Prompt Gamma Activation Analysis

Zsolt Révay

Technische Universität München Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II) Garching, Germany

PGAA and NAA: based on radiative neutron capture

Beam geometry

Neutrons and gamma rays

- both are highly penetrating
 - neutrons illuminate the sample in whole depth
 - high E gammas: almost no attenuation
- "double" shielding
 - massive lead shielding
 - ⁶Li or B containing shielding

Principles

• Activation equation (peak count rate)

t_{act}

tc

Cross section differences

 $(\sigma_{\gamma})_{\text{last}} < (\sigma_{\gamma})_{\text{max}}$ (by an order of magnitude)

Partial cross sections for PGAA and NAA

	н																He	
	Li	Be		B C N O F														Ne
	Na	Mg	Al Si P														CI	Ar
	к	Са	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	l I	Xe
	Cs	Ва	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi			
			Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu		
			Th	Ра	U													
	H NAA													Не				

н	NAA												He				
Li	Be					В	С	N	0	F	Ne						
Na	Mg		Al Si												S	CI	Ar
к	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
Cs	Ba	La	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	ті	Pb	Bi			

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Th	Ра	U											

>1000 <1000 <100 <10 <10 <1 <0.1 <0.01

Total count rate in the spectrum

- If the total intrinsic efficiency ≈ 1
 - For large detectors 100 keV—12 MeV ε > 0.5 (minimum around 10 MeV)
- Below $Q (=E_{max})$ 1 cps (if the γ photon reaches the detector)
 - For prompt gamma spectra: $Q \approx 7 MeV$
 - For delayed gamma spectra: $Q \approx 1.5$ MeV
- So PGAA spectra have ~5× more counts from similar cross section materials

Abundance of elements

(figure from http://pubs.usgs.gov/fs/2002/fs087-02/)

NAA vs. PGAA for natural samples

- Most elements in the matrix are invisible – Trace elements: $\times 10^{-3}$
- Cross sections are smaller $\times 10^{-1}$
- Decay correction $\times 10^{-2}$
- Count rate

 $- \times 10^{-1}$

• Counting efficiency $- \times 10^{1-3}$

NAA needs 10^{4—6} higher flux

Analysis

Gamma radiation is characteristic

- energy \rightarrow elements (isotopes)
- intensity \rightarrow quantity

Peak position Peak area

Energy

Partial gamma-ray production cross section

2223.249 keV 0.3326 barn for H

Cross section

- neutron capture cross section
- at low E: 1/v law

 highest reaction rate for cold neutrons
- neutrons must be moderated
- resonance neutrons
 - RNCA (IRMM, Gel, Postma et al.)

Radiative neutron capture

- Kinetic energy of neutron (<eV) is negligible compared to binding energy (S_n~MeV), or the detector resolution (~keV)
- Prompt de-excitation from capture state
 - Is the de-excitation independent of the beam energy?
 - Mostly yes, but close-lying resonance(s) can also be excited, from which deexcitation can be be different
 - Emission probabilities (mainly below S_n) may differ in different beams
 - ¹⁴⁹Sm, ¹⁵⁷Gd, ¹⁵¹Eu, 10—20% deviations in thermal/cold beam
 - but not ¹¹³Cd
 - Epithermal neutrons may cause further deviations (collimated beams)

Panorama analysis

- major components: Li, Be, <u>C, N</u>, O, Pb, Bi
- (at least) minor: <u>H</u>, F, Na, Mg, Al, Si, Ca, Sn
- above 10 ppm: halogenes, transition metals
- trace and above: <u>B</u>, Cd, Hg, rare-earths

Determination of masses

 $R_{\gamma} = N \sigma_{\gamma} \Phi$ $\sigma_{\gamma} = \theta \sigma P_{\gamma}$

$\boldsymbol{R}_{\boldsymbol{\gamma}}$	- induced activity for a given gamma energy
N	- number of atoms (~mass of component)
σγ	- gamma ray production cross section
	θ – isotopic abundance
	σ – capture cross section
	P_{γ} – emission probability
Φ	- neutron flux

PGAA spectra

- complicated gamma spectrum
 - Many known interferences
 - Many still unknown interferences
 - Peaks behave stochastic, can be handled using statistical techniques

bi-directional dynamic range: 10^{6—8}

1 mg H together with 1 g Cl (10 mg water in 1 g CCl₄)

1 mg Cl together with 1 g H (1 mg Cl in 10 g water)

Properties of PGAA

- nondestructive
- no sample preparation, sample in any form
- independent from chemical environment
- all elements, isotopes: panorama analysis
 light elements (H, B, C, N, F, Na, Al, Si, ...)

• extremely different sensitivities

complicated gamma spectrum

Components of the PGAA Instrument

Components of the instrument

- Neutron source
 - spallation neutron source
 - nuclear reactor
 - neutron generator
 - isotopic neutron source (²⁵²Cf, Pu-Be, ...)
- Moderator (H containing material)
- Shielding against ...
 - neutrons
 - gammas
- Detector
 - high-purity germanium (HPGe)
 - scintillator (NaI, ...)

Neutron sources

- Nuclear reactor
 - collimated neutron beams (NIST thermal system)
 - guided neutron beams (NIST cold, Budapest, Japan)
 - diffracted neutron beam (Korea)
- neutron generator

Research Reactor

- 10 MW
- water cooled
- water moderated
- thermal flux
 10¹⁴ cm⁻² s⁻¹

FRM II and the neutron guide hall

20 MW water cooled Heavy-water moderated thermal flux ~10¹⁵ cm⁻² s⁻¹

Cross section primary circuit FRM II

Berkeley neutron generator

- D+D or D+T reaction
- 10⁹⁻¹¹ fast n/s
- E = 2.4 or 14 MeV
- "desktop" instrument
- pulsed beam...

Moderators

- any H (maybe D) containing material
 - water (heavy water)
 - liquid hydrogen, deuterium

The cold neutron source (FRM II)

Liquid deuterium moderator Volume moderator vessel 25 liters Volume of liquid D₂ ~ 13 liters Temperature 25 K

3 beam tubes for cold neutron experiments 1 vertical beam tube is not in use Cooling power total $\sim 6 \text{ kW}$ in liquid D₂ 2.7 kW

E. Gutsmiedl, Päthe, Chr. Müller, A. Scheuer

Neutron guides

- Ni or supermirror guides
- relatively small losses
- low background

Mirrotron Ltd.

RESEDA Neutron guide hall during cunstruction at FRM II (~2006)

SPHERES

MARIA

PGAA

MEPHISTO

NSĘ

TOF-TOF

NREX+

Detectors

- Scintillators (high count rate)
- high-purity germanium (high resolution)
- Compton suppressed

composite detectors

Compton suppression

Compton suppression

E (keV)

Facilities

The most exciting application ...

Production of prompt γ **photons in the surface of Mars**

GRS instrument on satellite Odyssey

GRS (Gamma Ray Spectrometer)

Robert Reedy Los Alamos National Laboratory

Facilities on Earth

INDUSTRY

LABORATORY

- on-line analyzers at conveyor belts
 - approx. 400 in cement factories
- bore hole logging
 oil industry

- lab instrument using isotopic neutron source
- facilities at nuclear reactors

radioisotopic sources + scintillator

neutron beam + HPGe detector

Continuous Neutron Analyzer (CNA)

Figures from sodern.com

Guided neutron beam facilities at research reactors

- NIST (USA) cold beam
- JAERI (Japan) cold/thermal beam
- BNC (Budapest, Hungary) (thermal) cold beam
- Garching (Germany), cold beam,

Best arrangement: separate chambers

1) PGAA facilities at Budapest

Budapest PGAA facility

- 10 MW
- LH cold source
- curved guide
- Comptonsuppressed HPGe
- chopper

Sample changer at PGAA

L. Szentmiklósi

Neutron radiography + PGAA

1) Full beam: neutron radiography and/or tomography

2) Sharp collimation of neutrons and gammas

Planned facilities NORMA – Budapest 3D PGAA – Munich

L. Szentmiklósi

2) NIST cold beam PGAA facility 20 MW reactor, LH cold source, straight neutron guide, Compton-suppressed HPGe

3) Japanese PGAA facility

- 10 MW
- LH cold source
- curved guide
- Comptonsuppressed HPGe

Neutron source: Collimator and elliptical guide interchangeable

PGAA facility at Garching

Active and passive shielding

Compton-suppressed detector and digital electronics

Flux, Background in the Beam, Efficiency

- Collimated beam
 - Flux: $1.35 \times 10^9 \text{ cm}^{-2} \text{ s}^{-1}$
 - Beam background: 12 cps
- Focused beam
 - Flux: $2.7 \times 10^{10} \text{ cm}^{-2} \text{ s}^{-1}$
 - Beam background: 290 cps

Element	collimated	focused
Н	5.8×10 ⁻⁷	3.5×10-7
В	1.9×10 ⁻⁸	1.5×10 ⁻⁸
N	-	8.2×10 ⁻⁶
Na*	-	9.3×10 ⁻⁶
Al	2.2×10 ⁻⁵	2.4×10 ⁻⁵
Si*	-	4.0×10 ⁻⁵
Ca*	-	3.1×10 ⁻⁶
Ti*	-	5.6×10 ⁻⁷
Cr	-	7.0×10 ⁻⁶
Fe	1.0×10 ⁻⁶	1.5×10 ⁻⁶
Ni*	-	3.1×10 ⁻⁷
Ge	-	1.8×10 ⁻⁶
In	4.8×10 ⁻⁸	5.6×10 ⁻⁸
Pb	4.8×10 ⁻⁴	4.6×10 ⁻⁴

Low-background chamber next to neutron guides

- ⁶Li-containing plastic (2.5 mm)
- . Sn sheets (4 mm) instead of Cd
- 10 cm of lead
- 5mm boron rubber (40% B_4C)
- 5cm boron plastic (20% H₃BO₃)

Characteristics of low-background chamber

- 2.5 cps during reactor operation
- 1.5 cps room background
- Background components from
 - . 40K (1460 keV)
 - U, Th series
 - some neutron activation (Ge (n,γ) peaks, or with Cd)
 - . 41Ar (1294 keV) from reactor operation
 - 124Sb (601 keV, 1693 keV) activated lead bricks
 - Cosmic muons

No Compton suppression

What do we irradiate?

- PGAA in typical beams

 Sample: 100mg—1g
 Teflon bag: 50—200mg
- In high-flux
 - Sample: ~1mg
 - Packing???

Background in high flux

+150 cps

- No sample holder: 400 cps
- + Teflon sample holder: +150 cps
- + Teflon packing:
- Air: +300 cps

• Bg peaks from stuctural components (like Al, Fe, Pb) depend on the scattering of the sample

Traditional packing

- C: 3.8 mbarn, F: 9.6 mbarn
 Teflon, FEP, PTFE
- Teflon bag: 0.025mm, heat sealed
- Teflon string:0.3mm diam

• Both approx. 50mg/cm²

0.5µm Mylar film in Teflon

frame

Spectrum evaluation (Hypermet-PC)

Accurate and reprodicible peak fitting – Hypermet-PC

Response of the detector

Semiempirical efficiency

Measured efficiency 50 keV-11 MeV

Tricks with PGAA

Methodological developments

1. Time of flight

Rotating and standing slits

Cold and thermal neutron spectra

Prompt and decay spectrum of Tc-99

Simultaneous PGAA and NAA measurement with a chopper

Beam open
 Beam closed

prompt gamma rays

decay gamma rays

only decay gamma rays

Usual PGAA spectrum cyclic NAA spectrum

Increasing of the dynamic range

Prompt and decay spectra of Ag

Prompt and decay spectrum of Ag

Elements with visible decay lines in prompt spectra

- < 1 s: Na,
- < 1 min: F, Sc, Ge, Pd, Ag, In, Er, Hf, W,
- < 10 min Mg, Al, V, Cr, Se, Br, Rh, Dy, Ir,
- < 1 h: Ga, Rb, Sn, I, Pr, Nd, Ta, Re,
- <1 day: Mn, Cu, Sr, Cs, Ba, Eu, Lu,
- longer: As, Ru, La, Ce, Tb, Ho, Yb, Au,

2. Neutron lens for Cold Neutrons

Polycapillary neutron lens (NIST). 1763 glass fibres (0.5 mm), each with 1657 channels (9 μ m) focus neutrons to 0.5 mm spot.

source: NIST

3. Method of "invisible container"

Method of "invisible container"

Noble gases (Ne, Ar, Kr, Xe) were measured in this way

containers:

borosilicate glass Al minican

When container has low cross-sec, It should not be invisible

Figure: Linde

When the container is visible...

Detection of Material in Thick Containers

• neutrons and gammas penetrate through the walls of the container.

Efficiency for samples in lead containers (¹⁵²Eu, ²²⁶Ra, Cl)

PGAA spectra of uranium+ Pb container

4. In situ PGAA

PGAA spectrum of the catalytic reactor –monitoring H content

Measurements and Results

- Catalytic experiment
 - -2 g tube reactor
 - 100mg SiC + 7 mg Pd
 - 5—50 μg H
- The mechanism of the reaction could be clarified

H detection limit: 5 µg!!

Model: 1-pentyne hydrogenation

5. Neutron Radiography driven PGAA

1. Full beam: regular radiography image(s)

 Sharp collimation of neutron beam Sharp collimation of gamma detection (for analysis)

L. Szentmiklósi

1) Full beam: neutron radiography and/or tomography

2) Sharp collimation of neutrons and gammas

NRd PGAA

Test sample (U, Fe, Cu, Al)

Elemental mapping (on the replica of Frankish fibula, 6th century, Hungary)

n radiogram

Fe map

Cu map

Under publication

1. Micro-meteorites (high flux FRM II)

- Mass ~0.3—2mg
- In 0.5µm Mylar (PET) foil
- No Teflon string

-			m	unc	m	unc	m	ox.	m	unc
Z	EI	IVI	meas	%	Bkg	%	net	st.	ох	%
1	Η	1.008	5.47E-6	0.8	1.36E-6	1.5	4.11E-6	1	3.67E-5	1.2
5	В	10.81	6.74E-7	0.3	1.15E-8	1.0	6.63E-7	3	2.13E-6	0.3
13	AI	26.98	4.51E-5	2.2	1.96E-5	2.5	2.55E-5	3	4.82E-5	4.
14	Si	28.09	9.22E-5	2.8	1.96E-5	3.7	7.26E-5	4	1.55E-4	3.7
16	S	32.07	4.67E-6	14.		0.0	4.67E-6	6	1.17E-5	14.
17	CI	35.45	1.09E-6	18.	1.15E-7	22.	9.71E-7	-1	9.71E-7	20.
20	Ca	40.08	2.10E-5	19.		0.0	2.10E-5	2	2.94E-5	19.
22	Ti	47.87	2.45E-4	2.6	1.40E-7	22.	2.45E-4	4	4.09E-4	2.6
24	Cr	52	4.03E-6	14.		0.0	4.03E-6	3	5.89E-6	14.
25	Mn	54.94	8.75E-6	2.0		0.0	8.75E-6	3	1.26E-5	2.0
26	Fe	55.85	2.31E-4	2.4	1.16E-6	10.	2.30E-4	3	3.28E-4	2.4
27	Со	58.93	3.06E-6	3.1		0.0	3.06E-6	2	3.89E-6	3.1
60	Nd	144.2	8.89E-7	13.		0.0	8.89E-7	3	1.04E-6	13.
62	Sm	150.4	5.32E-8	6.		0.0	5.32E-8	3	6.16E-8	6.
64	Gd	157.3	9.89E-8	7.		0.0	9.89E-8	3	1.14E-7	7.

1 mg

R.B. Firestone

2. Air filters (high flux, FRM II)

- ~1mg PC filters, <1mg dust
- In 0.5µm Mylar (PET) foil

Detection limit for certain trace elements (B, Gd, Sm) <1ng !!

Nuno Canha, Marina Almeida

Air filter typical composition

z	EI	Μ	m meas	unc %	m Bkg	unc %	m net	ox. st.	m ox	unc %
5	В	10.81	8.16E-8	0.5	5.13E-8	0.7	3.03E-8	3	9.75E-8	1.8
11	Na	22.99	3.65E-5	3.8	4.80E-6	11.	3.17E-5	1	4.27E-5	5.
13	AI	26.98	4.33E-5	3.3	1.67E-5	6.	2.66E-5	3	5.03E-5	7.
14	Si	28.09	8.56E-5	3.2	2.34E-5	5.	6.22E-5	4	1.33E-4	5.
16	S	32.07	1.11E-5	8.		0.0	1.11E-5	6	2.77E-5	8.
17	CI	35.45	3.55E-5	1.4	3.00E-7	16.	3.52E-5	-1	3.52E-5	1.4
19	K	39.1	6.95E-6	7.		0.0	6.95E-6	1	8.37E-6	7.
20	Ca	40.08	2.34E-5	6.	3.26E-6	9.	2.02E-5	2	2.82E-5	7.
22	Ti	47.87	1.89E-6	5.		0.0	1.89E-6	4	3.15E-6	5.
26	Fe	55.85	1.73E-5	4.	1.30E-6	11.	1.60E-5	3	2.29E-5	4.
27	Со	58.93	1.15E-6	9.	4.27E-7	26.	7.27E-7	2	9.24E-7	21.
29	Cu	63.55	2.93E-6	14.		0.0	2.93E-6	2	3.67E-6	14.
62	Sm	150.4	2.91E-9	9.		0.0	2.91E-9	3	3.37E-9	9.
64	Gd	157.3	2.38E-9	13.		0.0	2.38E-9	3	2.75E-9	13.
82	Pb	207.2	2.10E-4	9.	1.26E-4	8.	8.45E-5	2	9.10E-5	25.

Mass = 0.45 mg

3. Pollutants of MoS₂ (PGAA+NAA, FRM II)

- From prompt spectrum:
 - B 0.067--0.87--240 ppm
- From decay spectra:
 - La 300 ppm
 In 1.7 ppm

Cl 0.4 ppm Mo 59 ppm

Br 500 ppm Ir 0.29%

Bálint Náfrádi

4. Pollutants in MgO (PGAA+NAA, FRM II)

Z	EI	М	m meas	unc %	w% el/ox	unc %
12	Mg	24.31	0.252	5.	56	2.2
		0				
1	Η	1.008	3.82E-3	0.4	0.843	2.8
5	В	10.81	2.59E-6	0.3	5.69 ppm	2.8
17	CI	35.45	3.72E-6	13.	8 ppm	14.
19	Κ	39.1	2.60E-5	5.	57 ppm	6 .
20	Ca	40.08	9.45E-4	30.	0.2	30.
25	Mn	54.94	4.90E-7	11.	1.1 ppm	11.
47	Ag	107.9	1.10E-4	4.0	240 ppm	5.
49	In	114.8	1.40E-7	3.0	0.31 ppm	4.
57	La	138.9	9.23E-5	7.	200 ppm	8.
64	Gd	157.3	1.25E-8	8.	0.028ppm	8.
		0				
		0				
		0				
		0				

- Smallest masses 10⁻⁷—10⁻⁸ g
- Detection limits
- Down to 10⁻¹⁰ g

Maik Eichelbaum

5. Irradiation radioactive nuclides (high flux, FRM II)

Induced activity > natural radioactivity

MBq activities

Half-life >100a

Mass > 0.1mg

Cross-sec. >100b

Radioactive samples irradiated at FRM2:

30µg (!!) ²⁴¹Am

~100 µg²³⁷Np, ²⁴²Pu

Determination of cross section

6. Analysis of Deep Sea Vents (medium flux, Budapest)

	ALVIN 917-R4	ALVIN 1457-1R-C	ALVIN 1461-2R
0	45.9 [*]	41(6), 44.9*	45.1*
S	20.0 (0.2)	0.151 (0.005)	0.16 (0.01)
Ca	11.3 (0.2)	7.22 (0.11)	7.25 (0.13)
Fe	9.28 (0.11)	9.65 (0.08)	9.37 (0.09)
Cu	7.67 (0.07)		
Al		7.10 (0.07)	7.06 (0.12)
Mg	1.8 (0.2)	3.98 (0.11)	3.6 (0.2)
Zn	1.36 (0.05)		
Р		0.85 (0.18)	1.6 (0.2)
Ni	1.17 (0.003)	0.022 (0.002)	
Ti		1.097 (0.008)	1.060 (0.010)
Si	0.55 (0.05)	22.6 (0.3)	22.3 (0.3)
Н	0.368 (0.004)	0.0290 (0.0005)	0.027 (0.001)
K	0.27 (0.06)	0.138 (0.004)	0.16 (0.01)
Cl	0.194 (0.002)	0.0566 (0.0005)	0.0188 (0.0005)
Mn		0.154 (0.002)	0.161 (0.004)
Na	0.140 (0.014)	1.97 (0.04)	1.96 (0.05)
V		0.042 (0.002)	0.046 (0.003)
Co	0.0066 (0.0011)	0.0045 (0.0003)	0.0058 (0.0009)
Sc		0.0039 (0.0002)	0.0058 (0.0005)
Cd	0.00352 (0.00005)		0.00024 (0.00003)
В	0.00220 (0.00002)	0.000659 (0.000007)	0.000658 (0.000008)
Dy		0.00099 (0.00008)	0.00111 (0.00014)
Gd	0.000050 (0.000006)	0.000524 (0.000007)	0.000556 (0.000010)
Sm	0.00033 (0.00003)	0.000330 (0.000005)	0.000340 (0.000007)

7. PRE-COLUMBIAN POTTERY FROM VENEZUELA (BUD) (Simón Bolívar University, Caracas)

- Fragments of pottery figurines from 12nd-15th Century
- Provenance: Valencia Lake Basin and the Los Roques Islands
- Question: Did the occupants use the same raw material?
- Analytic: Major and trace components (H, Na, Mg, AI, Si, K, Ca, Ti, Mn, Fe B, S, CI, Sc, V, Cr, Ba, Sm, Eu, Gd, Dy)

Zsolt Kasztovszky

PROVENANCE OF VENEZUELAN POTTERY

8. INACTIVE TRACING OF A GLASS FURNACE (medium fllux, Budapest)

- Homogenization and flow properties of an industrial melting furnace were investigated
- To avoid high level radioactivity, inactive tracers of Gd₂O₃ and H₃BO₃ were added in 10 ppm concentration
- Samples were taken regularly at the outlet and measured with PGAA
- Properties were found to be close to ideal case

9. ROMAN SILVER COINS (medium flux, Budapest)

CHANGE IN COMPOSITION OF ROMAN SILVER COINS

Zs. Kasztovszky, E. Panczik

10. SULFUR IN FULLERENE (Dept. of Inorganic Chemistry, Eötvös University)

0.1 S Count rate (cps) 0.01 S S С S 0.00 0.0001 0.00001 0.00000 0 1000 2000 3000 4000 5000 6000 Energy (keV)

PGAA spectrum of fullerene

Element	Concentration	Rel. unc	Composition	
	(%)	(%)		
Н	0.012	10	0.08	
С	97.1	4.5	60	
S	2.88	1.3	0.67	
Cl	0.003	20	0.0006	

- Sulfur and other impurities were determined with PGAA
- C is an ideal matrix
- S attributed to $C_{60}S_{16}$ (clathrate) during the purification process

Zs. R., T. Braun

