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Historically, the probabilities of above and below are 0.33. Shifting the mean by half a standard-deviation and reducing the 
variance by 20% changes the probability of below to 0.15 and of above to 0.53.
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Linear Regression Models
• Given a set of GCM hindcasts or other predictors x(t) and a set of observations y(t),  

we can build a regression model to relate them. 
 
         y(t) = ax(t) + b + error residual  

• In this equation, x(t) is the “predictor” and y(t)  is the “predictand” 

• b is the mean bias 

• The coefficients a and b are estimated by minimizing the sum of squares of the residual error 
term 

• Regression models trained on GCM hindcasts vs historical data are called “MOS Correction” (for 
Model Output Statistics)  

• Generalized linear models can be used for nonlinear relationships 



Choice of predictor(s)
• Note that in this equation, x(t) does not have to be the same physical quantity as y(t). 

• Multiple linear regression is often used to get smaller error residual. 

• This leads to the main pitfall.  Fact: the error residual can be reduced to zero by 
including enough random predictors. How many? 

! If too many predictors are included, this is called overfitting.  

! Rule of thumb: need 5–10 samples per predictor 

• Raises the question of how to choose x(t)’s?  

! Golden rule: (1) predictors need to be chosen from physical considerations, and (2) 
the model error (or skill) needs to be estimated using independent data

y(t) = ax(t) + b + error residual



Choice of Predictand

• The predictand could be station-scale precip, yielding a 
statistical downscaling 

• It could even be a more-relevant variable like reservoir inflow, or 
crop production data 

! we can thus “tailor” the forecasts to specific users using 
regression models

yt = axt + b + error



Varieties of linear regression
! simple regression: a single predictor and a single predictand:"

 y = ax + b #

! multiple regression: two or more predictors, and a single predictand"
y = a0 + a1x1 + a2x2 + … + anxn   (case of n predictors)"
"
-- e.g., Principal Components Regression (PCR)#

! multivariate (pattern) regression: two or more predictors, two or more predictands"
y = Ax+b  (matrix A, vectors y,x,b)"
"
-- e.g., Canonical Correlation Analysis (CCA)



Choose the analysis to perform: PCR or CCA

SELECTING THE ANALYSIS

IRI Tool for MOS correction &  
downscaling seasonal forecasts

motivated by experience at Climate Outlook 
Fora (COFs) in Africa

ŷ = Ax + b
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Tailoring seasonal forecasts to reservoir inflow

Statistical  
Model

Photo: MWSS

Sea Surface Temperatures

Global Climate Model 

Historical Angat Inflow Observations

Forecast Inflow for OND 2002

RAINFALL

WINDS

Cross-Validated Model

B. Lyon (IRI) 
A. Lucero (PAGASA)
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Basic requirements for 
regression model fitting

A long historical time series of y (OND 
streamflow)!
A matching historical time series of x (e.g. 
September Nino3.4 SST)

yt = axt + b + error
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Sept 
Nino3.4!

x!
(C)

OND!
Inflow!

y!
(108 m3)

1981 26.5285 11.2799

1982 28.2017 5.009

1983 26.1886 5.7266

1984 26.4288 6.0093

1985 26.0805 8.5389

1986 27.352 12.021

1987 28.4074 7.8353

1988 25.7203 11.4695

1989 26.4601 4.4186

1990 26.9618 8.4525

1991 27.4065 3.6189

1992 26.6667 8.6925

1993 27.1416 11.1192

1994 27.2457 6.2394

1995 26.1964 14.5434

1996 26.4368 9.7648

1997 28.8881 2.2057

1998 25.6589 14.8412

1999 25.7636 11.5271

2000 26.3237 11.5968

2001 26.7461 8.394

2002 27.7331 4.9591

2003 27.1061 4.4899

2004 27.5801 8.2306

2005 26.7958 10.4253

2006 27.3255 7.8595

y:
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Cross-validated !
Hindcasts!

of OND Inflow
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Cross-validation = !
the year to be forecast is excluded from 
the data used to train the model used for 
that year, to mimic the eal-time forecast 

situation, and prevent statistical 
“overfitting”

Hindcast =!
forecast made for previous years



Leave-one-out cross-validation
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Error residuals of OND-inflow hindcasts

These residuals 
should be approx. 

normally 
distributed for 
the regression 
assumptions to 

be valid. 



How do we get the forecast PDF using 
regression models?!

Assume a normal distribution 
(transformation can be applied), with 
the mean given by the regression 
model!

Estimate the spread from the errors 
of past forecasts
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Historical 
distribution

Forecast  
distribution



How do we make probabilistic forecasts from this? 
Assume a normal distribution with mean given by 

regression prediction y(t) 

Forecast Inflow for OND 2002

Cross-Validated Model yf ∼ N(ŷ,σ2
errors)

σ2
errors =

1

N − 1

N�

i=1

(y − ŷ)2

yhat - result of regression model; y - obs data.  The forecast distribution yf is assumed to be 
normal with mean yhat and variance from the squared errors of the cross-validated hindcasts.  
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Probabilistic forecast of 2009 OND-inflow

Regression results: !
=================== !
Cross-validated anomaly correlation 
skill = 0.512!

2009 Forecast distribution mean = 
689!

2009 Forecast distribution 
standard deviation = 287!

Climatological distribution mean & 
st devn: 843,  333



Figure 10. Cross validation correlation skills in dry-season rice production of all ecosystem 0

at regional level(a) and provincial level (b). Seasonal precipitation anomalies in OND 
over 0N-25N, 110E-130E forecasted with ECHAM4.5-MOM (1981-2007) on 1st June 
were used as predictors of CCA. Provinces without rice production data are shaded.
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Jan–Jun (Dry Season) 
from prev. Jun 1 

Predictability of Philippines Rice Production 
from GCM hindcasts and published rice production data

ACC Skill of (a) Regional & (b) Provincial Production

1980–2007

Canonical correlation analysis of  
x=GCM predicted Oct-Dec 

precip, 
 y=Jan-Jun rice production 

y=Ax+b

Koide et al (2013, JAMC)



Statistical Hindcasts of  
Monsoon Onset Date

! Canonical correlation analysis of 
CMAP onset dates vs. July 
monthly SST field"
"

t : 1979, 1980, . . . , 2009.

y(t) = A.x(t) +C

y(t)

x(t)

r(ŷ(t), y(t))

! Cross-validated anomaly 
correlation skill

after Moron, Robertson & Boer (2009)



Seasonal predictability of daily rainfall statistics 
Seasonal Total Rain Day Frequency

Anomaly Correlation “Skill”
Cross-validated regression with observed tropical Indo-Pacific SST 

Jun–Sep 1901–2004

(a) Seas Total
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Fig. 1. Anomaly correlation skill of (a) JJAS seasonal total rainfall, (b) daily rainfall
frequency, and (c) mean daily intensity, as a function of simultaneous SST. Rainy days are
defined as days with > 1 mm rainfall.
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Fig. 1. Anomaly correlation skill of (a) JJAS seasonal total rainfall, (b) daily rainfall
frequency, and (c) mean daily intensity, as a function of simultaneous SST. Rainy days are
defined as days with > 1 mm rainfall.
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IMD 0.25-degree  
daily rainfall data

= x



ASMC/IRI Seasonal-Intraseasonal Climate Prediction 
and its Applications Workshop 
21st May—30th May 2007, Singapore

photo!



GCM Downscaled Precip. Anomaly Correlation Skill 
(from 2007 Singapore Workshop ASEAN participants)

Season Rainfall Total Number of Dry Days



Quantile regression
• The ultimate goal of regression analysis is to model the conditional 

distribution of the response variable given a set of explanatory 
variables - this is called Distributional Regression 

• Quantile regression is a reduced form in which the predictand is a 
quantile of the forecast PDF.  Logistic regression is well suited to 
predicting a probability rather than a measurable physical quantity
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1998; Hamill et al., 2004; Raftery et al., 2005; Roulston
and Smith, 2003; Stephenson et al., 2005), and these and
other ensemble-MOS methods have been compared in
an idealized setting in Wilks (2006b). Wilks and Hamill
(2007) examined the performance of the best of these
methods using ensembles taken from the GFS refore-
cast dataset (Hamill et al., 2006), concluding that non-
homogeneous Gaussian regression (Gneiting et al., 2005)
generally performed best for medium-range temperature
forecasts, and that logistic regression, a conventional sta-
tistical method, was generally best for daily temperature
forecasts and for medium-range precipitation forecasts.

Although probabilistic MOS forecasts based on logistic
regressions have been found to perform well, notable dif-
ficulties arise from the conventional approach to deriving
these equations. Specifically, separate prediction equa-
tions are conventionally derived to predict probabili-
ties corresponding to different predictand thresholds. For
example, different logistic regression equations would
generally be used to forecast probabilities that future pre-
cipitation will be no greater than 0, 2, 5, 10, 20 mm, etc.,
even though the same predictor variables (which could
be, for example, ensemble mean and ensemble standard
deviation) might be used in each of the forecast equa-
tions. One problem with this approach is that probabili-
ties for intermediate predictand thresholds (e.g. 15 mm
in the above example) must be interpolated from the
finite collection MOS equations. In addition, fitting sepa-
rate equations for different thresholds requires estimation
of a relatively large number of regression parameters in
total, which may lead to poor estimates unless the avail-
able training sample is quite large. However, the most
problematic consequence of separate MOS equations for
different predictand thresholds is that forecasts derived
from the different equations are not constrained to be
mutually consistent. For example, because of sampling
variations the forecast probability for precipitation at or
below 20 mm may be smaller than the forecast probabil-
ity for precipitation at or below 10 mm.

All of these problems can be circumvented by extend-
ing the logistic regression structure to allow prediction of
probabilities for all thresholds simultaneously, by includ-
ing the predictand threshold itself as one of the regression
predictors. In addition to providing smoothly-varying
forecast probabilities for any and all predictand thresh-
olds, the approach requires fitting substantially fewer
parameters as compared to many separate logistic regres-
sions, and ensures that nonsense negative probabilities
cannot be produced. This kind of extension to ordinary
logistic regression is not a new concept, and indeed is
an instance of the well-known statistical approach called
generalized linear modeling (McCullagh and Nelder,
1989). Section 2 outlines use of logistic regression in
the context of MOS forecasts, and the extension pro-
posed here. Section 3 describes the ensemble forecast
data used to illustrate the procedure, which are the same
GFS reforecasts (Hamill et al., 2006) used by Wilks and
Hamill (2007). Note, however, that the proposed structure

is equally applicable to MOS post-processing of conven-
tional single-integration dynamical forecasts. Section 4
presents representative forecast performance results, and
Section 5 concludes.

2. Logistic regression

Logistic regression is a nonlinear regression method that
is well suited to probability forecasting, i.e. situations
where the predictand is a probability rather than a mea-
surable physical quantity. Denoting as p the probability
being forecast, a logistic regression takes the form:

p = exp[f (x)]
1 + exp[f (x)]

(1)

where f (x) is a linear function of the predictor variables,
x,

f (x) = b0 + b1x1 + b2x2 + · · · + bKxK (2)

The mathematical form of the logistic regression
equation yields ‘S-shaped’ prediction functions that are
strictly bounded on the unit interval (0 < p < 1). The
name logistic regression follows from the regression
equation being linear on the logistic, or log-odds scale:

ln
[

p

1 − p

]
= f (x) (3)

Even though the form of Equation (3) is linear, stan-
dard linear regression methods cannot be applied to esti-
mate the regression parameters because in the training
data the predictand values are binary (i.e. 0 or 1), so
that the left-hand side of Equation (3) is not defined.
Rather, the parameters are generally estimated using an
iterative maximum likelihood procedure (e.g. McCullagh
and Nelder, 1989; Wilks, 2006a).

An important recent use of logistic regression has been
in the statistical post-processing of ensemble forecasts of
continuous predictands such as temperature or precipita-
tion (e.g. Hamill et al., 2004; Hamill et al., 2008; Wilks
and Hamill, 2007), for which the forecast probabilities
pertain to the occurrence of the verification, V , above or
below a prediction threshold corresponding a particular
data quantile q:

p = Pr {V ≤ q} (4)

In the ensemble-MOS context the primary predictor,
x1, is generally the ensemble mean, and to the extent that
ensemble spread provides significant predictive informa-
tion a second predictor x2 may involve ensemble standard
deviation, either alone (Hamill et al., 2008) or multiplied
by the ensemble mean (Wilks and Hamill, 2007).

To date, logistic regressions have been used for MOS
post-processing by fitting separate equations for selected
predictand quantile thresholds. For example, consider
probability forecasts for both the lower tercile (the data
value defining the boundary between the lower third and

Copyright  2009 Royal Meteorological Society Meteorol. Appl. 16: 361–368 (2009)
DOI: 10.1002/met

p is the probability of not 
exceeding quantile q 

This equation is linear on the 
logistic, or log-odds scale
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posed here. Section 3 describes the ensemble forecast
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GFS reforecasts (Hamill et al., 2006) used by Wilks and
Hamill (2007). Note, however, that the proposed structure
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tional single-integration dynamical forecasts. Section 4
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where the predictand is a probability rather than a mea-
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equation being linear on the logistic, or log-odds scale:

ln
[

p

1 − p

]
= f (x) (3)

Even though the form of Equation (3) is linear, stan-
dard linear regression methods cannot be applied to esti-
mate the regression parameters because in the training
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that the left-hand side of Equation (3) is not defined.
Rather, the parameters are generally estimated using an
iterative maximum likelihood procedure (e.g. McCullagh
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below a prediction threshold corresponding a particular
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by the ensemble mean (Wilks and Hamill, 2007).

To date, logistic regressions have been used for MOS
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This predictor choice yields slightly better, but, overall,
very similar forecasts, to equations using the untrans-
formed ensemble mean as the single predictor. Adding
the ensemble standard deviation or its square root, alone
or in combination with the ensemble mean, did not
improve either the separate-equation or the unified fore-
casts, a result consistent with the medium-range precip-
itation forecast results reported by Hamill et al. (2004)
and Wilks and Hamill (2007), although ensemble spread
has been found to be a significant logistic regression pre-
dictor for shorter lead times (Hamill et al., 2008; Wilks
and Hamill, 2007). Unification of the logistic regressions
for all forecast quantiles was achieved using the square
root of the forecast quantile as the sole predictor in the
function g(q):

g(q) = b2
√

q (9)

This choice for g(q) was entirely empirical, but yielded
substantially better forecasts than did g(q) = b2 q, and
only marginally less accurate forecasts overall than those
made using g(q) = b2

√
q + b3 q.

Thus, a full set of separate-equation forecasts (Equa-
tion (1)) for a given location and day required fitting as
many as 14 parameters (seven equations with two param-
eters each), whereas the unified approach (Equation (5))
required fitting only three parameters.

4. Results

4.1. Characteristics of the individual and unified
logistic regressions

Before presenting the forecast verification statistics, it
is worthwhile to illustrate the gains in logical consis-
tency and comprehensiveness that derive from using
the unified logistic regression framework. Figure 1(a)

shows Equation (6), evaluated at 6 selected climatologi-
cal quantiles, for the 23 November 2001 forecast made
for Minneapolis, and fitted using the full 25 year train-
ing sample, which pertains to accumulated precipita-
tion the period 28 November-2 December 2001. Here
f (x) = −0.157 − 1.122

√
xens , so that all of the regres-

sion lines are parallel, with slope b1 = −1.122 mm−1/2.
Here also g(q) = +0.836

√
q, and the positive regression

parameter b2 = 0.836 mm−1/2 ensures that the regres-
sion intercepts b0

∗(q) (Equation (7)) produce forecast
probabilities, given any ensemble mean, that are strictly
increasing in q. It is thus impossible for the specified
cumulative probability pertaining to a smaller precipita-
tion accumulation threshold to be larger than that for a
larger threshold.

In contrast, Figure 1(b) shows the six corresponding
individual logistic regressions, fitted separately for the
same six climatological quantiles, using Equation (3)
in each case. Here nothing constrains the six fitted
equations to be mutually consistent, and indeed they
clearly are not. The equations for q0.10 and q0.33 happen
to exhibit similar slopes, as do the equations for q0.50,
q0.67 and q0.95, whereas these two groups of regressions
are inconsistent with each other, and the equation for
q0.90 is clearly inconsistent with all of the others. As a
practical matter these equations would not yield jointly
nonsensical predictions for relatively small values of
xens, but for xens larger than about 3 mm (the point
at which the regression functions for q0.33 and q0.50

cross) the resulting forecast probabilities overall would be
incoherent. Indeed, unless the separate logistic regression
equations are exactly parallel, logically inconsistent sets
of forecasts are inevitable for sufficiently extreme values
of the predictor. Note that the plotted regressions in
Figure 1(a) have been chosen to match the threshold
quantiles for those fitted in Figure 1(b), but results in
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Figure 1. Logistic regressions plotted on the log-odds scale, for 28 November–2 December 2001, fitted using the full 25 year training length,
for Minneapolis. Forecasts from Equation (6), evaluated at selected quantiles, are shown by the parallel lines in Figure 1(a), which cannot yield
logically inconsistent sets of forecasts. Regressions for the same quantiles, fitted separately using Equation (3), are shown in Figure 1(b). Because
these regressions are not constrained to be parallel, logically inconsistent forecasts are inevitable for sufficiently extreme values of the predictor.

Copyright  2009 Royal Meteorological Society Meteorol. Appl. 16: 361–368 (2009)
DOI: 10.1002/met

362 D. S. WILKS
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p = exp[f (x)]
1 + exp[f (x)]

(1)

where f (x) is a linear function of the predictor variables,
x,

f (x) = b0 + b1x1 + b2x2 + · · · + bKxK (2)

The mathematical form of the logistic regression
equation yields ‘S-shaped’ prediction functions that are
strictly bounded on the unit interval (0 < p < 1). The
name logistic regression follows from the regression
equation being linear on the logistic, or log-odds scale:

ln
[

p

1 − p

]
= f (x) (3)

Even though the form of Equation (3) is linear, stan-
dard linear regression methods cannot be applied to esti-
mate the regression parameters because in the training
data the predictand values are binary (i.e. 0 or 1), so
that the left-hand side of Equation (3) is not defined.
Rather, the parameters are generally estimated using an
iterative maximum likelihood procedure (e.g. McCullagh
and Nelder, 1989; Wilks, 2006a).

An important recent use of logistic regression has been
in the statistical post-processing of ensemble forecasts of
continuous predictands such as temperature or precipita-
tion (e.g. Hamill et al., 2004; Hamill et al., 2008; Wilks
and Hamill, 2007), for which the forecast probabilities
pertain to the occurrence of the verification, V , above or
below a prediction threshold corresponding a particular
data quantile q:

p = Pr {V ≤ q} (4)

In the ensemble-MOS context the primary predictor,
x1, is generally the ensemble mean, and to the extent that
ensemble spread provides significant predictive informa-
tion a second predictor x2 may involve ensemble standard
deviation, either alone (Hamill et al., 2008) or multiplied
by the ensemble mean (Wilks and Hamill, 2007).

To date, logistic regressions have been used for MOS
post-processing by fitting separate equations for selected
predictand quantile thresholds. For example, consider
probability forecasts for both the lower tercile (the data
value defining the boundary between the lower third and
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the remainder of a distribution), q1/3, and upper tercile,
q2/3, of the climatological distribution of a predictand.
The two threshold probabilities, p1/3 = Pr {V ≤ q1/3)
and p2/3 = Pr {V ≤ q2/3) would be forecast using the
two logistic regression functions ln[p1/3/(1 − p1/3)] =
f1/3(x) and ln[p2/3/(1 − p2/3)] = f2/3(x). Unless the
regression functions f1/3(x) and f2/3(x) are exactly par-
allel (i.e. they differ only with respect to their intercept
parameters, b0) they will cross for some values of the pre-
dictor(s) x, leading to the nonsense result of p1/3 > p2/3,
implying Pr {q1/3 < V < q2/3} < 0. Other problems with
this approach are that estimating probabilities correspond-
ing to threshold quantiles for which regressions have not
been fitted requires some kind of interpolation, yet fitting
many prediction equations requires that a large number
of parameters be estimated.

All of these problems can be alleviated if a well-
fitting regression can be estimated simultaneously for all
forecast quantiles. A potentially promising approach is to
extend Equations (1) and (3) to include a nondecreasing
function g(q) of the threshold quantile q, unifying
equations for individual quantiles into a single equation
that pertains to any quantile:

p(q) = exp[f (x) + g(q)]
1 + exp[f (x) + g(q)]

(5)

or,

ln
[

p(q)

1 − p(q)

]
= f (x) + g(q) (6)

One interpretation of Equation (6) is that it specifies
parallel functions of the predictors x, whose intercepts
b0

∗(q) increase monotonically with the threshold quan-
tile, q:

ln
[

p(q)

1 − p(q)

]
= b0 + g(q) + b1x1 + b2x2 + · · · + bKxK

= b∗
0(q) + b1x1 + b2x2 + · · · + bKxK (7)

The question from a practical perspective is whether
a functional form for g(q) can be specified, for which
Equation (5) provides forecasts of competitive quality to
those from the traditional single-quantile Equation (1).

3. Data and unified forecast equations

Forecast and observation data sets used here are the same
as those used in Wilks and Hamill (2007). Ensemble
forecasts have been taken from the Hamill et al. (2006)
reforecast dataset, which contains retrospectively recom-
puted, 15-member ensemble forecasts beginning in Jan-
uary 1979, using a ca. 1998 (T62, or roughly 250 km hor-
izontal resolution) version of the U.S. National Centers
for Environmental Prediction Global Forecasting Model
(GFS) (Caplan et al., 1997). Precipitation forecasts for
days 6–10 were aggregated to yield medium-range
ensemble forecasts for this lead time, through Febru-
ary 2005. These forecasts are available on a 2.5° × 2.5°

grid, and nearest gridpoint values are used to forecast
precipitation at 19 U.S. first-order National Weather Ser-
vice stations: Atlanta, Georgia (ATL); Bismarck, North
Dakota (BIS); Boston, Massachusetts (BOS); Buffalo,
New York (BUF); Washington, DC (DCA); Denver,
Colorado (DTW); Great Falls, Montana (GTF); Los
Angeles, California (LAX); Miami, Florida (MIA); Min-
neapolis, Minnesota (MSP); New Orleans, Louisiana
(MSY); Omaha, Nebraska (OMA); Phoenix, Arizona
(PHX); Seattle, Washington (SEA); San Francisco, Cali-
fornia (SFO); Salt Lake City, Utah (SLC); and St Louis,
Missouri (STL). These subjectively chosen stations pro-
vide reasonably uniform and representative coverage of
the conterminous United States.

Probabilistic forecasts for 6–10 day accumulated pre-
cipitation were made for the seven climatological quan-
tiles q0.05 (5th percentile), q0.10 (lower decile), q0.33
(lower tercile), q0.50 (median), q0.67 (upper tercile), q0.90
(upper decile) and q0.95 (95th percentile); estimated using
the full 26 year observation data set. The verification
data were constructed from running 5-day totals of the
midnight-to-midnight daily precipitation accumulations.
The climatological quantiles were tabulated locally, both
by forecast date and individually by verifying station, in
order to avoid artificial skill deriving from correct ‘fore-
casting’ of variations in climatological values (Hamill and
Juras, 2006). For many locations and times of year, two
or more of these seven quantiles of 5-day accumulated
precipitation are zero, and in these cases only the sin-
gle zero quantile corresponding to the largest probability
was used in regression fitting and verification of fore-
casts. For example, if 25% of the climatological 5-day
precipitation values for a particular location and date are
zero, then both q0.05 and q0.10 are equal to 0 mm, but
only q0.10 and the five larger quantiles are used.

Again following Wilks and Hamill (2007), forecast
equations were fitted using 1, 2, 5, 15, and 25 years
of training data, and evaluated using cross validation
so that all forecasts are out-of-sample. Separate forecast
equations were fitted for each day of the 26 year data
period, using a training-data window of ±45 days around
the forecast date. To the extent possible, training years
were chosen as those immediately preceding the year
omitted for cross validation, and to the extent that this
was not possible the nearest subsequent years were used.
For example, equations used to forecast from 1 March,
1980 using 1 year of training data were fitted using data
from 15 January through 15 April, 1979.

These procedures were followed both for individual
logistic regressions, Equation (1), and the unified formu-
lation in Equation (5), although as noted above only one
quantile corresponding to zero accumulated precipitation
was forecast and verified in any one instance. Only a sin-
gle ensemble predictor, the square-root of the ensemble
mean, was used in the function f (x):

f (x) = b0 + b1

√
xens (8)
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This predictor choice yields slightly better, but, overall,
very similar forecasts, to equations using the untrans-
formed ensemble mean as the single predictor. Adding
the ensemble standard deviation or its square root, alone
or in combination with the ensemble mean, did not
improve either the separate-equation or the unified fore-
casts, a result consistent with the medium-range precip-
itation forecast results reported by Hamill et al. (2004)
and Wilks and Hamill (2007), although ensemble spread
has been found to be a significant logistic regression pre-
dictor for shorter lead times (Hamill et al., 2008; Wilks
and Hamill, 2007). Unification of the logistic regressions
for all forecast quantiles was achieved using the square
root of the forecast quantile as the sole predictor in the
function g(q):

g(q) = b2
√

q (9)

This choice for g(q) was entirely empirical, but yielded
substantially better forecasts than did g(q) = b2 q, and
only marginally less accurate forecasts overall than those
made using g(q) = b2

√
q + b3 q.

Thus, a full set of separate-equation forecasts (Equa-
tion (1)) for a given location and day required fitting as
many as 14 parameters (seven equations with two param-
eters each), whereas the unified approach (Equation (5))
required fitting only three parameters.

4. Results

4.1. Characteristics of the individual and unified
logistic regressions

Before presenting the forecast verification statistics, it
is worthwhile to illustrate the gains in logical consis-
tency and comprehensiveness that derive from using
the unified logistic regression framework. Figure 1(a)

shows Equation (6), evaluated at 6 selected climatologi-
cal quantiles, for the 23 November 2001 forecast made
for Minneapolis, and fitted using the full 25 year train-
ing sample, which pertains to accumulated precipita-
tion the period 28 November-2 December 2001. Here
f (x) = −0.157 − 1.122

√
xens , so that all of the regres-

sion lines are parallel, with slope b1 = −1.122 mm−1/2.
Here also g(q) = +0.836

√
q, and the positive regression

parameter b2 = 0.836 mm−1/2 ensures that the regres-
sion intercepts b0

∗(q) (Equation (7)) produce forecast
probabilities, given any ensemble mean, that are strictly
increasing in q. It is thus impossible for the specified
cumulative probability pertaining to a smaller precipita-
tion accumulation threshold to be larger than that for a
larger threshold.

In contrast, Figure 1(b) shows the six corresponding
individual logistic regressions, fitted separately for the
same six climatological quantiles, using Equation (3)
in each case. Here nothing constrains the six fitted
equations to be mutually consistent, and indeed they
clearly are not. The equations for q0.10 and q0.33 happen
to exhibit similar slopes, as do the equations for q0.50,
q0.67 and q0.95, whereas these two groups of regressions
are inconsistent with each other, and the equation for
q0.90 is clearly inconsistent with all of the others. As a
practical matter these equations would not yield jointly
nonsensical predictions for relatively small values of
xens, but for xens larger than about 3 mm (the point
at which the regression functions for q0.33 and q0.50

cross) the resulting forecast probabilities overall would be
incoherent. Indeed, unless the separate logistic regression
equations are exactly parallel, logically inconsistent sets
of forecasts are inevitable for sufficiently extreme values
of the predictor. Note that the plotted regressions in
Figure 1(a) have been chosen to match the threshold
quantiles for those fitted in Figure 1(b), but results in
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Figure 1. Logistic regressions plotted on the log-odds scale, for 28 November–2 December 2001, fitted using the full 25 year training length,
for Minneapolis. Forecasts from Equation (6), evaluated at selected quantiles, are shown by the parallel lines in Figure 1(a), which cannot yield
logically inconsistent sets of forecasts. Regressions for the same quantiles, fitted separately using Equation (3), are shown in Figure 1(b). Because
these regressions are not constrained to be parallel, logically inconsistent forecasts are inevitable for sufficiently extreme values of the predictor.
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1998; Hamill et al., 2004; Raftery et al., 2005; Roulston
and Smith, 2003; Stephenson et al., 2005), and these and
other ensemble-MOS methods have been compared in
an idealized setting in Wilks (2006b). Wilks and Hamill
(2007) examined the performance of the best of these
methods using ensembles taken from the GFS refore-
cast dataset (Hamill et al., 2006), concluding that non-
homogeneous Gaussian regression (Gneiting et al., 2005)
generally performed best for medium-range temperature
forecasts, and that logistic regression, a conventional sta-
tistical method, was generally best for daily temperature
forecasts and for medium-range precipitation forecasts.

Although probabilistic MOS forecasts based on logistic
regressions have been found to perform well, notable dif-
ficulties arise from the conventional approach to deriving
these equations. Specifically, separate prediction equa-
tions are conventionally derived to predict probabili-
ties corresponding to different predictand thresholds. For
example, different logistic regression equations would
generally be used to forecast probabilities that future pre-
cipitation will be no greater than 0, 2, 5, 10, 20 mm, etc.,
even though the same predictor variables (which could
be, for example, ensemble mean and ensemble standard
deviation) might be used in each of the forecast equa-
tions. One problem with this approach is that probabili-
ties for intermediate predictand thresholds (e.g. 15 mm
in the above example) must be interpolated from the
finite collection MOS equations. In addition, fitting sepa-
rate equations for different thresholds requires estimation
of a relatively large number of regression parameters in
total, which may lead to poor estimates unless the avail-
able training sample is quite large. However, the most
problematic consequence of separate MOS equations for
different predictand thresholds is that forecasts derived
from the different equations are not constrained to be
mutually consistent. For example, because of sampling
variations the forecast probability for precipitation at or
below 20 mm may be smaller than the forecast probabil-
ity for precipitation at or below 10 mm.

All of these problems can be circumvented by extend-
ing the logistic regression structure to allow prediction of
probabilities for all thresholds simultaneously, by includ-
ing the predictand threshold itself as one of the regression
predictors. In addition to providing smoothly-varying
forecast probabilities for any and all predictand thresh-
olds, the approach requires fitting substantially fewer
parameters as compared to many separate logistic regres-
sions, and ensures that nonsense negative probabilities
cannot be produced. This kind of extension to ordinary
logistic regression is not a new concept, and indeed is
an instance of the well-known statistical approach called
generalized linear modeling (McCullagh and Nelder,
1989). Section 2 outlines use of logistic regression in
the context of MOS forecasts, and the extension pro-
posed here. Section 3 describes the ensemble forecast
data used to illustrate the procedure, which are the same
GFS reforecasts (Hamill et al., 2006) used by Wilks and
Hamill (2007). Note, however, that the proposed structure

is equally applicable to MOS post-processing of conven-
tional single-integration dynamical forecasts. Section 4
presents representative forecast performance results, and
Section 5 concludes.

2. Logistic regression

Logistic regression is a nonlinear regression method that
is well suited to probability forecasting, i.e. situations
where the predictand is a probability rather than a mea-
surable physical quantity. Denoting as p the probability
being forecast, a logistic regression takes the form:

p = exp[f (x)]
1 + exp[f (x)]

(1)

where f (x) is a linear function of the predictor variables,
x,

f (x) = b0 + b1x1 + b2x2 + · · · + bKxK (2)

The mathematical form of the logistic regression
equation yields ‘S-shaped’ prediction functions that are
strictly bounded on the unit interval (0 < p < 1). The
name logistic regression follows from the regression
equation being linear on the logistic, or log-odds scale:

ln
[

p

1 − p

]
= f (x) (3)

Even though the form of Equation (3) is linear, stan-
dard linear regression methods cannot be applied to esti-
mate the regression parameters because in the training
data the predictand values are binary (i.e. 0 or 1), so
that the left-hand side of Equation (3) is not defined.
Rather, the parameters are generally estimated using an
iterative maximum likelihood procedure (e.g. McCullagh
and Nelder, 1989; Wilks, 2006a).

An important recent use of logistic regression has been
in the statistical post-processing of ensemble forecasts of
continuous predictands such as temperature or precipita-
tion (e.g. Hamill et al., 2004; Hamill et al., 2008; Wilks
and Hamill, 2007), for which the forecast probabilities
pertain to the occurrence of the verification, V , above or
below a prediction threshold corresponding a particular
data quantile q:

p = Pr {V ≤ q} (4)

In the ensemble-MOS context the primary predictor,
x1, is generally the ensemble mean, and to the extent that
ensemble spread provides significant predictive informa-
tion a second predictor x2 may involve ensemble standard
deviation, either alone (Hamill et al., 2008) or multiplied
by the ensemble mean (Wilks and Hamill, 2007).

To date, logistic regressions have been used for MOS
post-processing by fitting separate equations for selected
predictand quantile thresholds. For example, consider
probability forecasts for both the lower tercile (the data
value defining the boundary between the lower third and
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the remainder of a distribution), q1/3, and upper tercile,
q2/3, of the climatological distribution of a predictand.
The two threshold probabilities, p1/3 = Pr {V ≤ q1/3)
and p2/3 = Pr {V ≤ q2/3) would be forecast using the
two logistic regression functions ln[p1/3/(1 − p1/3)] =
f1/3(x) and ln[p2/3/(1 − p2/3)] = f2/3(x). Unless the
regression functions f1/3(x) and f2/3(x) are exactly par-
allel (i.e. they differ only with respect to their intercept
parameters, b0) they will cross for some values of the pre-
dictor(s) x, leading to the nonsense result of p1/3 > p2/3,
implying Pr {q1/3 < V < q2/3} < 0. Other problems with
this approach are that estimating probabilities correspond-
ing to threshold quantiles for which regressions have not
been fitted requires some kind of interpolation, yet fitting
many prediction equations requires that a large number
of parameters be estimated.

All of these problems can be alleviated if a well-
fitting regression can be estimated simultaneously for all
forecast quantiles. A potentially promising approach is to
extend Equations (1) and (3) to include a nondecreasing
function g(q) of the threshold quantile q, unifying
equations for individual quantiles into a single equation
that pertains to any quantile:

p(q) = exp[f (x) + g(q)]
1 + exp[f (x) + g(q)]

(5)

or,

ln
[

p(q)

1 − p(q)

]
= f (x) + g(q) (6)

One interpretation of Equation (6) is that it specifies
parallel functions of the predictors x, whose intercepts
b0

∗(q) increase monotonically with the threshold quan-
tile, q:

ln
[

p(q)

1 − p(q)

]
= b0 + g(q) + b1x1 + b2x2 + · · · + bKxK

= b∗
0(q) + b1x1 + b2x2 + · · · + bKxK (7)

The question from a practical perspective is whether
a functional form for g(q) can be specified, for which
Equation (5) provides forecasts of competitive quality to
those from the traditional single-quantile Equation (1).

3. Data and unified forecast equations

Forecast and observation data sets used here are the same
as those used in Wilks and Hamill (2007). Ensemble
forecasts have been taken from the Hamill et al. (2006)
reforecast dataset, which contains retrospectively recom-
puted, 15-member ensemble forecasts beginning in Jan-
uary 1979, using a ca. 1998 (T62, or roughly 250 km hor-
izontal resolution) version of the U.S. National Centers
for Environmental Prediction Global Forecasting Model
(GFS) (Caplan et al., 1997). Precipitation forecasts for
days 6–10 were aggregated to yield medium-range
ensemble forecasts for this lead time, through Febru-
ary 2005. These forecasts are available on a 2.5° × 2.5°

grid, and nearest gridpoint values are used to forecast
precipitation at 19 U.S. first-order National Weather Ser-
vice stations: Atlanta, Georgia (ATL); Bismarck, North
Dakota (BIS); Boston, Massachusetts (BOS); Buffalo,
New York (BUF); Washington, DC (DCA); Denver,
Colorado (DTW); Great Falls, Montana (GTF); Los
Angeles, California (LAX); Miami, Florida (MIA); Min-
neapolis, Minnesota (MSP); New Orleans, Louisiana
(MSY); Omaha, Nebraska (OMA); Phoenix, Arizona
(PHX); Seattle, Washington (SEA); San Francisco, Cali-
fornia (SFO); Salt Lake City, Utah (SLC); and St Louis,
Missouri (STL). These subjectively chosen stations pro-
vide reasonably uniform and representative coverage of
the conterminous United States.

Probabilistic forecasts for 6–10 day accumulated pre-
cipitation were made for the seven climatological quan-
tiles q0.05 (5th percentile), q0.10 (lower decile), q0.33
(lower tercile), q0.50 (median), q0.67 (upper tercile), q0.90
(upper decile) and q0.95 (95th percentile); estimated using
the full 26 year observation data set. The verification
data were constructed from running 5-day totals of the
midnight-to-midnight daily precipitation accumulations.
The climatological quantiles were tabulated locally, both
by forecast date and individually by verifying station, in
order to avoid artificial skill deriving from correct ‘fore-
casting’ of variations in climatological values (Hamill and
Juras, 2006). For many locations and times of year, two
or more of these seven quantiles of 5-day accumulated
precipitation are zero, and in these cases only the sin-
gle zero quantile corresponding to the largest probability
was used in regression fitting and verification of fore-
casts. For example, if 25% of the climatological 5-day
precipitation values for a particular location and date are
zero, then both q0.05 and q0.10 are equal to 0 mm, but
only q0.10 and the five larger quantiles are used.

Again following Wilks and Hamill (2007), forecast
equations were fitted using 1, 2, 5, 15, and 25 years
of training data, and evaluated using cross validation
so that all forecasts are out-of-sample. Separate forecast
equations were fitted for each day of the 26 year data
period, using a training-data window of ±45 days around
the forecast date. To the extent possible, training years
were chosen as those immediately preceding the year
omitted for cross validation, and to the extent that this
was not possible the nearest subsequent years were used.
For example, equations used to forecast from 1 March,
1980 using 1 year of training data were fitted using data
from 15 January through 15 April, 1979.

These procedures were followed both for individual
logistic regressions, Equation (1), and the unified formu-
lation in Equation (5), although as noted above only one
quantile corresponding to zero accumulated precipitation
was forecast and verified in any one instance. Only a sin-
gle ensemble predictor, the square-root of the ensemble
mean, was used in the function f (x):

f (x) = b0 + b1

√
xens (8)
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courtesy of Nicolas Vigaud, IRI

CFSv2 re-forecasts calibrated with extended logistic regression (Wilks 2009)

done separately for each gridpoint 
4-member ensemble averages, every day



Main points
• Seasonal forecasts are sometimes tailored, expressing the forecast in terms of a predictand of 

interest (e.g. rainfall frequency, monsoon onset date, drought probability, river flow, crop yield..).  

• This can also be a form of forecast calibration or statistical downscaling, according to the choice 
of predictand. 

• Regression models are the workhorse of forecast tailoring and calibration, with predictor 
(explanatory) variables taken from GCM ensemble-mean forecasts or antecedent climate conditions.  

• Usually a Gaussian or transformed Gaussian distribution is assumed. 

• Most regression approaches are limited to the conditional mean as a function of the predictor 
variables. The spread needs to be estimated separately.  

• Quantile regression using extended logistic regression has been used in weather forecasting 
and seems well suited to calibrating sub-seasonal forecasts.


