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Valley currents

Valleys in Bulk SiValleys in Graphene Valleys in MoS2

Berry curvature No Berry curvature

σ xy
v
=0σ xy

v
≠0
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Use Berry curvature to 
electrically manipulate valleys 

Valley Hall effect:
Transverse charge-neutral 
currents

J⃗ v= J⃗K− J⃗K '

J⃗ v=σ xy
v z⃗×E⃗
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Collaboration

Justin Song

Song, Shytov, LL PRL 111, 266801 (2013)
Song, Samutpraphoot, LL, PNAS (2015)
LL & Falkovich arXiv: 1508.00836 (2015) Gregory Falkovich
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Topological Bloch bands 
in graphene superlattices

Designer topological materials: stacks of 2D materials which 
by themselves are not topological, e.g. graphene. 

Previously, topological bands in graphene were presumed 
either impossible or impractical 

Turn graphene into a robust platform with which topological 
behavior can be realized and explored. 
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Goal: develop graphene-based 
topological materials

Quantized transport, Topological bands, Anomalous 
Hall effects

Chern invariant C=
1

2π
∑k

Ω(k )

Ω(k )=∇ k×Ak , Ak=i⟨ ψ(k)|∇ k|ψ(k )⟩
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Goal: develop graphene-based 
topological materials

Quantized transport, Topological bands, Anomalous 
Hall effects

Chern invariant C=
1

2π∑k
Ω(k )

Ω(k )=∇ k×Ak , Ak=i〈 ψ(k)∣∇ k∣ψ(k )〉

Pristine graphene: massless Dirac fermions, Berry 
phase yet no Berry curvature

Benefit from graphene's 
superior electronic properties
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Massive (gapped) Dirac particles

A/B sublattice asymmetry a gap-opening perturbation
Berry curvature hot spots above and below the gap

Valley Chern invariant
(for closed bands)

C=
1

2π∑k
Ω(k )

Ω(k )≠0T-reversal symmetry: Ω(−k )=−Ω(k )
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Massive (gapped) Dirac particles

A/B sublattice asymmetry a gap-opening perturbation
Berry curvature hot spots above and below the gap

Valley Chern invariant
(for closed bands)

C=
1

2π∑k
Ω(k )

D. Xiao, W. Yao, and Q. Niu, PRL 99, 236809 (2007)

Ω(k )≠0T-reversal symmetry: Ω(−k )=−Ω(k )



26.08.2015 14

The variety of van der Waals 
heterostructures: G/hBN superlattices

Image from: Geim & Grigorieva, 
Nature 499, 419 (2013)
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Bloch bands in G/hBN superlattices

Song, Shytov, LL, PRL 111, 266801 (2013)

Song, Samutpraphoot, LL, PNAS (2015)

Moiré wavelength       can be as large as 14nm ≈100 C-C 
spacings
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Bloch bands in G/hBN superlattices

Song, Shytov, LL, PRL 111, 266801 (2013)

Song, Samutpraphoot, LL, PNAS (2015)

Moiré wavelength       can as large as 14nm ≈100 times 
C-C spacing

Focus on one valley, K or K'
Bloch Chern minibands w/ Valley 
Chern invariants 
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Low-energy Hamiltonian

Constant global gap at DP

Spatially varying gap, 
Bragg scattering

Focus on one valley
Song, Samutpraphoot, LL PNAS (2015)

San-Jose et al. (2014), Jung et al (2014), Song, Shytov LL PRL (2013)
Wallbank et al PRB (2014), Kindermann PRB (2012) Sachs, et. al. PRB (2011)
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Incommensurate/Moire case
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Commensurate case
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Band topology tunable by crystal 
axes alignment

Topological bands C=1 Trivial bands C=0
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Valley currents

Valleys in Bulk SiValleys in Graphene Valleys in MoS2

Berry curvature No Berry curvature

σ xy
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Use Berry curvature to 
electrically manipulate valleys 

Valley Hall effect:
Transverse charge-neutral 
currents

J⃗ v= J⃗K− J⃗K '

J⃗ v=σ xy
v z⃗×E⃗
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1

2

3

4
Pump valley imbalance

Valley Current 
(Neutral)

Detecting valley currents



26.08.2015 25

Detecting valley currents

1

2

3

4
Pump valley imbalance

Valley Current 
(Neutral)

Reverse Valley Hall Effect 
(RVHE):

Valley Hall Effect 
(VHE):
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Detecting valley currents

1

2

3

4
Pump valley imbalance

Image credit: wikipedia.com

Valley Current 
(Neutral)

Reverse Valley Hall Effect 
(RVHE):

Valley Hall Effect 
(VHE):
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Nonlocal response in aligned G/hBN

Van der Pauw bound:

Berry hot spots

(V
H

E
)

(R
V

H
E

)Valley Current Gorbachev, Song et al
Science 346, 448 (2014) 
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Nonlocal response in aligned G/hBN

Van der Pauw bound:

Berry hot spots

(V
H

E
)

(R
V

H
E

)Valley Current 
Gorbachev, Song et al
Science 346, 448 (2014) 



02/19/2014 29

Nonlocal response in aligned G/hBN

Van der Pauw bound:

Berry hot spots Distance dependence

(V
H

E
)

(R
V

H
E

)Valley Current 
Gorbachev, Song et al
Science 346, 448 (2014) 
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Checklist
1) Stray ohmic currents too small, peaks in density dependence 
line up w Berry pockets; mediated by long-range neutral currents
2) Observed at B=0, excludes energy and spin (prev work)
3) Good quantitative agreement w/ topo valley currents for Berry 
curvature induced by gap opening
4) Seen in aligned G/hBN devices, never in nonaligned devices
5) Scales as cube of xx as expected for valley currents

ρxx
3

ρxx
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Valley transistor: proof of concept
1) Full separation of valley and charge current
2) ~140 mV/decade
3) Gate-tunable valley 
current

Modulation > 100 fold



11.06.2015 34

Valley transistor: proof of concept
1) Full separation of valley and charge current
2) ~140 mV/decade
3) Gate-tunable valley 
current

Modulation > 100 fold

Spin Transistor?

Koo, et. al., Science (2009), see also 
Wunderlich, et. al. , Science (2010)

Original Proposal: Datta, Das, APL (1990)
Gorbachev, Song, et. al. , Science (2014)
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Summary

Valley currents: charge-neutral, can mediate long-
range electrical response

Excited and detected using the Valley Hall effect

Graphene superlattices as a platform for designer 
topological bands

Bloch minibands w/ nontrivial Valley Chern numbers

Tunable by twist angle, topological transitions

Topological domains, protected edge modes 
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Electron Viscosity and Nonlocal Response

Is hydrodynamics ever relevant?
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Is hydrodynamics ever relevant?
In one-comp fluid or gas a hydrodynamic approach works b/c one has 

local conservation of energy and momentum

All transport properties governed by just 3 quantities: the shear 
viscosity (), the second viscosity (), and the thermal conductivity ()
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Is hydrodynamics ever relevant in metals?
In one-comp fluid or gas a hydrodynamic approach works b/c one has 

local conservation of energy and momentum

All transport properties governed by just 3 quantities: the shear 
viscosity (), the second viscosity (), and the thermal conductivity ()

Electron fluid in a solid can exchange energy and momentum with the 
lattice. Hydrodynamics not relevant? Not so fast...
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Is hydrodynamics ever relevant in metals?

lee <<  (disorder correlation length)

In one-comp fluid or gas a hydrodynamic approach works b/c one has 
local conservation of energy and momentum

All transport properties governed by just 3 quantities: the shear 
viscosity (), the second viscosity (), and the thermal conductivity ()

Electron fluid in a solid can exchange energy and momentum with the 
lattice. Hydrodynamics not relevant? Not so fast...

High-mobility 2DEGs: collisions of the fluid with "large" objects e.g. 
some slowly varying background impurity potential
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Collisions of ballistic carriers

Temperature-dependent scattering time ee~(EF/T)^2

Sample width w << lee (low T) Knudsen-Fuchs regime

w >> lee (higher T) Poiseuille-Gurzhi regime

Control value ee by current

w
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Collisions of ballistic carriers

Tested in ballistic wires 
de Jong & Molenkamp 
1995

Temperature-dependent scattering time ee~(EF/T)^2

Sample width w << lee (low T) Knudsen-Fuchs regime

w >> lee (higher T) Poiseuille-Gurzhi regime

Control value ee by current

Gurzhi effect: p-relaxation slows down due to diffusion

R=dV/dI vs. I first grows then decreases

w
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Critical electron fluid in graphene
Interactions enhanced in 2D, strong near DP

Vanishing DOS but long-range interactions, strong coupling

Fast p-conserving collisions, high shear viscosity

Low viscosity-to-entropy ratio /s (near-perfect fluid)

Comparable to universal low bound (AdS CFT, black holes
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Critical electron fluid in graphene
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Low viscosity-to-entropy ratio /s (near-perfect fluid)
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Measure viscosity?
Scaling with system dimensions: 

R~L/W (Ohmic regime) vs. R~L/W^2 
(Poiseuille-Gurzhi regime)

Mueller, Shmalian, Fritz
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Measure viscosity?

Mueller, Shmalian, Fritz

Scaling with system dimensions: 
R~L/W (Ohmic regime) vs. R~L/W^2 
(Poiseuille-Gurzhi regime)

Corbino geometry with a time-varying 
flux (Tomadin, Vignale, Polini)
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Measure viscosity?

Challenge: do it w/ 1) one device; 2) linear response (no 
heating); 3) a DC measurement (no time dependence)

Scaling with system dimensions: 
R~L/W (Ohmic regime) vs. R~L/W^2 
(Poiseuille-Gurzhi regime)

Corbino geometry with a time-varying 
flux (Tomadin, Vignale, Polini)

Mueller, Shmalian, Fritz
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Negative nonlocal resistance
Vortices launched by shear flow

Reverse E field buildup due to backflow 

- - - - + + + + - - - -

+ + + + - - - - + + + +
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Negative nonlocal resistance
Vortices launched by shear flow

Reverse E field buildup due to backflow 

Minus sign: analogous to Coulomb drag
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Viscous vs. ohmic flow: a sign change
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Minimal model

∂tn+∇⃗ (n v⃗ )=0, ∂t pi+∇ iσ ij=−
1
τ pi

σ ij=
1
2
η(∂i v j+∂ j v i−∂ k vk δij )+(ζ∂k vk+P)δij

Continuity equation and momentum transport equation

First and second viscosity (shear and dilation) P=n(μ+eΦ)

1: vn=0 2 : v t=α E t 2 ' : v t=0

Boundary conditions:  
continuity;   realistic (partial slippage);   idealized (no-slip)
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Solving for incompressible flow

Introduce a flow function: v⃗=∇×ψ ( τ
−1
=0)

ν∇
2 v⃗=∇ P → (∇

2
)
2
ψ=0

ψ(x , y)=∑k
eikx
((a+by )eky

+(a '+b ' y )e−ky
)
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Solving for incompressible flow

Positive in Fourier space (2 peaks), negative in real space

At very large L positive again due to residual ohmic effects

Can use to measure the  ratio

Introduce a flow function: v⃗=∇×ψ ( τ
−1
=0)

ν∇
2 v⃗=∇ P → (∇

2
)
2
ψ=0

ψ(x , y)=∑k
eikx
((a+by )eky

+(a '+b ' y )e−ky
)

V (L)=(∑k
e ikL ν k tanh(kw/2)sinh(kw)

kw+sinh(kw)+α k2 ) I
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Solving for incompressible flow

Positive in Fourier space (2 peaks), negative in real space

At very large L positive again due to residual ohmic effects

Can use to directly measure the  ratio

Introduce a flow function: v⃗=∇×ψ ( τ
−1
=0)

ν∇
2 v⃗=∇ P → (∇

2
)
2
ψ=0

ψ(x , y)=∑k
eikx
((a+by )eky

+(a '+b ' y )e−ky
)

V (L)=(∑k
e ikL ν k tanh(kw/2)sinh(kw)

kw+sinh(kW )+α k2 ) I
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Summary / Future
Vortices launched by shear flow

Backflow leading to negative nonlocal voltage 

Sign change as a function of position, if observed, allows to 
directly measure the viscosity-to-resistivity ratio

 Experiments in high-mobility 2DEGs (GaAs, graphene)

Caveats? Beware of other neutral modes. Negative 
thermoelectric effect due to energy flow. Control by lattice 
cooling

Next challenge: measure second viscosity
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