Adiabatic manipulation of architectures of multilevel artificial atoms *Giuseppe Falci*

QUINN – QUantum **IN**formation & **N**anostructures GF, E. Paladino, P.G. Di Stefano, A. Ridolfo, A. D'Arrigo

Università di Catania Dipartimento di Fisica e Astronomia

Centro Siciliano di Fisica Nucleare e Struttura della Materia 💈

INFN Istituto Nazionale di Fisica Nucleare

Boris Altshuler's 60th birthday

Frontiers of Nanoscience, Trieste Aug-Sept 2015

quantum coherence in the solid state

a 35 years (very short & personal) roadmap

Fluctuations in the extrinsic conductivity of disordered conductors

B. L. Al'tshuler

B. P. Konstantinov Institute of Nuclear Physics, Academy of Sciences of the USSR

(Submitted 16 May 1985) Pis'ma Zh. Eksp. Teor. Fiz. 41, No. 12, 530–533 (25 June 1985)

mesoscopic phenomena in solids

"Quantum mechanical coherence of electron wavefunctions in materials with imperfections has led to major revisions in the theory of electrical conductivity and to novel phenomena in submicron devices." Altshuler & Lee, Phys Today (1988)

quantum bits in a solid state devices

Nakamura et al. Nature 398,786 (1999)

Frontier of Nanoscience quantum coherent hybrid netwoks

superconducting-based artificial atoms

mesoscopic devices with the functionality of atoms

artificial atoms

decoherence

Noise is broad band colored low (1/f) and high-frequency (quantum)

Paladino, Galperin, Falci, Altshuler, RMP (2014)

Noise sources

design	dominant source	subdominant
Cooper pair box	charge	flux/phase/circuit
flux	flux	crit. current/charge
phase	crit. curr/impurities	dielectric losses

 major drawback decoherence but figures tremendously improved in the last few years

Highly noise protected qubits

- Design of symmetric H suppresses low-frequency dominant noise → increase dephasing
- Subdominant sources → spontaneuos decay further limited in 3D cavity design

artificial atoms

mesoscopic devices with the functionality of atoms

- why? With respect to natural atoms they present
 - much more **flexible design** → several design solutions
 - large degree of **integration**
 - on-chip **tunability**
 - stronger **couplings** → faster processing
 - easy signal production and detection
 - photons easily confined in 1D

fig. from Xiang et al.RMP 2013

 major drawback decoherence but figures tremendously improved in the last few years

However

- ✓ combining advantages is **not trivial** tradeoff protection ↔ available control
- paradigmatic example: the Lambda network

why multilevel coherence in artifical atoms?

at the heart of QM: interference and control of individual systems

- In atomic physics ↔ interference effects in A network
 - Coherent Population Trapping
- EIT, Autler Townes etc. C. Cohen-Tannjoudi, Kosmos Revue 2009 Scully and Zubairy, Quantum Optics 1997

individual atoms (EIT, STIRAP)
 controlling light with light

in solid-state "artificial atoms"

• AT, EIT, quantum switch, Lasing & Cooling *Review You-Nori,Nature 2011*

motivation – advanced control tools for q-networks & fault tolerant architectures

- **perspective** highly integrated q-networks available → new applications/effects
 - Q-control & Q-optics in the solid state
 - not a mere translation of q-optics: **new elements** come into play \rightarrow **2+1 STIRAP**
 - new physical regimes/phenomena in sold-state → ultrastrong coupling

A scheme, CPT and STIRAP

coherent population trapping \rightarrow stimulated Raman adiabatic passage

technical tool: 3-LS RWA Hamiltonian Vitanov et al., Adv. in At. Mol. and Opt. Phys. 2001

- Stokes and Pump external AC driving fields
- parameters: Rabi frequencies Ω_k and detunings δ_k

• two-photon detuning
$$\delta=\delta_p-\delta_s$$

Counterintuitive sequence (first Stokes then pump)

STIRAP

adiabatic following of the **dark state** yields **complete population transfer** $|0\rangle \rightarrow |1\rangle$ while $|2\rangle$ remains always unoccupied

Bergmann Theuer Shore, RMP 1998 Vitanov et al., Adv. in At. Mol. and Opt. Phys. 2001

few remarks on STIRAP

Coherence

guarantees **robustness** against imperfections in the control

Sensitivity to two-photon detunig δ

Involves absorption-emission cycles → **building block** for processing in complex solid-state architectures

> STIRAP **benchmark** for multilevel control In **artifical atoms**

 several 3-level interference phenomena involved

Vitanov et al., Adv. in At. Mol. Opt. Phys. 2001

A-STIRAP in artificial atoms ?

A-STIRAP not yet observed in artificial atoms

•fundamental reason

- large decoherence times reqire **protection** against low-frequency noise *Paladino, Galperin, Falci, Altshuler, RMP 2014*
- → design a device Hamiltonian with symmetries and work at symmetry point.
 Vion et al., Science 2002; Paladino et al., RMP 2014
- ↔ **selection rules** limiting the control
 - in superconducting artificial atoms parity symmetry cancels pump field

Liu et al., PRL 2005; Siewert Brandes Falci, Opt. Comm. 2006; You-Nori, Nature 2011; Falci et al., PRB 2103

same physics for devices where symmetries hold approximately

A-STIRAP not yet observed in artificial atoms

possible ways out

2+1 A-STIRAP

Falci et al., Phys. Scr. 2102 Di Stefano et al., preprint 2015

2+1 A-STIRAP effective Hamiltonian

 $\begin{aligned} \mathbf{H}_{3} &= H_{0} + \hat{\mathcal{Q}} A(t) \quad A(t) = \mathcal{A}_{s}(t) \cos \phi_{s}(t) + \underbrace{\mathcal{A}_{p1}(t) \cos \phi_{p1}(t) + \mathcal{A}_{p2}(t) \cos \phi_{p2}(t)}_{\rightarrow two-photon \ pump \ pulse} \\ \mathbf{H}_{3} &\equiv \begin{bmatrix} 0 & \mathcal{Q}_{01} A(t) & 0 \\ \varepsilon_{10} & \mathcal{Q}_{12} A(t) \\ \varepsilon_{21} \end{bmatrix} \leftarrow \mathcal{Q}_{02} = 0 \\ \mathbf{H}_{3} &\equiv \begin{bmatrix} 0 & \mathcal{Q}_{01} A(t) & 0 \\ \varepsilon_{10} & \mathcal{Q}_{12} A(t) \\ \varepsilon_{21} \end{bmatrix} \leftarrow \mathcal{Q}_{02} = 0 \\ \mathbf{H}_{3} &\equiv \begin{bmatrix} 0 & \mathcal{Q}_{01} A(t) & 0 \\ \varepsilon_{10} & \mathcal{Q}_{12} A(t) \\ \varepsilon_{21} \end{bmatrix} \leftarrow \mathcal{Q}_{02} = 0 \\ \mathbf{H}_{3} &\equiv \begin{bmatrix} 0 & \mathcal{Q}_{01} A(t) & 0 \\ \varepsilon_{10} & \mathcal{Q}_{12} A(t) \\ \varepsilon_{21} \end{bmatrix} \leftarrow \mathcal{Q}_{02} = 0 \\ \mathbf{H}_{3} &\equiv \begin{bmatrix} 0 & \mathcal{Q}_{01} A(t) & 0 \\ \varepsilon_{10} & \mathcal{Q}_{12} A(t) \\ \varepsilon_{21} \end{bmatrix} \leftarrow \mathcal{Q}_{02} = 0 \\ \mathbf{H}_{3} &\equiv \begin{bmatrix} 0 & \mathcal{Q}_{01} A(t) & 0 \\ \varepsilon_{10} & \mathcal{Q}_{12} A(t) \\ \varepsilon_{21} \end{bmatrix} \leftarrow \mathcal{Q}_{02} = 0 \\ \mathbf{H}_{3} &\equiv \begin{bmatrix} 0 & \mathcal{Q}_{01} A(t) & 0 \\ \varepsilon_{10} & \mathcal{Q}_{12} A(t) \\ \varepsilon_{21} \end{bmatrix} \leftarrow \mathcal{Q}_{02} = 0 \\ \mathbf{H}_{3} &\equiv \begin{bmatrix} 0 & \mathcal{Q}_{01} A(t) & 0 \\ \varepsilon_{10} & \mathcal{Q}_{12} A(t) \\ \varepsilon_{21} \end{bmatrix} \leftarrow \mathcal{Q}_{02} = 0 \\ \mathbf{H}_{3} &\equiv \begin{bmatrix} 0 & \mathcal{Q}_{01} A(t) & 0 \\ \varepsilon_{10} & \mathcal{Q}_{12} A(t) \\ \varepsilon_{21} \end{bmatrix} \leftarrow \mathcal{Q}_{12} A(t) \\ \mathbf{H}_{3} &\equiv \begin{bmatrix} 0 & \mathcal{Q}_{01} A(t) & 0 \\ \varepsilon_{10} & \mathcal{Q}_{12} A(t) \\ \varepsilon_{21} \end{bmatrix} \leftarrow \mathcal{Q}_{12} A(t) \\ \varepsilon_{21} & \varepsilon_{21} \end{bmatrix} \leftarrow \mathcal{Q}_{12} A(t) \\ \mathbf{H}_{3} &\equiv \begin{bmatrix} 0 & \mathcal{Q}_{11} A(t) & 0 \\ \varepsilon_{10} & \mathcal{Q}_{12} A(t) \\ \varepsilon_{21} & \varepsilon_{21} \end{bmatrix} \leftarrow \mathcal{Q}_{12} A(t) \\ \varepsilon_{21} & \varepsilon_{21} & \varepsilon_{21} \end{bmatrix} \leftarrow \mathcal{Q}_{21} A(t) \\ \varepsilon_{21} & \varepsilon_{21}$

• Goal: find H_3 equivalent to H_{RWA} of \wedge scheme, $H_3 \rightarrow H_{eff} = H_{RWA}$

- Take slightly detuned pump frequencies..... $\omega_{p1} = \varepsilon_{10} \delta_2$; $\omega_{p2} = \varepsilon_{21} + \delta_2$ \rightarrow ensuring the dispersive regime...... $\delta_2 \gg \mathcal{A}_{p1,p2}\mathcal{Q}_{ij} =: \Omega_{p1,p2}$

• Effective Hamiltonian (by Magnus expansion with quasi-resonant terms only) $H_{eff} = [(\dot{\tilde{\phi}}_{p2} - \dot{\tilde{\phi}}_s) - (S_2 + 2S_1)]|1\rangle\langle 1| + (\dot{\tilde{\phi}}_{p2} + S_2 - S_1)|2\rangle\langle 2|$ $+ \frac{1}{2} [(\Omega_p |0\rangle\langle 2| + \Omega_s |1\rangle\langle 2|) + h.c.]$ with same structure of desired H_{RWA}

 $\Omega_p(t) = -\Omega_{p1}(t)\Omega_{p2}(t)/(2\delta_2)$ effective two-photon pump

$$S_k(t) = -[\Omega_{pk}(t)]^2/(4\delta_2)$$

dynamical Stark shifts

2+1 A-STIRAP

two-photon pump induced Stark shift

$$H_{eff} = [(\dot{\tilde{\phi}}_{p2} - \dot{\tilde{\phi}}_{s}) - (S_{2} + 2S_{1})]|1\rangle\langle 1| + (\dot{\tilde{\phi}}_{p2} + S_{2} - S_{1})|2\rangle\langle 2| + \frac{1}{2}[(\Omega_{p}|0\rangle\langle 2| + \Omega_{s}|1\rangle\langle 2|) + \text{h.c.}]$$

the two-photon pump-induced Stark shifts yield a stray two-photon detuning spoiling STIRAP

suitable phase modulated control cancels the effect of dynamically induced shifts

$$\tilde{\phi}_{p2} = 0$$
 , $\tilde{\phi}_{p2} = S_1 - S_2$, $\tilde{\phi}_s = -(S_1 + 2S_2)$

vielding 100% recovery of the efficiency

Phase modulation is **slowly varying** e.g. $\tilde{\phi}_{s}(t) = \int_{0}^{t} dt' \frac{|\Omega_{p1}(t')|^{2}}{4\delta_{2}} + \frac{2|\Omega_{p2}(t')|^{2}}{4(\delta_{2} - \delta_{p})} \begin{array}{c} 1.0 \\ 0.8 \\ 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ \Omega_{s} \end{array}$ and easily implemented in the **microwave domain**

2+1 STIRAP in highly anharmonic qutrits

Bylander et al., Net. Phys. 2011

ightarrow 6-level simulation → no leakage

b

- Includes effects of decoherence
 - High-freq. noise by Lindblad eqs. \rightarrow few percent loss
 - Low-freq. noise in quasistatic approx. \rightarrow irrelevant
 - Large transfer efficiency can be demonstrated in in high quality devices
 - remarkable agreement with 3-level effective H by Magnus expansion.
 - → Applications to Q-networks requiring larger field strength → Bloch-Siegert shifts compensated by the same recipe

flux-based superconducting artificial atoms

2+1 STIRAP in ~ harmonic qutrits

superconducting artificial atoms in transmon design

 \sim design yielding the **largest decoherence times** so far: up to $T_1 = 70 \, \mu {
m s}$ decay-limited

Small anharmonicity → off-resonant terms of the pump drives become relevant for the effective Hamiltonian

$$\begin{split} \Omega_p(t) &= -\frac{\Omega_{p1}\Omega_{p2}}{2\delta_2}\frac{\alpha\varepsilon_{10}}{\alpha\varepsilon_{10}+\delta_2}\\ \text{saturating effective two-photon pump} \end{split}$$

$$S_{ij}^{k}(t) := \left| \frac{\mathcal{A}_{pk}(t)\mathcal{Q}_{ij}}{2} \right|^{2} \left(\frac{1}{\varepsilon_{ij} - \omega_{pk}} + \frac{1}{\varepsilon_{ij} + \omega_{pk}} \right)$$

dynamical Stark shift of splitting *ij* due to pump field *k*

2+1 STIRAP in ~ harmonic qutrits

superconducting artificial atoms in transmon design

 \sim design yielding the **largest decoherence times** so far: up to $T_1 = 70 \,\mu \text{s}$ decay-limited

Small anharmonicity → off-resonant terms of the pump drives become relevant for the effective Hamiltonian

$$\dot{\tilde{\phi}}_{p2} = \sum_{k,j} (S_{j0}^k - S_{j2}^k) , \ \dot{\tilde{\phi}}_s = \sum_{k,j} (S_{j1}^k - S_{j2}^k)$$

yielding ~100% efficiency

large decoherence times allow more complicated multiple cycle control protocols

detection of ultrastrong coupling

ultrastrong coupling in Rabi Hamiltonian

igsquire Rabi Hamiltonian **beyond JC** $g\sim\omega_c$

$$\mathbf{H}_{R2} = \varepsilon |e\rangle \langle e| + \omega_c \, a^{\dagger} a + g \left[\left(a^{\dagger} |g\rangle \langle e| + a |g\rangle \langle e| \right) + \text{h.c.} \right]$$

• **Eigenstates** conserving **only** parity of number of excitations $|\Phi_j\rangle = \sum_n c_{j\,n} |n\,g\rangle + d_{j,n} |n,e\rangle$

ground state contains photons

$$|0g\rangle \rightarrow |\Phi_0\rangle \stackrel{g \ll \omega_c}{\approx} c_{00}|0g\rangle + c_{02}|2g\rangle + d_{01}|1e\rangle$$

Spectroscopic detection

- ullet in flux qutrits $\,g \sim 0.1\,\omega_c\,$ Niemczyk et al., Nat. Phys. 2010
- In semiconductor q-wells $g\sim 0.48\,\omega_c$ Todorov et al., PRL 2010
- Detection using decay to a third atomic level |b
 angle of the false vacuum $|\Phi_0
 angle$
 - Theoretical proposal R. Stassi et al., PRL 2013 but very small probability $\sim |c_{02}|^2$
 - Here: **amplify** the output signal **by coherence**

coherent amplification of the ultrastrong coupling channel

 \boldsymbol{q}

 \checkmark Hamiltonian with additional level \ket{b}

$$H = -\varepsilon_b |b\rangle \langle b| + H_{R2} + H_c(t)$$

- Two-tone control detuned from the e-g transition $H_c = W(t) (|b\rangle\langle g| + \text{h.c.}) = W(t) \sum_{nj} |nb\rangle\langle \Phi_j|$ $W(t) = \Omega_0 \mathcal{F}(t+\tau) \cos \phi_s(t) + \kappa_p \Omega_0 \mathcal{F}(t-\tau) \cos \phi_p(t)$
- 3 level truncation and STIRAP

$$H_3 = \begin{bmatrix} 0 & 0 & c_{00}W(t) \\ 0 & 2\omega_0 & c_{02}W(t) \\ c_{00}W(t) & c_{02}W(t) & E_0 \end{bmatrix}$$

 \sim two photon component in the ground state $c_{02} \neq 0$ implies **faithful and selective** population transfer $\rightarrow |2b\rangle$

→ "smoking gun" of **ultrastrong coupling**

 \sim optimal attenuation $\kappa_p = c_{02}(g)/c_{00}(g)$

dynamical Stokes-induced Stark shifts

• huge Stark shifts at the 3LS truncation

• partly autocompensated by multilevel structure

many coupled atoms exp. need to magnify coupling to cavity \rightarrow ultrastrong limit

deviations

 \sim and of STIRAP \rightarrow effective c_{02} increases $\begin{bmatrix} 1 & 0 \\ 0 & \mathbb{H} \end{bmatrix} H_4 \begin{bmatrix} 1 & 0 \\ 0 & \mathbb{H} \end{bmatrix} = \begin{bmatrix} 0 & 0 & \sqrt{2} c_{00} W & 0 \\ 0 & 2\omega_0 & \sqrt{2} c_{02} W & 0 \\ \sqrt{2} c_{00} W & \sqrt{2} c_{02} W & E_0 & 0 \\ 0 & 0 & 0 & E_0 \end{bmatrix}$ Hadamard transform

- STIRAP via a **Bell-like virtual state** $|\Phi^1_{0a}
angle|b
angle_2+|\Phi^2_{0a}
angle|b
angle_1/\sqrt{2}$

many coupled atoms

not trivial generalization because of stray ~resonant processes

- pump-induced **two-photon ladder transition**
 - \rightarrow tripod configuration, spoiling population transfer
 - \leftrightarrow **detune** transition by $\delta_p \neq 0$

5LS approx: Stark shifts compensated by phase modulation

many dressed states

- autodetune ladder transition
- autocompensate Stark shifts

remarkably **92% efficiency** with no compensation

implementation in superconducting artificial atoms

unfavorable characteristics of the spectra

 $\varepsilon = (1 + \alpha)\varepsilon_b$

 ε_b

g

large

 $g' = g/\eta$

 $|\mathbf{e}\rangle$ $|\mathbf{g}\rangle$ $|\mathbf{b}\rangle$

design implies extra stray b⇔g coupling with the cavity
 opens a new JC channel for the |0b⟩ → |2b⟩ process

For "smoking gun" detection we need

- suppression of new channel \leftarrow only if $\frac{g}{\varepsilon} \lesssim 0.1 \eta^2 |\alpha| \frac{2+\alpha}{1+\alpha}$
- AND strong coupling $\leftarrow g/\varepsilon\gtrsim 0.1$

never met in superc. high-quality artificial atoms

• Highy anharmonic (flux) – large $\,lpha$ but too small $\,\eta\,$ =

ullet Nearly harmonic (transmon) large η but lpha too small

way out: the Vee scheme

implementation in flux superconducting qutrits

use the large lowest doublet coupling in flux qutrits to couple to the cavity

→ **VEE scheme** via intermediate state $|\Phi_1^{\pm}\rangle \approx d_{10}|0e\rangle \pm c_{11}|1g\rangle + d_{12}|2e\rangle$

→ population transfer → a smoking gun for ultrastrong coupling

 \sim limited only by qutrit decay γ_b besides cavity decoherence

- multilevel coherence vin artificial atoms may allow quantum control in highly integrated Q-networks
- benchmarked by STIRAP
 - not a mere translation of q-optics: new elements come into play
 - symmetries & **tradeoff** between efficient control and protection from noise Falciet al., PRB 2103
 - Phase modulated control in the microwave regime allows to operate **A-STIRAP in highly symmetry-protected superconducting artificial atoms** *Di Stefano et al., preprint 2015*
 - new physical phenomena/regimes in sold-state
 - "smoking gun" detection of **ultrastrong coupling by coherent amplification** of the $|0b\rangle \rightarrow |2b\rangle$ channel Ridolfo et al., preprint 2015

... cento di questi giorni, Boris !