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Entropy production and dissipation in superfluids and 
superconductors are associated with dynamics of vortices. 

 
The cores of these vortices play a central role in these processes. 

 
E.g. Bardeen-Stephen friction force acting on a vortex comes,  

essentially, from the normal current flowing through the core. 
 
Beyond linear response, Larkin and Ovchinnikov showed that 
heating effects within vortex core (due to long relaxation time) 
lead to nonlinear friction force.  

Introduction 
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Introduction  (cont.) 

Vodolazov & Peeters PRB (2007) 
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Introduction  (cont.) 

What about superfluids? 
 

No analogous scenario because vortices in bosonic superfluids 
are considered to have Featureless cores. 
 
Vortex mass is essentially zero implying  Kelvin’s circulation 
theorem, i.e. a vortex moves with the flow.  
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Introduction  (cont.) 

Weak solutions of GP  equation in the 
weak coupling limit. 
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Introduction  (cont.) 

Implications: 
 
• Large vortex mass. 
• Excited state well within the phonon spectrum. 
• Slow relaxation time. 
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Introduction  (cont.) 

Excited many excited states      +        Long relaxation time 
 
 
                                            Heating 
 
                          
 
                       Nonlinear vortex flow behavior  
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Outline 
 
• The experimental setup 
 
• Results  

 
• The effective Hamiltonian 
 
• Qualitative discussion 
  
• Kinetic equations 
 
• Solution 
 
• Summary  
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The experimental setup 



 





Vortices in BECs with  
moving disordered potential. 

Vortices in rotating samples  
of thin helium films. 
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Drag coefficients 
                       v v v v   

Results 

is the “threshold” velocity which depends 
 on the disorder strength and the temperature 
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Results 

      has an N-shape  behavior as function of      , i.e.  the same vortex  
 current can be  realized for 3 possible values of     : 

 
 
 
 
 
 
 
 
 
 
 
 
                                         Filament instability 
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p

      

The effective Hamiltonian (Popov’s notation) 

 ˆ
tE j r A     

Single vortex Hamiltonian (sparse vortices) 

2  ,  p A r P the kinetic momentum and the position of the vortex  

the (rotated) superfluid current  

   B r r A   the superfluid density in the vicinity of the vortex  

disorder enters here 
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Equations of motion 
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Magnus  (Lorentz) force 
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Excitations of the vortex are induced by scattering on 
inhomogeneities of the superfluid density.  
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Qualitative discussion  
(time scales associated with disorder) 

     
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  
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disorder averaging & 
Fourier transform 

some dimensionless 
function whose precise 

form is not important 

disorder strength 

1

healing length 
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 small angle scattering 
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
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  

 

Fermi’s golden rule gives the relaxation 
time for the momentum direction 

correlation length  

disorder  
energy scale 

kinetic energy 
of the vortex 
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d If              the vortex precesses  many times before changing its 
position. In the other limit,           , the  vortex change its 
position before  completing one circle. 

1
21

             
q

c q d

q


  

 

 
  

 

The characteristic time for scattering in all angles: 

We assume                 so that one can neglect interference effects 
(Shubnikov-de-Haas effect) .  

d 

1c q  

Qualitative discussion  
(time scales associated with disorder) 
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Qualitative discussion  
(vortex dynamics in disordered landscape: Power production ) 

ˆ
E j

v
B n

 

Coordinate frame moving at velocity  v

vortex 

If  there is no disorder,                 ,  the vortex is  essentially moving with the 
flow , namely it is at rest in the moving frame of reference.   

tr 

Finite disorder generates scattering by small angles of order                as a 
result the vortex acquires component along      direction:   
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c tr
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Qualitative discussion  
(vortex dynamics in disordered landscape: Power production ) 

Power production  when               
3

22 2
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d
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1c tr 

On the other hand if                 (i.e.            ) the circular motion averages out 
the dissipative current 
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Qualitative discussion  

Phonon emissions remove energy from the vortex core and the energy 
accumulated with reference to starting energy       can be estimated to be:  

 
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For large enough    , there is a region where               . The vortex distribution 
function in this region is almost constant: 

E    


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Qualitative discussion  

Nonequilibrium  currents are determined by          : 
f









Thus currents are determined by  regions of small and large  energies where 
dissipative currents are suppressed. This explains the nonlinear behavior as 
function of       and the drop of the dissipative current at large      . E

B

*
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v
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Kinetic Equations: 
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Suppressing spatial dependence of the distribution function: 

where small angle scattering by disorder is described by: 
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      

And neglecting effects of the field     and the disorder on the inelastic 
collision: 

E
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St f T f
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Phonon temperature 
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Vortex velocities: 
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Solution: 

     0 1, ,f f f     
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with  1 , 0d f   

 1 ,f   is found by perturbation theory in     .  E

In the same approximation inelastic collision effects on  can be neglected 
and one obtains   

Substituting back to the kinetic equation gives 
 

0 0

eff

f f

T 
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 



 
 

3
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 


 
 


with the effective temperature: 

 
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Solution: 

Substituting the above result to the formulae for the velocities:  

Matching the large and the  small     asymptotics of the integrals one obtains  

 
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2 45 4 4
4

* *5 52 3 3

4 4
* *

2 4
*5 3

4 4
* *

2 3 2
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Solution: 

The “threshold” velocity is 

speed of sound 

1 13
24 24

*

2 2

0

2.25 1c d

V c in

mm
v c

n M T

  

  

    
     

    

boson mass 

vortex mass healing length 

superfluid density 

Each factor is smaller than one, thus nonlinearity occurs  at superfluid 
velocities much smaller than critical velocity 

temperature 



Summary  

• Low energy excitations associated with nonanalytic core 
reconstruction lead to nonlinear transport phenomena 
similar to those in superconductors. 

• Confirmation of the peak effect in the dissipation will 
provide evidence for the existence of core reconstruction . 

 

 

 

 

 

 

d

T
z





