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understand the dynamics of

Long-term goal: upwelling ecosystems

Upwelling systems:
- support highly Fisheries production

productive food webs. 100 MT -

7.0 Billion
people

- may play a role in
large-scale climate
processes.

80 MT -

60 MT - |5 5 Billion

- sustainable fisheries people
critical to the world’s

food supply.

40 MT -

&

20 MT

Capture fisheries (wet weight)

0 MT

~25% of global landings;
source of good, quality protein.

FAO, United Nations (2010)



Physical variability has clear influence on these systems
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Many hypotheses relate fisheries fluctuations to physics

What drives past changes
in fish abundance?
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Size distributions of plankton may influence species’ success

What drives past changes
in fish abundance?

Overfishing?
Environmental variability?

How?
Why?

_ Morphological and
A\ niche differentiation

B
<p=

Pacific sardine
(Sardinops
sagax)

northern anchovy
(Engraulis
mordax)




Rates of nutrient supply impact plankton composition

>5mm 2mm-5mm 1 mm -2 mm 0.5mm-1mm 0.2mm-0.5mm

What drives past changes
in fish abundance?

H: Physical changes influence
the size structure of the -
zooplankton community.




Wind-driven upwelling processes and the food web

curl-driven upwelling coastal upwelling

A, = macronutrients Rykaczewski and Checkley (2008)



Wind-driven upwelling processes and the food web

curl-driven upwelling coastal upwelling

sardine anchovy

= macronutrients Rykaczewski and Checkley (2008)



Can this idea be applied to look at future changes?

s0°y Great.

~

’) coastal upwelling
@ Vxt > 0, upwelling
Q) Vxt <0, downwelling

What about the future?

45y

How much fish production
will there be?

40°
o Will anthropogenic
climate change favor
350 sardines, anchovies, or
something else?

30 %y

136 °w



Project seen as an opportunity to bridge divisions within NOAA

Research offices of NOAA (the National
Oceanic and Atmospheric Administration):

National Marine
Fisheries Service:

“‘Responsible for the
stewardship of the nation's
living marine resources and
their habitat.”

Oceanic and
Atmospheric Research:

“Provides the research
foundation for understanding
the complex systems that
support our planet.”

stock assessment;
fishing regulations

physics, chemistry, and
biogeochemistry of
climate change;

GCMs and “earth-
system” modeling




atmosphere, hydrosphere,
cryosphere and biosphere

Earth-System Modeling:

The complete “earth system” can
be modeled mathematically.

Atmosphere, ocean, and ice
components are represented
by interacting grid cells, and
this composes a coupled
General Circulation Model
(GCM).

Including the biosphere
within a GCM makes an
Earth-System Model (ESM).



Configuration of NOAA’s ESM 2.1

Here, | made use of model runs with projected
CO, emissions for the 21st century following
IPCC emissions scenario A2.

Atmosphere: NOAA-GFDL AM2 (Anderson et al., 2004);
2° x 2.5° horizontal resolution

Ocean: NOAA-GFDL MOM 4.1 (Modular Ocean Model; Pacanowski and
Griffies, 1999); 1° x 1° horizontal resolution

Biology: NOAA-GFDL TOPAZ (Tracers of phytoplankton with Allometric
Zooplankton) which includes N, P, Si and Fe cycles and three
phytoplankton classes (Dunne et al., 2007).



IPCC Emissions Scenario A2
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IPCC Emissions Scenario A2

NOAA/GFDL model 2.1

4 1 Global surface temperature projections -
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The model continues to be improved while attempting to

minimize added complexity...
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Dunne et al., 2013, Journal of Climate



Limited spatial resolution also poses challenges

Regional atmospheric model (used previously)
has 10-km-by-10-km horizontal resolution.
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The current global model uses 2-by-2.5 degree -2

horizontal resolution.



Reframing of project goals

Available tools do not permit investigation of changes in the
detailed spatial structure of wind fields in upwelling systems.

A more general, large-scale question might be:

What are the impacts of future climate change on the
nutrients supplied to marine ecosystems?



Eastern boundary upwelling ecosystems-

The low hanging fruit?

Eastern boundary current upwelling ecosystems have some
advantages for studying climate’s influence on ecosystems:

1. of critical importance to marine fisheries, producing >25%

of the world’s capture fisheries production while covering
<1% of the globe (e.g., Pauly and Christensen, 1995)

(Data: NASA SeaWiFS)



Eastern boundary upwelling ecosystems-

The low hanging fruit?

Eastern boundary current upwelling ecosystems have some
advantages for studying climate’s influence on ecosystems:

2. short and relatively simple food web connecting primary
producers to captg__r‘emfilsxheries.
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Eastern boundary upwelling ecosystems-
The low hanging fruit?




Eastern boundary upwelling ecosystems-

The low hanging fruit?

Eastern boundary current upwelling ecosystems have some
advantages for studying climate’s influence on ecosystems:

3. example of “bottom-up” forcing in an ecosystem
influenced by atmospheric changes.
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Eastern boundary upwelling ecosystems-

The low hanging fruit?

Eastern boundary current upwelling ecosystems have some
advantages for studying climate’s influence on ecosystems:

4. two previously posed, plausible hypotheses—

Bakun Roemmich and McGowan
(Science, 1990) (Science,1995)

increased upwelling rate increased stratification

* increased vertical VA « decreased mixing
transport )

» decreased
nutrient supply

* increased
nutrient supply




Two qualitative hypotheses posed previously

#1 - Increased continental warming rate = increased nutrient supply
Bakun (Science 1990) hypothesized that:

relative differences more rapid warming increased alongshore winds
inland and sea @) over land; increased EEEE) increased upwelling
heat capacities atm. pressure gradient increased production

2020 - 2029 2090 - 2099

A2

s\ /W NI Soutnwest, generating a

I T T T T .
0051152253354455556657 7.5

(°C)




Two qualitative hypotheses posed previously

#1 - Increased continental warming rate = increased nutrient supply
Bakun (Science 1990) hypothesized that:

relative differences more rapid warming increased alongshore winds
in land and sea - over Iand; increased - increased upwe”ing
heat capacities atm. pressure gradient increased production

#2 - Increased stratification = decreased nutrient supply

Roemmich and McGowan (Science 1995) hypothesized that global warming will
result in:

increased reduced mixing

increased SST ‘ water-column ‘ reduced efficacy of upwelling
stratification reduced production



Historical observations support this inverse

temperature-production relationship
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What dominates: increased winds or increased stratification?

Bakun Roemmich and McGowan
(Science, 1990) (Science,1995)

increased upwelling rate increased stratification

* increased vertical (VA * decreased mixing
transport )

» decreased
nutrient supply

* increased
nutrient supply




A “control volume” was specified in which fluxes were examined




Expected factors governing ecosystem responses

to future changes

What processes should we consider?

heat flux

alongshore, equatorward
winds; win‘d—driven mixing

°°

@ vertical

stratification

longshore currents

upwelling)

local biological
cycling



Projected changes in the North Pacific

The following plots will have four panels:

Fossil-fuel intensive

Pre-industrial mean mean Difference
(1860, 20-yr run) (SRES A2 2081-2100)  (Future — pre-industrial)

PAST FUTURE DIFFERENCE

Time series for the CCE (128°W to coast, 30°N to 40°N , upper 200-m avg.)
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Zonal winds:
Meridional winds:

weaken and shift poleward

little change in magnitude

Change in Wind Stress
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The magnitude of alongshore winds at the coast does not change
significantly.



Projected changes in winds are more nuanced than an

increase or a decrease
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Change in v wind stress (N m?)

Projected responses of
alongshore winds do not confirm
Bakun’s (1990) predictions.

Multi-model comparison does,
however, demonstrate some
consistent responses when
examining seasonal and
latitudinal trends across the four
upwelling systems.
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Projected changes in winds are more nuanced than an

increase or a decrease

The Canary and Benguela also
show latitudinally dependent
changes in upwelling magnitude.

Change in v wind stress (N m?)



Change in v wind stress (N m?)
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Perhaps, for now, we can cross this one off...

Eastern boundary current upwelling ecosystems

Previously posed hypotheses:

* increased vertical
transport

* increased
nutrient supply

VS.

Roemmich and McGowan
(Science,1995)

increased stratification

* decreased mixing

» decreased
nutrient supply




Temperature increases across the basin

Change in Temp. (°C)
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The magnitude of the upper-ocean temperature change varies,
but the direction of the change is uniform: the whole Pacific
becomes warmer at the surface.



Changes in local forcing suggest decreased nutrient supply
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Winter mixed-layer depth shoals

Change in MLD (m)
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Projected responses include a shallower mixed-layer depth, warmer surface
layer, and little change in winds. Given the historical record, we might expect

decreased nutrient supply and reduced production.




Surface-layer NO; increases despite stratification and winds

1860 NO, conc. (umol L™} 2081-2100 NO, conc. (umol L) NO, Change (umol ™)
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North Pacific (20° N to 65° N). 2100 along the US West Coast.

Rykaczewski and Dunne (2010, GRL)



Local changes cannot explain regional nutrient changes

Local conditions vary in the 215t century, but not in a consistent
manner that can explain the long-term increase in nitrate supply.
Changes in: -alorgshore winds; alengshore-currents; stratification and-
mixing of-the-water-celumn,
riverine-input, toeal - -
bielegieat rates

Surprise from
below

Remote changes in the properties of the deep source waters
are more important than local physical conditions.



NO3 budget in a control volume

from North FLUXKEY:

0.8 kmols | 0.3 Sv
1.0 kmols1 | 0.2 Sv
A=]0.1kmoist | 0.0 Sv

1860, 60-yr | NO; | H,O
avg: flux flux
flux flux

change= |ANO;|AH,0O

2081-2100 avg

from West
3.1 kmols | 2.4 Sv
5.8 kmols* | 3.1 Sv
A=]2.7kmols' | 0.7 Sv

18t column: NO; flux
2" column: H,O flux

from Below from South
6.3 kmols'| 0.7 Sv 0.5 kmais' | 0.5 Sv
10 kmoi st | 0.8 Sv 1.1 kmols' | 0.4 Sv

A=]14.0kmois'|0.1Sv A=1]0.6kmols'|-0.1 Sv




NO3 budget in a control volume

FLUX KEY:

1860, 60-yr | NO; | H,O

avg: flux flux

2081-2100 avg flux | flux
change= |ANO;|AH,0O

18t column: NO; flux
2" column: H,O flux

from Below
6.3 kmols' | 0.7 Sv
10 kmois* | 0.8 Sv
A=|4.0kmos|0.1Sv

+60% +10% | But WHY?




Review of photosynthesis and respiration

What makes deep, cold waters nutrient rich?

Photosynthesis

Respiration




Review of photosynthesis and respiration

Nutrients are depleted by photosynthesis in the surface,
sunlit layer.

Photosynthesis

Consumed: CO, and nutrients
Released: O,

Respiration




Review of photosynthesis and respiration

Biological respiration (microzooplankton and bacteria)
remineralize these nutrients in the deeper, colder layer of
the ocean.

Photosynthesis

Consumed: CO, and nutrients
Released: O,

Consumed: O,
il Released: CO, and nutrients

Respiration




Review of photosynthesis and respiration

Over time, phytoplankton continue to sink out of the
surface layer to depth, where nutrients and CO,
accumulate while O, is depleted.

Photosynthesis |

Consumed: CO,, nutrients
Released: O,

Respiration

Consumed: O,
Released: CO,, nutrients




Review of photosynthesis and respiration

Over time, phytoplankton continue to sink out of the
surface layer to depth, where nutrients and CO,
accumulate while O, is depleted.

Photosynthesis |

Consumed: CO,, nutrients
Released: O,

Respiration

Consumed: O,
Released: CO,, nutrients




Review of photosynthesis and respiration

Over time, phytoplankton continue to sink out of the
surface layer to depth, where nutrients and CO,
accumulate while O, is depleted.

Photosynthesis |

Consumed: CO,, nutrients
Released: O,

Respiration

Consumed: O,
Released: CO,, nutrients




Review of photosynthesis and respiration

Over time, phytoplankton continue to sink out of the
surface layer to depth, where nutrients and CO,
accumulate while O, is depleted.

Photosynthesis |

Consumed: CO,, nutrients
Released: O,

Respiration

Consumed: O,
Released: CO,, nutrients




Review of photosynthesis and respiration

Over time, phytoplankton continue to sink out of the
surface layer to depth, where nutrients and CO,
accumulate while O, is depleted.

Photosynthesis |

Consumed: CO,, nutrients
Released: O,

Respiration

Consumed: O,
Released: CO,, nutrients




Review of photosynthesis and respiration

Over time, phytoplankton continue to sink out of the
surface layer to depth, where nutrients and CO,
accumulate while O, is depleted.

Photosynthesis |

Consumed: CO,, nutrients
Released: O,

Respiration

Consumed: O, ;
, : nutrients
Released: CO,, nutrients nutrients

co, Cco,




Review of photosynthesis and respiration

Over time, phytoplankton continue to sink out of the
surface layer to depth, where nutrients and CO,
accumulate while O, is depleted.

Photosynthesis |

Consumed: CO,, nutrients
Released: O,

Respiration

Consumed: O, ;
, : nutrients
Released: CO,, nutrients nutrients

co, Cco,




Review of photosynthesis and respiration

Over time, phytoplankton continue to sink out of the
surface layer to depth, where nutrients and CO,
accumulate while O, is depleted.

Photosynthesis |

Consumed: CO,, nutrients
Released: O,

Respiration

Consumed: O, ;
, : nutrients
Released: CO,, nutrients nutrients

co, Cco,




Review of photosynthesis and respiration

Over time, phytoplankton continue to sink out of the
surface layer to depth, where nutrients and CO,
accumulate while O, is depleted.

Photosynthesis |

Consumed: CO,, nutrients
Released: O,

Respiration

Consumed: O, : nutrients
: nutrients
. ; nutrients
Released: CO,, nutrients oo co, C02




Review of photosynthesis and respiration

Over time, phytoplankton continue to sink out of the
surface layer to depth, where nutrients and CO,
accumulate while O, is depleted.

Photosynthesis |

Consumed: CO,, nutrients
Released: O,

Respiration

Consumed: O, : nutrients
: nutrients
. ; nutrients
Released: CO,, nutrients oo co, C02




Review of photosynthesis and respiration

Over time, phytoplankton continue to sink out of the
surface layer to depth, where nutrients and CO,
accumulate while O, is depleted.

Photosynthesis |

Consumed: CO,, nutrients
Released: O,

Respiration

0
Consumed: O _ autrien
Released: Cé)z, nutrients ntients  utrients utrients

co,  CO, CO,




Review of photosynthesis and respiration

Over time, phytoplankton continue to sink out of the
surface layer to depth, where nutrients and CO,
accumulate while O, is depleted.

Photosynthesis |

Consumed: CO,, nutrients
Released: O,

Respiration

Consumed: O, nufrients nutrients nutrients

Rel d: CO trient nutrients
elease », nutrients co, C02 C02 C02




Ventilation of deep waters interrupts this accumulation

This accumulation is interrupted only when the deep water
mass is ventilated with the atmosphere.



Ventilation of deep waters interrupts this accumulation

This accumulation is interrupted only when the deep
water mass is ventilated with the atmosphere.

Photosynthesis |

Consumed: CO,, nutrients
Released: O,

Respiration nutrients

Consumed: O,
Released: CO,, nutrients COZ O




Ventilation of deep waters interrupts this accumulation

This accumulation is interrupted only when the deep
water mass is ventilated with the atmosphere.
Mixing supplies nutrients and permits gas exchange.

Photosynthesis |

Consumed: CO,, nutrients
Released: O,

Respiration nutrients

Consumed: O,
Released: CO,, nutrients COZ O




Ventilation of deep waters interrupts this accumulation

This accumulation is interrupted only when the deep
water mass is ventilated with the atmosphere.
Mixing supplies nutrients and permits gas exchange.

Photosynthesis I

Consumed: CO,, nutrients

1§
Released: O, DEEP MIXING EVENT!

Respiration nutrients

Consumed: O,
Released: CO,, nutrients COZ O

Gas & nutrient exchange




Ventilation of deep waters interrupts this accumulation

This accumulation is interrupted only when the deep
water mass is ventilated with the atmosphere.
Mixing supplies nutrients and permits gas exchange.

Photosynthesis I

Consumed: CO,, nutrients
Released: O,

Respiration nutrients

Consumed: O,
Released: CO,, nutrients COZ O

Gas & nutrient exchange




Ventilation of deep waters interrupts this accumulation

This accumulation is interrupted only when the deep
water mass is ventilated with the atmosphere.
Mixing supplies nutrients and permits gas exchange.

Photosynthesis I

Consumed: CO,, nutrients
Released: O,

Respiration nutrients 02 nutrient

co,
Consumed: O, CO o
Released: CO,, nutrients p 2

Gas & nutrient exchange




Anthropogenic changes are large scale and long term

Future warming is unlike observed variability in that it is global and
persistent.

Assumption that local forcing dominates local changes is incorrect.
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Waters that are upwelled in the future have a “deeper,

darker, history”

Depth of Parcel

more surface mixing

less mixing
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Waters that are upwelled in the future have a “deeper,

darker, history”

Depth of Parcel

more surface mixing

less mixing
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Waters that are upwelled in the future have a “deeper,

darker, history”

Depth of Parcel

more surface mixing

less mixing

Depth (m)
|
)
o

-5
Years prior to CCE upwelling
NO3 Content of Parcel

10

170°w 160°w 150°W 140°W 130°W 120°W

A
m— 1860 0 -5
=== 2081-2100 Years prior to CCE upwelling

lo o



Waters that are upwelled in the future have a “deeper,

darker, history”

Depth of Parcel

E 0 more surface mixing
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What general relationships can be gleaned from this example?

The most surprising finding for me was realization of the
dependence of coastal properties on basin-scale changes.

Three main factors control the dynamics of nutrients found in a
water parcel:

1. Preformed concentrations— the concentration of nutrients in
the water parcel when it is subducted from the euphotic zone

at its place of origin.

2. The rate at which organic matter is remineralized, returning
inorganic nutrients to the water mass.

3. The duration of time over which the parcel has accumulated
remineralized nutrients (i.e., the ventilation age)



History of California Current source waters
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History of California Current source waters
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Is this result for the CCE applicable to all upwelling systems?

Increased stratification is a global phenomenon and is consistent
across model projections.
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Capotondi et al., (2012, JGR)



2040: Global age and NO, changes (150 m)




2055: Global age and NO, changes (150 m)




2070: Global age and NO, changes (150 m)




2085: Global age and NO, changes (150 m)




2100: Global age and NO, changes (150 m)
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2100: Global age and NO, changes (150 m)
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Future global warming inhibits this ventilation

Currently, deep waters which supply the California Current
originate near about 150° W, or about 1600 km offshore in
the Central Pacific.

These deep waters eventually upwell at the coast, rich
with nutrients.

Deep winter
mixing
current
climate
state nutrients nutrients

Cco, CO,



Future global warming inhibits this ventilation

Future warmer sea-surface temperatures associated with
global warming increase stratification across the entire Pacific.

Waters upwelling in along the eastern boundary of the Pacific
contain much higher concentrations of nutrients and CO, and

reduced O.,.

180°

Reduced
mixing
Year . time
2100 -

nutrients nutrients nUtrientS nutrients
Co, C02 C02 C02



pH and oxygen are also sensitive to ventilation changes

2081-2100 pH Change in pH
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pH and oxygen are also sensitive to ventilation changes
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pH and oxygen are also sensitive to ventilation changes

Few survey programs have been measuring NO; or O, long enough to
distinguish decadal variability from long-term trends.

Ocean Station P on the 26.5 (x), 26.7 (<), 26.9 (+) and 27.0 (L) isopycnal surfaces

However, those that have 300

examined O, identified
consistent long-term
trends:

Whitney, et al. (2007)
Nakanowatari, et al. (2007)
Chan, et al. (2008)
Bograd, et al. (2008)
Aksnes and Ohman (2009)

Oxygen (umol kg™)

Whitney, et al. (2007, Prog. Oceanogr.)



pH and oxygen are also sensitive to ventilation changes
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Where did | go wrong in my expectation of ecosystem

response to increased stratification?

Roemmich and McGowan (1995) were keen to observe a
relationship between increased local stratification and decreased
biological production over interannual to decadal time scales...

But hypotheses constructed given observations of past,
interannual climate variability cannot be directly applied to the
global climate change question.

This brings me to my first realization concerning fisheries-climate
interactions...



Point 1 of 3: Understanding the past is sometimes

insufficient

Point 1 of 3
An understanding of the past is sometimes
insufficient to project future ecosystem responses.

Our observations of past ecosystem changes have been
associated with local physical forcing over relatively short
temporal (seasonal to decadal) and spatial scales.

This biases our hypotheses about future responses.



Past empirical correlations may fail in the long term

Conventional view of CC variability:
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Past empirical correlations may fail in the long term

Conventional view of CC variability: The nitrate-temperature
Cool Period Warm Period relationship is negative over
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Past empirical correlations may fail in the long term

Conventional view of CC variability: The nitrate-temperature
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Past empirical correlations may fail in the long term

The nitrate-temperature
relationship is negative over
© interannual to multidecadal

oduction
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Point 2 of 3: Boundary conditions cannot be assumed

constant

In the case of eastern boundary currents, changes in water mass
properties at the oceanic boundary may be the major source of
climate-change related trends in the future.

Point 2 of 3

Changes in boundary conditions may be essential to
projecting future responses to climate change. Use
caution if boundaries are assumed to be constant!

While one might reasonably assume climatological boundary
conditions for a regional model that is limited to a few years in
scope, | would advise against relying on a regional model for
longer projections.



Point 3 of 3: Explore new ecological hypotheses

Point 3 of 3
For fellow biologists— Let’s loosen our grip a bit on

some of the past hypotheses relating lower-trophic-
level ecosystem processes with physical forcing.




Traditional hypotheses are based on observed variability

and insufficient for all times scales and modes of change
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Traditional hypotheses are based on observed variability

and insufficient for all times scales and modes of change
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Point 3 of 3: Explore new ecological hypotheses

Point 3 of 3
For fellow biologists— Let’s loosen our grip a bit on

some of the past hypotheses relating lower-trophic-
level ecosystem processes with physical forcing.

We should try to think outside of the box a bit more and question
the assumptions we're making by turning study of lower-trophic-
level biology to regional physical modelers.



Thank you for your attention!
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Basin-wide reduced ventilation

Increased stratification reduces ventilation of deep waters.

This reduces NO; supply and production in most regions...

But then increases
NO; supply where
those deep waters

are brought to the 5
surface.

Change in “age” at 100 m (2100 minus pre-industrial)
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Ventilation of CCE source waters

A.
In the future, waters follow a deeper, ~ 20, o pre-industrial
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