and Nuclear Data Tables 85 (2003) 47-67
  - [DECORTE2003b]: The updated NAA nuclear data library derived from the Y2K k0database, J. Radioanal. Nucl. Chem., 257 (2003) 493-499
  - [IUPAC] Compilation of k0 and related data for NAA, V. P. Kolotov and F. De Corte, ver. 4, 1.10.2002

# k<sub>0</sub>-IAEA software

#### http://www.tnw.tudelft.nl/index.php?id=34350&L=1



#### CERTIFICATE OF ANALYSIS SMELS

#### **ASSIGNED VALUES** [1]



<sup>1</sup>: The assigned values, as determined after a characterisation exercise [1], represent total contents. These values are not traceable to SI and are not certified.

<sup>2</sup>: Estimated expanded uncertainty U with a coverage factor k=2, corresponding to a level of confidence of about 95 %, as defined in the Guide to the Expression of Uncertainty in Measurement (GUM), ISO, 1995. Uncertainty contributions arising from characterisation as well as from homogeneity and stability assessment were taken into consideration.

#### P. Vermaercke, et al., Nucl. Instr. Meth. A 564 (2006) 675-682

SMELS page 1 of 3

#### KayWin vs. k0\_IAEA





CI

Cs

Cu

Element

La

Mn

V

Au

-SMELS • k0\_IAEA

0.90

#### KayWin vs. k0\_IAEA





### Acknowledgments

- The IAEA, Austria
- Prof. F. De Corte, Belgium
- Dr. A. Simonits, Hungary
- Robbert van Sluijs, The Netherlands
- Dr. Menno Blaauw, The Netherlands
- Colleagues at the Department of Environmental Sciences at the JSI, Slovenia



#### Practical exercise:

# KayWin

#### and

#### k<sub>0</sub>-IAEA software