The Labrador Sea

and CMIP5 models
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GENERAL OUTLINE

m [he Labrador Sea branch of the MOC

m |ts representation in a regional ocean model
(ROMS)

m Its representation in CMIP5 models
m The carbon cycle (present and future)
m Open challenges



m The Labrador Sea is the best observed site for deep
water formation

m The Labrador Sea Water (LSW) is a dense water mass

that spreads across the northwest Atlantic (Talley and
McCartney, 1982) at mid-depths

m Labrador Sea is key in controlling AMOC variability
(Yeager and Danabasoglu, 2014; Yeager 2015)

m AMOC inter-annual signals are closely related to the
variability of the Labrador Sea convection, in turn
linked to the cumulative NAO

m The highest water-column inventory of anthropogenic

carbon per unit area occurs in the subpolar North Atlantic
(Sabine et al., 2004; Wang et al., 2012; Khatiwala et al., 2013)
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Schematic of the Labrador Sea circulation (left) and isopycnal thickness
(right) during the 1960s (top) and 1990s (bottom). Huge interannual
variability

Images courtesy of Igor Yashayaev and the Bedford Institute of Oceanography



Three eddy populations the LS:
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i. 2. Sea surface brightness nage of the the northern Labrador Sea from the ATSR on the ERS-J/
remote sen: i

S temperature i
sing satellite (from C. . Mutlow 1999, personal communication). The image is from the 11-2m wavelength

infrared sensor and shows numerous eddies near where the 3000-m isobath separates from the shelf.

Irminger Rings (IRs) formed by
topographically localized baroclinic
instability at about 61-62°N (Bracco
and Pedlosky, 2003). They carry
warmer and saltier Irminger water into
the center of the Labrador Sea, where
the winter-time cooling releases heat to
the atmosphere (e.g. Bracco et al.,
2008; Luo, Bracco and Di Lorenzo,
2011). Diameter of 40-50 km. Major
source of EKE in the basin.

Boundary current eddies formed
along the Greenland coast by baroclinic
instability of the boundary current
system (Spall , 2004); smaller, diameter
is close to 13 km, i.e. local Rossby
deformation radius

Convective eddies generated by
baroclinic instability of the convective
patch (Jones and Marshall, 1997); even
smaller, their representation requires
the use of non-hydrostatic models.



vorticity sec”

1 929-Mar-1992




"
ldealized QG experiments investigating
vortex formation along the West Greenland

Current

m Laterally nonuniform vertical shear —

boundary confined currents in a NS
channel

m Shear profile similar to the one observed
In the Labrador Sea

Bracco, Pedlosky, JPO, 2003
Bracco, Pedlosky and Pickart, JPO 2008
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Schematic of the model geometry

Greenland

a=275km
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Y.(x, y,t) = 7’6"“+ é(x,y,t), =123 A" =60km



Bottom Slope

Bottom Slope
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Linear solution: Potential vorticity perturbation
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Growth rate for the linear system: 3-Layer case (solid)
and barotropic model (dashed; see Carnevale et al., 1999).
Condition for BAROCLINIC instability:
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gummary !: wHy’How eddies form along

the WG coast

m The bottom-trapped disturbance grows to balance
the variation in time of relative vorticity with the
ambient gradient of potential vorticity. Its
confinement relies on the interaction between the
meridional component of the perturbation velocity
and the meridional gradient of the bathymetry

m the rate of formation: about 1 every 7 days, but likel
seasonally varying. 35% of anticyclones formed at the
upstream step end up in the interior. The others are re-
absorbed in the current or merge

m the size (R ~ 35 km) and vertical extension of the eddies

m the asymmetry between AC and C



nex! s!ep

(with Hao Luo)

Sets of high-res ROMS experiments (7km in the horizontal)
with different forcings to separate the intrinsic, locally
forced, and remotely forced variability in the circulation
and eddy activity of the Labrador Sea, with focus on the
West Greenland boundary current:

So far:

m 1. CLIM designed to isolate the intrinsic variability of the
eddy field under a fixed annual cycle. 1 run, 50ys

m 2. MONTHLY VARYING SURFACE FORCING (wind
and heat fluxes from NCEP/NCAR) Focus on interplay
between the state of the Atlantic subpolar gyre and the
atmospheric forcing; 2 runs 1980-2002

m 3. MONTHLY VARYING BOUNDARY CONDITIONS
(from SODA) Focus on dependence of vortex formation

on incoming currents strength 1 run 1980-2002/2010
(now extended: 1950-2010)



Regional climatological
model runs using ROMS
mean eddy speed in m/s
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Speed in Centimeters per Second

Resolving the instability over steep
topography is ESSENTIAL to
reproduce correct EKE distribution!
Otherwise secondary peak appears
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Depth (km)

ARTW Section, Oct-Nov 1996

Model Temperature
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Temperature on
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Two preferred pathways for the modeled vortices

Vortex 1 (Jan-12-1997 to Apr-06-1997)  Vortex 2 (Apr-15-1997 to Jul-06-1997)



Temperature structure within one of the
modeled Irminger vortices

Temperature anomaly (Mar-06)
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Mixed Layer Depth

Localization of convective activity
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Localization using w
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check that this works
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Seasonal cycle representation
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convection) Luo, Bracco et al., 2012

Seasonal cycle of
heat content) in
convective region in
the top 200m
(surface) and
between 200 and
1300m (Lower) in the
model (blue and red
lines) and in the
observations
presented in Straneo
(2006) (black and
gray lines). The
model and

the P-ALACE float
data cover the period
1996—-2000 (strong
convection)

Luo, Bracco, Zhang, 2015
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Interannual variability

salinity
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In summary with ROMS

m Excellent representation of convective activity
localization

m Very good representation of water column stratification
from surface to ~ 2200m (below too well mixed
compared to observations)

m Excellent representation of interannual variability of
potential temperature (good for salinity)

m Excellent representation of seasonal cycle in both strong
and weak convective periods

Time to use those skills for sensitivity investigations



Sensitivity runs: comparisons between using a

climatological Irminger Current at boundary vs interannual
varying (role of boundary current in recent trends)
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Luo, Bracco, et al., JGR 2012



Role of heat fluxes: Integrated atmospheric fluxes
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- Strength of convection determined by

atmospheric fluxes with IC modulation
(25% at most) — different from SO!

Different seasonal cycle for weak and
strong events; different initiation and
termination (overall: the convective
season is one month shorter during weak
years)

Reduced atmospheric cooling between
December and April but not over the rest

of the year

(Integrated quantities matter, not so much
resolving each mesoscale atmospheric

events) ¢ -
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F1G. A3. Evolution of PT (°C) in the CR from 2000 to 2004:
(a) VARY and (b) VARY-HF. The plot is obtained using 3-day
averages of PT.
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CMIP5 models

m As in the SO we have eddies (resolution issue)

m \We need to verify localization, strength of convection,
seasonality, convection drivers, interannual
variability (using ROMS in lieu of obs)

Modeling group/center Institute ID Model Name

NOAA Geophysical Fluid Dynamics Laborat NOAA GFDL GrDLESMZM
eophysical Fluid Dynamics Laboratory GFDL ESM2G
Institut Pierre-Simon Laplace IPSL IPSLEMSALR

IPSL CM5B LR

Met Office Hadley Centre (additional MOHC (additional HadGEMD-ES

HadGEM2-ES realizations contributed by realizations by HadGEM-ES s

Instituto Nacional de Pesquisas Espaciais) INPE)
Max-Planck-Institut fur Meteorologie (Max VP MPI-ESM-LR
Planck Institute for Meteorology) MPI-ESM-MR

CCSM4

Community Earth System Model Contributors | NSF-DOE-NCAR
CESM1(BGC)




Localization and seasonal cycle
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Common problems among models

m Convection is too weak (CCSM is an exception: sea-ice
is poorly simulated; too much sea-ice forms and melts;
heat flux maximum into the ocean nearby sea-ice edge)

m For majority of models seasonal cycle is delayed and
shortened

Two possible explanations:
v heat fluxes are weak

v ocean mean state is too warm (requires more cooling for
convection to start)



Heat fluxes, NCEP (CORE 2)

Hypothesis 1 is wrong
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Tagklis,
Bracco et al.,
In Prep

Heat fluxes, MPI-ESM-LR
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Interannual variability

Spectrum comparison
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Physics biases and carbon cycle representation
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Is it the physics or the biology?

— CESMI_ GFDL- GFDL  HadGEM2- IPSL-CM5A- IPSL-CM5B- MPI-ESM-  MPI-ESM-
Correlation oo EsMaM ESM26 ES IR R IR MR
ST 0.79 0.90 0.96 0.80 0.30 0.61 0.84 0.73
s, 02 0.87 0.94 0.97 0.85 0.43 0.65 0.90 0.83
T,sDIC  -0.52 0.88 0.92 0.88 0.21 0.43 0.75 0.67
T, 02 0.95 0.98 0.98 0.99 0.88 0.93 0.98 0.96
sDIC,02 0.4 0.85 0.92 0.91 0.32 0.47 0.78 0.71

Comparing correlations and differences between models from same center (same
biology, differences only in physics) the answer is clear:

The physical representation of T, S and circulation
drives the biases in the DIC one

lto et al. In Prep.
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Challenges

m Simulating drivers of interannual variability (atmosphere/
coupled problem)

m Eddies! What is the impact of parameterizing them for
high latitudes circulation and variability?

m Mean state: why generally so warm? (IPSL being the
exception)

m \We have looked at two of the most difficult —but
Important — regions: yes, models have large biases but it
IS not a lost cause!

m Nested techniques?

m Attribution problem! Can we detect and attribute changes
associated with global warming at high latitudes? Not
really in observations. Different answer from models.



