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•  ICTP	  Diploma	  –	  one	  year	  fully	  	  
masters-‐like	  programme	  in	  
earth	  system	  sciences.	  

•  STEP	  –	  sandwich	  PhD	  
programme.	  joint	  supervisors,	  
6	  months	  visit	  each	  year	  

•  Associate	  programme	  –	  junior	  
to	  senior,	  3	  visits	  in	  6	  years.	  

•  Oceangraphy	  
•  Regional	  climate	  modelling	  	  
•  Aerosols	  (REGCM)	  
•  TeleconnecOons	  (Speedy)	  
•  Health	  ApplicaOons	  (VECTRI)	  
•  Hydrology	  (CHYM)	  
•  Solid	  earth	  geophysics	  
•  CompuOng	  	  
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•  Ensembles	  
•  IniOalizaOon	  
•  Hindcasts	  

Need	  to	  consider:	  



Aim	  of	  the	  School	  

•  Introduce	  subseasonal	  phenomena	  that	  can	  lead	  to	  
predictability	  (e.g.	  MJO,	  planetary	  waves)	  

•  Give	  an	  overview	  of	  NWP	  systems	  
•  Introduce	  the	  new	  S2S	  database	  at	  ECMWF	  

–  Explain	  the	  web	  interface	  
–  Show	  how	  to	  retrieve	  S2S	  datasets	  using	  python	  scripts	  

•  Introduce	  observaOon	  databases	  (IRI)	  and	  the	  reanalysis	  
dataset	  for	  evaluaOon	  

•  Show	  examples	  of	  S2S	  applicaOons	  in	  drought	  and	  flood	  
forecasOng	  

•  Give	  you	  a	  chance	  to	  have	  hands-‐on	  experience	  at	  
manipulaOng	  the	  S2S	  datasets	  in	  a	  series	  of	  lab	  classes	  

•  Now:	  Uncertainty	  in	  forecasOng	  systems,	  simple	  
introducOon	  to	  the	  way	  S2S	  and	  seasonal	  forecasOng	  
systems	  are	  set	  up...	  	  uncertainty	  
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The	  conOnium	  hypothesis	  	  

How	  large?	  
•  compuOng	  

power	  
•  Domain	  of	  

simulaOon?	  
•  Length	  of	  

problem	  (5	  days	  
forecast	  of	  100	  
year	  climate	  
projecOon?)	  



Progression	  in	  resoluOon	  
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T799	   T1279	  

From	  
climate	  
model	  
resoluOons	  

To	  
medium	  
range	  
NWP	  



What	  is	  the	  issue	  concerning	  finite	  grid	  scales?	  

Many	  processes	  are	  subgrid-‐scale!	  
They	  must	  therefore	  be	  represented	  by	  
parametrizaOons	  –	  simple	  models	  that	  
represent	  the	  effect	  of	  the	  small	  scales	  in	  
terms	  of	  the	  grid-‐resolved	  variables.	  	  



Key	  physical	  
processes	  to	  be	  
parametrized	  in	  

NWP	  
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Again,	  in	  such	  models	  the	  effects	  
of	  subgrid-‐scale	  and	  non-‐local	  

turbulent	  transports	  need	  to	  be	  
represented	  



ParameterizaOons	  

•  Why	  are	  we	  worried	  about	  parametrizaOons?	  
– Not	  always	  derivable	  from	  theory	  	  
– May	  contain	  ad-‐hoc	  assumpOons,	  parOcularly	  to	  close	  
the	  equaOon	  set.	  

– May	  contain	  parameters	  that	  are	  difficult	  to	  measure	  
from	  observaOons	  or	  derive	  from	  theory.	  

•  Result:	  model	  uncertainty	  	  
•  Example:	  in	  CMIP3/AR4	  cloud	  parametrizaOon	  
schemes	  were	  the	  larges	  cause	  of	  differences	  in	  
climate	  sensiOvity	  between	  the	  models.	  	  This	  has	  
not	  changed	  in	  CMIP5/AR5.	  



Example	  from	  Andrews	  et	  al.	  GRL	  (2012)	  shows	  the	  
large	  differences	  between	  CMIP5	  model	  cloud	  

feedback	  relaOve	  to	  the	  clear-‐sky	  radiaOve	  feedbacks	  

noted a similar relationship between total anthropogenic
forcing and climate sensitivity in the CMIP3 models. In our
results, which are for CO2-only forcing, the correlation
coefficient between F and !a is !0.41, which is not sig-
nificant at the 95% level.
[14] Using the same linear regression technique, we

decompose the feedback parameter a into longwave (LW)
clear-sky, shortwave (SW) clear-sky, and LW and SW cloud
radiative effect (CRE) components (all fluxes defined as

positive downwards). For two of the AOGCMs, regression
plots are shown in Figure 3 (all models are shown in Figures
S1–S6 in the auxiliary material).1 CRE terms are defined as the
difference between all-sky (i.e., with clouds if present) and
clear-sky (i.e., clouds artificially removed) net downward

Figure 2. Comparison of the 2xCO2 equilibrium climate sensitivity, 4xCO2 adjusted radiative forcing (from fixed-SST,
Fsst, and regression, F) and various climate feedback terms. The models are ordered from left to right in order of their equi-
librium climate sensitivity. Note that in the top panel, a is reported as the climate feedback parameter, rather than !a, to
maintain the same scale. Errors bars represent 95% (2.5–97.5%) confidence interval on the fit (see Section 2.3).

1Auxiliary materials are available in the HTML. doi:10.1029/
2012GL051607.

ANDREWS ET AL.: CLIMATE SENSITIVITY IN CMIP5 MODELS L09712L09712
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This	  leads	  to	  uncertainty	  in	  forecasts	  due	  to	  an	  
imperfect	  model	  
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This	  leads	  to	  uncertainty	  in	  forecasts	  due	  to	  an	  
imperfect	  model	  

forecast	  



But	  uncertainty	  is	  also	  a	  result	  of	  inaccurate	  
iniOal	  condiOons	  
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Ques%on:	  how	  can	  we	  account	  for	  this	  uncertainty?	  



We	  run	  ensembles	  of	  forecasts...	  
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Differences	  due	  to	  
iniOal	  condiOon	  
uncertainty	  AND	  
model	  uncertainty	  



Example:	  Ensemble	  of	  rainfall	  predicOons	  for	  UK	  

From	  Bauer	  et	  al.	  Nature	  2015	  	  



Example	  from	  short-‐range	  
3	  day	  forecasts	  of	  the	  2000	  storms	  in	  USA	  

from	  Buizza	  and	  Chessa,	  2002,	  MWR	  

1538 VOLUME 130M O N T H L Y W E A T H E R R E V I E W

FIG. 5. (a) MSLP verification valid at 1200 UTC 25 Jan. Other panels: 72-h forecasts started 23 Jan: (b) OHR TL319, (c) EPS control,
(d) 72-h ensemble mean, (e) EPS member 36 (smallest rmse), (f ) EPS member 34 (second lowest rmse), (g) EPS member 25 (lowest IE),
(h) EPS member 50 (second lowest IE), and (i) EPS member 11 (third lowest IE). Contour interval is 5 hPa. In the forecast titles, rms is
the forecast rmse, ie the intensity error, and pe the position error; for the TL319, no is the number of EPS perturbed-members with rmse
smaller than the TL319; for the EPS control, nc is the number of EPS perturbed-members better than the control; for the EPS members, irms
is the ranking position with respect to the 50 perturbed forecasts in terms of rmse, and ipie is the ranking position in terms of IE.
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Example	  from	  seasonal-‐range	  
Seasonal	  forecasts	  of	  rainfall	  over	  Ethiopia	  

	  

And now also ensemble data assimilation 
  

9	  member	  regional	  model	  rainfall	  seasonal	  forecasts	  for	  East	  
Africa	  (Diro	  et	  al.	  JGR	  2012)	  
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IniOal	  condiOons	  and	  model	  uncertainty	  

•  PerturbaOons	  to	  iniOal	  condiOons	  
– Random	  perturbaOons	  (size,	  locaOon)	  
– Targeted	  perturbaOons	  (Breeding,	  singular	  vector	  
techniques)	  

– Ensemble	  data	  assimilaOon	  	  
•  PerturbaOons	  to	  model	  physics	  

– Parameter	  selngs	  or	  parametrizaOon	  choices	  
– StochasOc	  physics	  

•  CombinaOon	  of	  both	  the	  above:	  MulOmodel	  
Systems!	  



UncertainOes	  in	  model	  
physics	  and	  iniOalizaOon:	  
MulOmodel	  systems	  

•  Seasonal	  forecasts:	  
–  Eurosip	  (ECMWF,	  MeteoFrance,	  
NCEP,	  Met	  Office)	  

–  North	  American	  MulO	  Model	  
Ensemble	  NMME	  

–  CHFP	  database	  of	  hindcast	  
suites	  

•  Subseasonal	  Forecasts:	  
–  S2S	  database	  at	  ECMWF	  
–  	  Planned	  for	  2016:	  NMME	  S2S	  
systems	  

•  Medium	  Range	  
–  TIGGE	  database	  at	  ECMWF	  



NMME	  ENSO	  Example	  

the data ingest and graphical outputs are intended 
to be robust (i.e., any number of models) with any 
number of ensemble members can be used. A major 
element of the NMME experiment is to continue 
this effort for the benefit of operations. Meanwhile, 
we have built up a live hindcast dataset of about 30 
years that is open to anybody and can be used for 
research. Quite probably, this NMME dataset is now 
the most extensive multimodel seasonal prediction 
archive currently available that includes models 
that are continuing to make real-time predictions. 
Table 1 summarizes the NMME-1 hindcast datasets 
and identifies the point of contact for each predic-
tion system.

In addition, NOAA/CPC has agreed to evalu-
ate the hindcasts, combine the forecasts, perform 

verification, provide an NMME website (www.cpc 
.ncep.noaa .gov /products /NMME), and make 
the real-time NMME forecast delivery to NOAA 
forecasters. CPC is also maintaining an NMME 
newsletter. The hindcast data and real-time forecast 
data are also available for download or analysis at 
the International Research Institute for Climate 
and Society (IRI) (http://iridl.ldeo.columbia.edu 
/SOURCES/.Models/.NMME/). The CPC site primar-
ily serves the real-time needs of the project, and the 
IRI site, along with the analysis tools that are being 
developed at the IRI (http://iridl.ldeo.columbia.edu 
/home/.tippett/.NMME/.Verification/), primarily 
serves research needs in terms of assessing the 
prediction skill and predictability limits associated 
with NMME-1 in terms of designing the NMME-2 

TABLE 1. NMME partner models and forecasts.

Model
Hindcast 

period
Ensemble 

size
Lead times 
(months)

Arrangement of 
ensemble members

Contact and 
reference

CFSv1 1981–2009 15 0.5–8.5 First 0000 UTC r2 days, 
21st 0000 UTC r2 days, 
and 11th 0000 UTC r2 days

Saha  
(Saha et al. 2006)

CFSv2 1982–2010 24(28) 0.5–9.5 Four members (0000, 
0600, 1200, and 1800 UTC) 
every fifth day

Saha  
(Saha et al. 2014)

GFDL Climate Model, 
version 2.2 (GFDL 
CM2.2)

1982–2010 10 0.5–11.5 All first of the month 
0000 UTC

Rosati  
(Zhang et al. 2007)

IRI-ECHAM4f* 1982–2010 12 0.5–7.5 All first of the month 
0000 UTC

DeWitt  
(DeWitt 2005)

IRI-ECHAM4a* 1982–2010 12 0.5–7.5 All first of the month 
0000 UTC

DeWitt  
(DeWitt 2005)

CCSM3 1982–2010 6 0.5–11.5 All first of the month 
0000 UTC

Kirtman  
(Kirtman and Min 2009)

Goddard Earth 
Observing System, 
version 5 (GEOS5)

1981–2010 11** 0.5–9.5 One member every 
fifth day

Schubert  
(G. Vernieres et al. 
2011, unpublished 
manuscript)

Third Generation 
Canadian Coupled 
Global Climate Model 
(CMC1-CanCM3)

1981–2010 10 0.5–11.5 All first of the month 
0000 UTC

Merryfield  
(Merryfield et al. 2013)

Fourth Generation 
Canadian Coupled 
Global Climate Model 
(CMC2-CanCM4)

1981–2010 10 0.5–11.5 All first of the month 
0000 UTC

Merryfield  
(Merryfield et al. 2013)

* Real-time forecasts terminated in Jul 2012.
** The number of forecast and hindcast ensemble members is not constant during the period. It has grown from 6 for the 

initial Aug 2011 forecasts (and associated hindcasts) to 11 starting with our Jun 2012 forecasts. The additional (beyond 6 
initialized every fifth day) ensemble members are based on breeding and other perturbations applied on the day closest 
to the beginning of the month.
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*=deceased	  

forecast quality. Here, we show the first step in this 
process—simply documenting how the multimodel 
compares to any single model. For example, Fig. 4 
shows scatterplots of the root-mean-square error of 

the SST anomaly (SSTA) 
for individual models’ 
0.5- to 5.5-month-lead 
ensemble-mean hind-
casts versus the corre-
sponding multimodel 
ensemble-mean hind-
casts for tropical SST for 
September starts. The 
percentage noted in each 
panel corresponds to the 
number of points where 
the individual model 
beat the multimodel. 
For every single indi-
vidual model, most of 
the points are above the 
diagonal (i.e., the per-
centage of points below 
the diagonal is less than 
50%), indicating that 
the multimodel tends to 
have smaller errors than 
the individual models. 
Generally, the models 
cluster around 26%–

48%. The Community Climate 
System Model, version 3 (CCSM3), 
is an outlier and is being replaced 
with the Community Climate 
System Model, version 4 (CCSM4) 
in NMME-2.

Preliminary examination (not 
shown) has suggested that in gen-
eral the individual model having 
the highest anomaly correlation 
skill is Climate Forecast System, 
version 2 (CFSv2). However, this 
identification of the generally 
best model does not suggest that 
the other models, when allowed 
to contribute to the multimodel-
mean forecast, do not further 
enhance the performance. To 
demonstrate the benefit reaped 

by using the multimodel ensemble over the single 
best-performing model, the ranked probability skill 
score (RPSS)3 of the multimodel ensemble hindcasts 
and the CFSv2 hindcasts of SST for December–

FIG. 2. As in Fig. 1, but for 6.5-month lead.

FIG. 3. SSTA correlation coefficient with each ensemble member 
weighted equally. Retrospective forecasts are initialized in Aug 1982–
2009 and verified in the following Feb (i.e., 5.5-month lead).

3 RPSS is a probabilistic forecast skill metric [see Weigel et al. (2007) for details]. The RPSS evaluates the hindcasts probabilisti-
cally (using tercile-based categories and the equal-odds climatology forecasts as the reference forecast). A good rule of thumb 
is that an RPSS of 0.08 corresponds to a deterministic correlation of 0.4.

590 APRIL 2014|

From	  Kirtmann	  et	  al.	  BAMS	  2014	  
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The	  standard	  deviaOon	  between	  the	  forecasts	  is	  
referred	  to	  as	  the	  inter-‐ensemble	  “spread”	  

QUESTION:	  How	  large	  should	  the	  spread	  be?	  
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In	  general,	  for	  any	  given	  forecast	  lead	  Ome,	  we	  want	  the	  spread	  
to	  be	  comparable	  to	  the	  RMS	  forecast	  error	  
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“Over-‐confident”	  forecasOng	  system	  –	  observaOons	  
oqen	  lie	  outside	  the	  ensemble	  
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“Under-‐confident”	  system	  –	  perturbaOons	  are	  
too	  strong	  and	  overesOmate	  the	  system	  error	  



Model	  predicOng	  real	  
world	  

Model	  predicOng	  itself	  

Figure	  courtesy	  of	  Doug	  Smith	  Met	  Office	  –	  see	  Scaife	  et	  al	  2014,	  Eade	  et	  al	  2014	  for	  details	  

•  CorrelaOon	  skill	  
score	  of	  ensemble	  
mean	  forecasts	  of	  
the	  NAO	  

•  Model	  predicOng	  
itself	  is	  worse	  than	  
model	  predicOng	  
observaOons	  of	  
NAO.	  

•  InterpretaOon	  is	  
that	  model	  
ensemble	  is	  under	  
confident	  

•  Larger	  ensemble	  
sizes	  are	  beneficial	  
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QUESTION:	  forecast	  states	  70%	  chance	  of	  rain	  –	  
and	  it	  rains	  –	  is	  this	  a	  good	  forecast?	  

no	  rain	  

rain	  
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Overlap	  in	  week	  1-‐6	  

•  possibility	  to	  
use	  sub-‐
seasonal	  
products	  in	  the	  
first	  48	  days	  

•  why	  would	  one	  
do	  this?	  is	  the	  
monthly	  
system	  beser?	  

which would reduce the actual skill below that reported
in these investigations. This approach is adopted in
this initial study because no continent-wide malaria-
incidence dataset exists that can be used to evaluate
malaria forecasts. One purpose of this study is thus to
identify regions of the continent where the system
demonstrates particular potential usefulness that can
then be examined in future country-specific, focused
studies that use the District Health Information System/
Software (DHIS) and other health data.

2. Methods

a. Overview of the malaria-prediction system and
description of the weather-prediction model

Our MEWS consists of two modeling components:
a weather-forecasting system and a dynamical malaria
model (Fig. 1). For the first 32 days of the weather fore-
cast, the systemuses temperature and precipitation that are
provided by a high-spatial-resolution weather-prediction

system. These forecasts extend the 15-day ensemble pre-
diction system (EPS) out to 32 days once (recently in-
creased to twice) per week, and at ECMWF is officially
termed the extended-range forecast (Vitart et al. 2008).
From day 33 onward, the forecasts of the lower-resolution
and longer-range system-4 seasonal-forecasting system
(Molteni et al. 2011) are used for the remainder of the
4-month forecast. Toemphasize thedifference in time scales
of the two systems, they will be referred to respectively
as the monthly and seasonal forecasts hereinafter. Both
weather-forecast systems provide 51 individual forecasts
starting from slightly different initial conditions so as
to sample forecast uncertainty. Further details of the
weather-forecasting systems that contribute to this
seamless system are given in the appendix.
Temperature from both systems is adjusted using cor-

rection of the mean bias as a function of location, calen-
dar month, and forecast lead time with respect to the
analysis data and is subsequently statistically downscaled
to 27-km resolution using a fixed lapse-rate correction to

FIG. 1. Schematic of the forecast-system setup, with boxes representing models, triangles
showing processes, and diamonds used for products. The operational NWP reanalysis of
temperature and rainfall is used to drive the malaria model to provide a malaria analysis of
epidemiological and entomological indicators, which are used as initial conditions for the
forecast. The malaria forecast uses climate information from the high-resolution monthly EPS
climate forecasts in the first month (m1, consisting of days 1–32), which is seamlessly combined
with the seasonal-forecast system for m2–4. Both precipitation and temperature are rescaled,
and temperature is calibrated before application to the malaria model, which then provides
forecasts of PR and EIR.
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Where	  do	  these	  gains	  in	  skill	  come	  from?	  
from	  Tompkins	  and	  Digiuseppe,	  JAMC,	  2015	  

CorrelaOon	  of	  day	  1-‐32	  T2m	  anomaly	  
against	  ERA-‐Interim	  for	  1994-‐2012	  of	  

Extended	  range	  EPS	  over	  Africa	  
12	  start	  dates	  (First	  Thursday	  of	  each	  

month)	  	  

Increase	  in	  correlaOon	  relaOve	  to	  the	  
exact	  same	  days	  predicted	  by	  the	  most	  

recent	  seasonal	  forecast	  system	  	  

Where	  does	  this	  skill	  advantage	  come	  from?	  
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1.  Lead	  Ome	  advantage	  (more	  frequent	  updates)	  
2.  Model	  physics	  (more	  frequent	  updates)	  
3.  Framework	  (higher	  resoluOon,	  different	  ocean	  iniOalizaOon...)	  
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Figure 2. Schematic showing the difference between weekly and daily initialization and the additional members used for the sub-seasonal forecast. The diagram
shows how the four forecast members initialized each day are combined in a lagged ensemble. Sub-seasonal products are generated from 7 days of forecast members.
Seasonal products use 3 weeks of forecast members in the ensemble. Each week a hindcast set for a given initialization date is completed. The same hindcast is used to
bias correct both seasonal and sub-seasonal products.

it is initialised, and the construction of the ensemble used to
generate products issued by the Met Office. The previous system
was described in Arribas et al. (2011) and many of the details are
still relevant.

2.1. Model configuration

The coupled HadGEM3 model used in the seasonal forecast
system consists of the following components:

• Atmosphere: MetUM (Walters et al., 2011; Brown et al.,
2012), Global Atmosphere 3.0

• Land surface: Joint UK Land Environment Simulator
(JULES; Best et al., 2011), Global Land 3.0

• Ocean: NEMO (Madec, 2008), Global Ocean 3.0
• Sea-ice: The Los Alamos Sea Ice Model (CICE; Hunke and

Lipscomb, 2010), Global Sea-Ice 3.0

The dynamical core of the UM (called NewDynamics) uses
a semi-implicit semi-Lagrangian discretization to solve the
fully compressible, non-hydrostatic atmospheric equations of
motion. The stochastic physics scheme Stochastic Kinetic Energy
Backscatter v2 (SKEB2; Bowler et al., 2009) is included to represent
unresolved processes and provide small grid-level perturbations
during the model integration. Climate forcings (e.g. methane,
CO2, etc.) are set to observed values up to the year 2005;
after this point the emissions follow the Intergovernmental
Panel on Climate Change (IPCC) RCP4.5 scenario. Climatologies
with a seasonal variation are used for other aerosols (biogenic
aerosols, biomass burning, black-carbon, sea salt, sulphates, dust,
and organic carbon fossil fuels). These climatologies have been
generated from a climate simulation using HadGEM2 (except dust
which is from a HadGEM1a run). The Stratosphere–troposphere
Processes And their Role in Climate (SPARC; Cionni et al., 2011)
observational climatology is used for ozone, which includes a

seasonal cycle. The solar forcing is the same in the forecast and
hindcast, with an interannual variation.

2.1.1. Global Atmosphere 3.0

A detailed description of the Global Atmosphere 3.0 configuration
is given in Walters et al. (2011) where the developments between
version 2.0 and 3.0 are also discussed. The basis of this science
configuration has been adopted by all the operational global
models used in the Met Office (although the configurations
are not exactly the same due to unavoidable temporal and spatial
resolution differences). There have been numerous changes to the
physical parametrizations used in the coupled model since Global
Atmosphere 2.0: introduction of cloud inhomogeneity, reduction
of spurious drizzle, reduction of spurious deep convection,
introduction of the JULES land surface model (Blyth et al.,
2006), and the facility to read iceberg calving ancillary data.

2.1.2. High-resolution model

The higher-resolution version of HadGEM3 used in the GloSea5
system uses the Global Atmosphere 3.0 configuration. Most of
the physical parametrizations remain the same between the two
resolutions. The high-resolution model requires a reduced time
step and altered diffusion settings to increase stability. In the
ocean model with the ORCA 0.25 grid, some of the major closed
seas (Great Lakes, Lake Victoria, Caspian Sea and the Aral Sea)
are included.

The resolution of the HadGEM3 model used in GloSea4 was
N96L85 ORCA 1 L75; in GloSea5 it has been increased to N216L85
ORCA 0.25 L75. This means that the horizontal resolution in the
atmosphere has increased from 1.88◦×1.25◦ to 0.83◦×0.56◦

(i.e. approximately 120 km in midlatitudes to 50 km). Figure 1
compares the orography used in the GloSea4 and GloSea5

c⃝ 2014 The Authors and Crown copyright. Quarterly Journal of the Royal Meteorological Society
published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.

Q. J. R. Meteorol. Soc. 141: 1072–1084 (2015)

The	  Met	  
Office	  
system	  

•  Four	  forecast	  members	  
iniOalized	  each	  day	  are	  
combined	  in	  a	  lagged	  
ensemble.	  	  

•  Sub-‐seasonal	  products	  are	  
generated	  from	  7	  days	  of	  
forecast	  members.	  	  

•  Seasonal	  products	  use	  3	  
weeks	  of	  forecast	  members	  
in	  the	  ensemble.	  	  

•  Each	  week	  a	  hindcast	  set	  for	  
a	  given	  iniOalizaOon	  date	  is	  
completed.	  	  

•  The	  same	  hindcast	  is	  used	  to	  
bias	  correct	  both	  seasonal	  
and	  sub-‐seasonal	  products.	  	  

from	  
MacLachlan	  	  
	  et	  al,	  QJRMS,	  
2015	  



Hindcast	  Strategies	  
•  “On	  the	  fly”	  –	  Each	  forecast	  

is	  accompanied	  by	  a	  set	  of	  
hindcasts	  starOng	  on	  the	  
same	  date	  for	  the	  previous	  
N	  years	  
–  GOOD:	  same	  model	  

version	  and	  set	  up	  
–  GOOD:	  Always	  same	  start	  

date	  
–  BAD:	  Expensive	  to	  run,	  

smaller	  ensemble	  sizes	  	  

•  “Fixed”	  –	  Hindcast	  data	  
set	  run	  once	  for	  a	  
parOcular	  model	  cycle	  
–  GOOD:	  Cheaper	  (if	  
system	  not	  updated	  too	  
frequently),	  larger	  
ensemble	  sizes	  possible	  

–  BAD:	  Not	  always	  
matching	  dates	  	  

15/03/2015	  

15/03/2014	  

15/03/2013	  

15/03/2012	  

18/03/2015	  

18/03/2014	  

18/03/2013	  

18/03/2012	  

18/03/2011	  



Assessing	  S2S	  model	  skill	  –	  the	  hindcast	  
•  Hindcast	  primary	  funcOon	  is	  to	  perform	  bias	  correcOon	  
and	  output	  calibraOon.	  

•  However	  also	  useful	  to	  assess	  model	  skill	  over	  
interannual	  Omescales	  since	  model	  system	  is	  idenOcal	  

•  Disadvantage	  is	  that	  ensemble	  size	  is	  smaller	  
2013	   2014	   2015...	  

year	  -‐	  1	  

y	  -‐	  2	  

y	  -‐	  4	  

y	  -‐	  3	  

Colour	  
represents	  
model	  version	  
	  
Arrow	  thickness	  
indicates	  the	  
ensemble	  size	  
	  
(51	  versus	  5-‐15)	  

Real-‐Ome	  forecast	  

Hindcast	  

Hindcast	  

Hindcast	  

Hindcast	  



Example:	  malaria	  forecasts	  using	  extended	  ensemble	  and	  
seasonal	  forecasts,	  limitaOons	  of	  dynamic	  hindcast	  suite	  

Maximum	  Hindcast	  date	  range	  

Mean	  of	  only	  5	  ensemble	  
members	  

Tompkins	  and	  Di	  Giuseppe,	  JAMC,	  2015	  	  

operaOonal	  system	  
changes	  



Intercomparisons	  
•  No	  standard	  way	  of	  
selng	  up	  the	  hindcast	  
framework	  between	  
centre.	  
– Makes	  intercomparison	  of	  
models	  challenging	  

–  and	  organising	  S2S	  and	  
other	  similar	  databases	  
(e.g.	  CHFP)	  

–  (although	  NMME	  is	  fairly	  
standardized,	  see	  right)	  

•  Aim	  of	  this	  week	  is	  to	  
show	  how	  to	  retrieve	  S2S	  
forecast	  and	  hindcast	  
suites	  

the data ingest and graphical outputs are intended 
to be robust (i.e., any number of models) with any 
number of ensemble members can be used. A major 
element of the NMME experiment is to continue 
this effort for the benefit of operations. Meanwhile, 
we have built up a live hindcast dataset of about 30 
years that is open to anybody and can be used for 
research. Quite probably, this NMME dataset is now 
the most extensive multimodel seasonal prediction 
archive currently available that includes models 
that are continuing to make real-time predictions. 
Table 1 summarizes the NMME-1 hindcast datasets 
and identifies the point of contact for each predic-
tion system.

In addition, NOAA/CPC has agreed to evalu-
ate the hindcasts, combine the forecasts, perform 

verification, provide an NMME website (www.cpc 
.ncep.noaa .gov /products /NMME), and make 
the real-time NMME forecast delivery to NOAA 
forecasters. CPC is also maintaining an NMME 
newsletter. The hindcast data and real-time forecast 
data are also available for download or analysis at 
the International Research Institute for Climate 
and Society (IRI) (http://iridl.ldeo.columbia.edu 
/SOURCES/.Models/.NMME/). The CPC site primar-
ily serves the real-time needs of the project, and the 
IRI site, along with the analysis tools that are being 
developed at the IRI (http://iridl.ldeo.columbia.edu 
/home/.tippett/.NMME/.Verification/), primarily 
serves research needs in terms of assessing the 
prediction skill and predictability limits associated 
with NMME-1 in terms of designing the NMME-2 

TABLE 1. NMME partner models and forecasts.

Model
Hindcast 

period
Ensemble 

size
Lead times 
(months)

Arrangement of 
ensemble members

Contact and 
reference

CFSv1 1981–2009 15 0.5–8.5 First 0000 UTC r2 days, 
21st 0000 UTC r2 days, 
and 11th 0000 UTC r2 days

Saha  
(Saha et al. 2006)

CFSv2 1982–2010 24(28) 0.5–9.5 Four members (0000, 
0600, 1200, and 1800 UTC) 
every fifth day

Saha  
(Saha et al. 2014)

GFDL Climate Model, 
version 2.2 (GFDL 
CM2.2)

1982–2010 10 0.5–11.5 All first of the month 
0000 UTC

Rosati  
(Zhang et al. 2007)

IRI-ECHAM4f* 1982–2010 12 0.5–7.5 All first of the month 
0000 UTC

DeWitt  
(DeWitt 2005)

IRI-ECHAM4a* 1982–2010 12 0.5–7.5 All first of the month 
0000 UTC

DeWitt  
(DeWitt 2005)

CCSM3 1982–2010 6 0.5–11.5 All first of the month 
0000 UTC

Kirtman  
(Kirtman and Min 2009)

Goddard Earth 
Observing System, 
version 5 (GEOS5)

1981–2010 11** 0.5–9.5 One member every 
fifth day

Schubert  
(G. Vernieres et al. 
2011, unpublished 
manuscript)

Third Generation 
Canadian Coupled 
Global Climate Model 
(CMC1-CanCM3)

1981–2010 10 0.5–11.5 All first of the month 
0000 UTC

Merryfield  
(Merryfield et al. 2013)

Fourth Generation 
Canadian Coupled 
Global Climate Model 
(CMC2-CanCM4)

1981–2010 10 0.5–11.5 All first of the month 
0000 UTC

Merryfield  
(Merryfield et al. 2013)

* Real-time forecasts terminated in Jul 2012.
** The number of forecast and hindcast ensemble members is not constant during the period. It has grown from 6 for the 

initial Aug 2011 forecasts (and associated hindcasts) to 11 starting with our Jun 2012 forecasts. The additional (beyond 6 
initialized every fifth day) ensemble members are based on breeding and other perturbations applied on the day closest 
to the beginning of the month.
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Today	  and	  tomorrow’s	  session:	  	  
hsp://apps.ecmwf.int/datasets/data/s2s	  



AddiOonal	  Slides	  on	  climate	  modelling	  



Uncertainty	  in	  climate	  modelling	  
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Emissions	  scenarios	  in	  CMIP5	  
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RCP2p6	  is	  not	  all	  good	  news...	  

•  RCP2p6	  and	  8p5	  are	  surprisingly	  similar	  due	  
to	  high	  use	  of	  biofuels	  needed	  to	  respect	  2p6	  
Wm-‐2	  



HYDE	  output	  example	  (using	  CLM)	  

RCP8p5	  RCP2p6	  

RCP2p6	  actually	  has	  one	  of	  the	  greatest	  conversaOon	  to	  cropland	  rates	  in	  Africa	  	  due	  
to	  high	  use	  of	  biofuels.	  	  



Leads	  to	  emissions	  scenarios	  for	  major	  
greenhouse	  gases	  Summary for Policymakers  IPCC Fifth Assessment Synthesis Report 
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Figure SPM.5: (a) Emissions of CO2 alone in the Representative Concentration Pathways (lines) and the associated 
scenario categories used in WGIII (coloured areas show 5-95% range). The WGIII scenario categories summarize the 
wide range of emission scenarios published in the scientific literature and are defined on the basis of CO2-eq 
concentration levels (in ppm) in 2100. The time series of other greenhouse gas emissions are shown in Box 2.2, Figure 
1. (b) Global mean surface temperature increase at the time global CO2 emissions reach a given net cumulative total, 
plotted as a function of that total, from various lines of evidence. Coloured plume shows the spread of past and future 
projections from a hierarchy of climate-carbon cycle models driven by historical emissions and the four RCPs over all 
times out to 2100, and fades with the decreasing number of available models. Ellipses show total anthropogenic 
warming in 2100 versus cumulative CO2 emissions from 1870 to 2100 from a simple climate model (median climate 
response) under the scenario categories used in WGIII. The width of the ellipses in terms of temperature is caused by 
the impact of different scenarios for non-CO2 climate drivers. The filled black ellipse shows observed emissions to 2005 
and observed temperatures in the decade 2000-2009 with associated uncertainties. {Box 2.2, Figure 1, Figure 2.3} 
 

Ques%on:	  Are	  these	  4	  scenarios	  all	  equally	  likely?	  	  Which	  one	  is	  the	  most	  likely?	  	  



RCP2p6	  is	  not	  all	  good	  news...	  

•  RCP2p6	  and	  8p5	  are	  surprisingly	  similar	  due	  to	  
high	  use	  of	  biofuels	  needed	  to	  respect	  2p6	  Wm-‐2	  

•  Are	  these	  scenarios	  representaOve?	  



Uncertainty	  in	  climate	  modelling	  
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intensity, energy use and regional differentiated
development. However the new RCPs mean that
comparison of the 2013 IPCC results will be difficult
with the IPCC 2001 and 2007 outputs, which used
the SRES. These scenarios are just the start of the
cascade of uncertainty shown in Figure 1.

In the most recent IPCC assessment, released in
2007, the greenhouse gas scenarios were then input
into about 20 general circulation models (GCMs). Each
of the models has their own independent design and
parameterisations of key processes. For example, how
to model the positive and negative feedbacks from
clouds. Clouds are one of the largest uncertainties in
climate models as they increase the global reflection of
solar radiation up to 30%, reducing the amount of
sunlight absorbed by the Earth But this cooling is offset
somewhat by the greenhouse effect of clouds, which
reduces the net loss of heat from the Earth. The inde-
pendence of each model is important, as some confi-
dence may be derived from multiple runs on different
models providing similar future climate predictions.
While the differences between the models can help us
to learn about their individual limitations and advan-

tages. Within the IPCC, due to political expediency,
each model and its output is assumed to be equally
valid. This is despite the fact that some are known to
perform better than others when tested against reality
provided by the historic and palaeoclimate records.
This difference will be exacerbated in the 2013 IPCC
assessment as some models have greater spatial reso-
lution while others do not. Moreover, as discussed by
Palmer (2012), we understand uncertainty within a
single model but the notion of quantifying uncertainty
from many models currently lacks any real theoretical
background or basis.

The outputs from these GCMs are then used to drive
more detailed regional climate models to project
more local environmental variations. Down-scaling is
a huge problem recognised in the modelling commu-
nity (IPCC 2007b). This is because precipitation is
spatially and temporally highly variable but essential
to model if human impacts are to be predicted
(Oreskes et al. 2010). Ultimately the cascade of uncer-
tainty leads to a huge range of potential future events
at a regional level that are in some cases contradic-
tory. For example, detailed hydrological modelling of
the Mekong River Basin using climate model input
from just a single GCM (the Met Office HadCM3) led
to projected future changes in annual river discharge
ranging from a decrease of 5.4% to an increase of
4.5% (Kingston et al. 2011). Changes in predicted
monthly discharge are even more dramatic, ranging
from -16% to +55%. Advising policymakers becomes
extremely hard when the uncertainties do not even
allow one to tell if the river catchment system in the
future will have more or less water. But there may be
key communication lessons that we could learn from
the way other scientists communicate risk, for
example, with earthquake risk the public and policy-
makers have become used to the idea of probability
when it comes to timing and magnitude.

The projected regional climate changes are then
used as a basis for so-called impact models that
attempt to estimate the effect on the quality of human
life (Barker 2008). The scale of impact of climate
change is, however, driven more by the relative resil-
ience of the society affected than the magnitude of
change. The most advanced of these socioeconomic
models determine the monetary costs arising both in
market and non-market sectors. But these models fail
to adequately account for many aspects of human
suffering possibly caused by climate change, as they
evaluate the impact of climate change on human
welfare purely in monetary terms (Stern 2007).
Whereas money can be lent, exchanged, traded or
even gain interest, an individual’s welfare and life
cannot. Moreover, despite continued arguments
between economists, future losses are discounted at a
fairly arbitrary rate (Stern 2007).

Above we have considered mean state changes
such as river discharge. The single biggest problem
with impact models, however, is their inability to

Figure 1 Estimations of climate change impact and societal
response based on models containing increasing

uncertainty. Solid lines are modelled outputs while white
dotted lines are inputs to the next layer of models

Source: Adapted and expanded from Hillerbrand and Ghil
(2008)
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Cascading uncertainty in climate change models
and its implications for policy
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Climate scientists face a serious public image problem because the next round of climate models
they are working on are destined to produce a wider rather than a smaller range of uncertainty. To
the public and policymakers, it will look as if the scientific understanding of climate change is
becoming less rather than more clear, particularly as there will be a deliberate attempt by lobbyists
and parts of the media to portray the science in this way. There is a need to communicate the
fundamental strengths and weaknesses of climate modelling as an essential tool to allow us to
understand the consequences of our actions and to develop appropriate policy. We need to
demonstrate that with greater knowledge comes greater uncertainty but also greater transparency
and confidence in our knowledge. New communications strategies that do not solely rely on the
‘weight of evidence’ argument but instead aim to win hearts and minds are required. New policy
approaches combining win–win solutions are required if issues of climate change mitigation and
adaptation are to be tackled.

KEY WORDS: climate change policy, climate models, uncertainty

T he next Intergovernmental Panel on Climate
Change (IPCC) major assessment of climate
science is due to be released in 2013, and will

include climate models containing a significant
increase in our understanding of complex climate
processes. However, these models will have a wider
rather than smaller range of scientific uncertainty. Sci-
entists need to face up to this, and develop a plan of
how to explain uncertainty to avoid climate deniers
suggesting that the science is fundamentally wrong.
Above all, the public and policymakers need be con-
vinced that climate models have reached their current
limit and must stop waiting for further certainty or
persuasion, but should start developing appropriate
mitigation and adaption policies around the world.

But for the public and policymakers to move
beyond questioning the underlying physics they need
to have a greater appreciation of why these numerical
models have reached a limit. First, models are not
reality. It may sound strange to have to state this but it
is a fundamental point which is regularly ignored.
Second, there are intrinsic problems with modelling
natural systems (Cartwright 1983). This is because it is
impossible to truly verify or validate the numerical

models as they are never closed systems and results
are never unique (Oreskes et al. 1994). This is particu-
lar true of climate models because despite being
based on fundamental physical equations they still
require many parameters that are incompletely known
(Oreskes et al. 2010).

One of these variables is the accumulation of
greenhouse gases and aerosols in the atmosphere by
the end of the century, which is an essential input to
the models. These projections are based on eco-
nomic models, which attempt to predict global fossil
fuel use over 100 years given extremely broad
assumptions about how integrated and green the
global economy will become (IPCC 2000; van
Vuuren et al. 2011). The original IPCC reports used
simplistic assumption of greenhouse gas emissions
over the next 100 years. From 2000 onwards the
climate models used the Special Report on Emission
Scenarios (SRES; IPCC 2000). The next generation of
climate model results to be published in the 2013
IPCC Science Report will use the new representative
concentration pathways (RCPs) which consider a
much wider variable input to the social-economic
models, including population, land use, energy
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QuesOon:	  
Where	  is	  the	  
iniOal	  
condiOon	  
uncertainty?	  



ISIMIP	  –	  PNAS	  special	  issues	  2014	  
invesOgated	  mulOsectoral	  impacts	  of	  climate	  change	  

using	  one	  member	  of	  5	  climate	  models	  	  	  

PNAS	  ISIMIP	  Special	  Issue	  2014	  



Ensemble	  techniques	  in	  climate	  modelling	  �������.
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	  Key	  et	  al.	  BAMS	  to	  appear	  2015:	  hsp://dx.doi.org/10.1175/BAMS-‐D-‐13-‐00255.1	  

!
!

!
Figure! 2! –! Global! surface! temperature! anomaly! (1961G1990! base! period)! for! the!
1850!control,! individual!ensemble!members,!and!observations! (HadCRUT4;!Morice!
et!al.!2012).!
!
!

However,	  model	  error	  and	  iniOal	  condiOon	  
“sampling”	  error	  are	  oqen	  confused.	  

Large	  ensemble	  climate	  change	  experiments	  
30	  ensemble	  members	  –	  historical	  and	  RCP8p5	  
Single	  climate	  model	  	  



!

!
Figure!5:! Global!Maps! of!NearGfuture! (2013G2046)!Boreal!Winter! (DJF)! Surface!Air!
Temperature!Trends!for!each!of!the!30!individual!CESMGLE!members!and!the!CESMG
LE!ensemble!mean!(denoted!“EM”).!

	  hsp://dx.doi.org/10.1175/BAMS-‐
D-‐13-‐00255.1	  

First	  16	  members:	  	  2013-‐2046	  temperature	  trend	  



!
Figure!6:!Global!Maps!of!Standard!Deviation!in!34Gyear!DJF!Surface!Air!Temperature!
trends! for! the! (top)! PreGindustrial! (1850),! (middle)! Historical! (1979G2012),! and!
(bottom)!NearGfuture! (2013G2046)!periods.!For!the!historical!and!nearPfuture!periods,!
trends!are!shown!for!both!the!30Pmember!CESMPLE!ensemble!and!the!38Pmember!CMIP5!
ensemble! (Taylor!et!al.!2012).! Stippling!on! the!historical!and!nearPfuture!CESMPLE! trend!
maps! indicates! standard!deviations! that! are! statistically! different! than! the!CESMPLE!preP
industrial! period.! Stippling! on! the! historical! and! nearPfuture! CMIP5! maps! indicates!
standard!deviations!that!are!statistically!different!than!the!CESMPLE!for!the!corresponding!
period.!Stippling!is!based!on!an!fPtest!and!a!95%!confidence!interval.!!For!CMIP5,!we!used!a!
single! (the! first)!ensemble!member!of! the! following!models:!ACCESS1P0,!ACCESS1P3,!bccP
csm1P1Pm,! bccPcsm1P1,! BNUPESM,! CanESM2,! CCSM4,! CESM1PBGC,! CESM1PCAM5,! CESM1P
WACCM,!CMCCPCM,!CMCCPCMS,!CNRMPCM5,!CSIROPMk3P6P0,!ECPEARTH,!FGOALSPg2,!FIOP
ESM,! GFDLPCM3,! GFDLPESM2G,! GFDLPESM2M,!GISSPE2PH,! GISSPE2PHPCC,! GISSPE2PR,! GISSP
E2PRPCC,!HadGEM2PAO,!HadGEM2PCC,!HadGEM2PES,! inmcm4,! IPSLPCM5APLR,! IPSLPCM5AP
MR,! IPSLPCM5BPLR,! MIROC5,! MIROCPESM,!MIROCPESMPCHEM,!MPIPESMPLR,! MRIPCGCM3,!
NorESM1PM,!and!NorESM1PME.!

Inter-‐ensemble	  temperature	  “spread”	  –	  what	  is	  
the	  difference	  between	  the	  leq	  and	  right?	  	  



!
Figure!6:!Global!Maps!of!Standard!Deviation!in!34Gyear!DJF!Surface!Air!Temperature!
trends! for! the! (top)! PreGindustrial! (1850),! (middle)! Historical! (1979G2012),! and!
(bottom)!NearGfuture! (2013G2046)!periods.!For!the!historical!and!nearPfuture!periods,!
trends!are!shown!for!both!the!30Pmember!CESMPLE!ensemble!and!the!38Pmember!CMIP5!
ensemble! (Taylor!et!al.!2012).! Stippling!on! the!historical!and!nearPfuture!CESMPLE! trend!
maps! indicates! standard!deviations! that! are! statistically! different! than! the!CESMPLE!preP
industrial! period.! Stippling! on! the! historical! and! nearPfuture! CMIP5! maps! indicates!
standard!deviations!that!are!statistically!different!than!the!CESMPLE!for!the!corresponding!
period.!Stippling!is!based!on!an!fPtest!and!a!95%!confidence!interval.!!For!CMIP5,!we!used!a!
single! (the! first)!ensemble!member!of! the! following!models:!ACCESS1P0,!ACCESS1P3,!bccP
csm1P1Pm,! bccPcsm1P1,! BNUPESM,! CanESM2,! CCSM4,! CESM1PBGC,! CESM1PCAM5,! CESM1P
WACCM,!CMCCPCM,!CMCCPCMS,!CNRMPCM5,!CSIROPMk3P6P0,!ECPEARTH,!FGOALSPg2,!FIOP
ESM,! GFDLPCM3,! GFDLPESM2G,! GFDLPESM2M,!GISSPE2PH,! GISSPE2PHPCC,! GISSPE2PR,! GISSP
E2PRPCC,!HadGEM2PAO,!HadGEM2PCC,!HadGEM2PES,! inmcm4,! IPSLPCM5APLR,! IPSLPCM5AP
MR,! IPSLPCM5BPLR,! MIROC5,! MIROCPESM,!MIROCPESMPCHEM,!MPIPESMPLR,! MRIPCGCM3,!
NorESM1PM,!and!NorESM1PME.!

Leq:	  30	  members	  single	  model	  =	  sampling	  uncertainty	  
Right:	  38	  CMIP5	  models,	  one	  member	  per	  model	  

QuesOon:	  Are	  the	  differences	  on	  the	  right	  due	  to	  model	  uncertainty	  or	  
iniOal	  condiOon	  sampling?	  And	  why	  is	  this	  important?	  



Small	  ensembles	  may	  lead	  to	  overesOmate	  of	  
uncertainty	  due	  to	  model	  error,	  but...	  

...are	  models	  “geneOcally”	  diverse	  enough?	  
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Climate model genealogy: Generation CMIP5 and how we got there

Reto Knutti,1 David Masson,2 and Andrew Gettelman1,3
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[1] A new ensemble of climate models is becoming
available and provides the basis for climate change
projections. Here, we show a first analysis indicating that the
models in the new ensemble agree better with observations
than those in older ones and that the poorest models have
been eliminated. Most models are strongly tied to their
predecessors, and some also exchange ideas and code with
other models, thus supporting an earlier hypothesis that the
models in the new ensemble are neither independent of
each other nor independent of the earlier generation. On the
basis of one atmosphere model, we show how statistical
methods can identify similarities between model versions
and complement process understanding in characterizing
how and why a model has changed. We argue that the
interdependence of models complicates the interpretation
of multimodel ensembles but largely goes unnoticed.
Citation: Knutti, R., D. Masson, and A. Gettelman (2013), Climate
model genealogy: Generation CMIP5 and how we got there,
Geophys. Res. Lett., 40, 1194–1199, doi:10.1002/grl.50256.

1. Introduction

[2] Global climate models are ubiquitous and irreplace-
able tools for projections of future climate change. They
evolve and improve, but few people really understand
exactly how and why. Model developers have scientific
reasons for why they focus on improving on one process
or component and not others, but the internal decision
making processes for model development are rarely docu-
mented publicly. As a result, although new models are
presented in detail in the literature and compared with obser-
vations, they remain massive and complex black boxes to
many users, with many questions remaining unanswered.
For example, why were certain parameterizations changed
but not others? Which of those changes had the largest
impact? Is the model “better” in terms of agreement with
observations, or just “better” in terms of a more comprehen-
sive description of the processes? Which variables and data
sets were used to evaluate a given model?
[3] Because formal methods to quantify uncertainties in

projections are complex and direct observational constraints
often absent [Knutti et al., 2010; Tebaldi and Knutti, 2007;

Weigel et al., 2010], the spread of an ensemble of models
is often used as a first-order estimate of projection uncer-
tainty [Meehl et al., 2007]. This assumes that the models
are approximately a representative sample of our uncertainty
in how to best describe the climate system given limited
observations, imperfect understanding, and finite computa-
tional resources [Knutti, 2008; Yokohata et al., 2012]. It also
assumes that there are not too many similarities that would
bias the results. Of course, all models are similar because
they describe the same system, but their biases, omissions
of processes, simplifications, parameterizations of processes,
and numerical approximations are also similar. In other
words, they are often similarly biased with regard to reality,
in some but not all cases for the same reasons (e.g., high
mountains are not resolved in all models). This does not
invalidate the use of the ensemble as a first-order estimate
of uncertainty but complicates the interpretation.
[4] Masson and Knutti [2011, MK11 hereafter] produced

a “family tree” of the Coupled Model Intercomparison
Project Phase 2/3 climate models, which documents the
similarities between models in an ensemble. For simplicity,
we define model similarity as similarity in the model simu-
lated fields because it is unclear how to define similarity of
a model code or the underlying process assumptions. The
term “model independence” is not used in a sense of statisti-
cal independence but loosely to express that the similarity
between models sharing code is far greater than between
those that do not. Models from the same centers were shown
in MK11 to often be very similar in their present day clima-
tology, and models in different centers sharing the same at-
mospheric model (even in different versions) were also
closely related. MK11 argued that such similarities result
from the fact that models evolve from their ancestors by
modification and by exchange of ideas and code with other
groups. Successful pieces are kept, improved, and shared,
and less successful parts are replaced. Here, we present an
analysis of the newest generation of models to supports this
hypothesis.

2. Results

[5] We used data from the most recent World Climate
Research Programme Coupled Model Intercomparison
Project Phase 5 (CMIP5) [Taylor et al., 2012], along with
data from the earlier CMIP3 and CMIP2 intercomparisons.
Model similarity is defined as in MK11 (details in the
Supporting Information of MK11) by a Kullback-Leibler
divergence, a distance metric that considers the spatial
field of monthly values in a control simulation without
external forcing. It takes into account the seasonal cycle,
the interannual variations, and the spatial correlation. The
method and data from CMIP2/3 and observations are identi-
cal to those used by MK11. The only difference is that for
Figures 1 and 3, the metric now also includes differences

All Supporting Information may be found in the online version of this
article.
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Figure SPM.6: Global average surface temperature change (a) and global mean sea-level rise10 (b) from 2006 to 2100 
as determined by multi-model simulations. All changes are relative to 1986–2005. Time series of projections and a 
measure of uncertainty (shading) are shown for scenarios RCP2.6 (blue) and RCP8.5 (red). The mean and associated 
uncertainties averaged over 2081-2100 are given for all RCP scenarios as coloured vertical bars at the right hand side of 
each panel. The number of Coupled Model Intercomparison Project Phase 5 (CMIP5) models used to calculate the 
multi-model mean is indicated. {2.2, Figure 2.1} 

                                                             
10 Based on current understanding (from observations, physical understanding and modelling), only the collapse of 
marine-based sectors of the Antarctic ice sheet, if initiated, could cause global mean sea level to rise substantially above 
the likely range during the 21st century. There is medium confidence that this additional contribution would not exceed 
several tenths of a meter of sea-level rise during the 21st century. 

to	  2030	  –	  scenario	  is	  
unimportant	  	  

at	  2100	  –	  scenario	  
uncertainty	  dominates	  
sampling/model	  
uncertainty	  



The	  source	  of	  uncertainty	  depends	  how	  far	  ahead	  
you	  look...	  
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Note:	  small	  ensembles	  in	  CMIP5	  may	  leading	  overesOmaOon	  of	  model	  component	  of	  
uncertainty	  	  	  
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And	  Uncertainty...	  

•  Due	  to:	  
– Natural	  variability,	  iniOal	  condiOons	  
– Model	  uncertainty	  
– Forcing	  (emissions)	  uncertainOes	  

•  Large	  ensembles	  are	  required	  in	  an	  asempt	  to	  
understand	  sources	  of	  uncertainty	  in	  
predicOons	  and	  projecOons	  


