Advanced School and Workshop on Subseasonal to Seasonal (S2S) Prediction and Application to Drought Prediction, ICTP, Trieste, Nov 23 – Dec 4, 2015

Tailored Forecast Information

Andrew W Robertson awr@iri.columbia.edu

Outline

- 2. Examples of tailored forecasts
- 3. Quantile regression

1. Regression models for tailoring and calibrating seasonal forecasts

IRI Multi-Model Probability Forecast for Precipitation for December-January-February 2016, Issued October 2015

Displaying forecast probabilities

International Research Institute Historically, the probabilities of above and below are 0.33. Shifting the mean by half a standard-deviation and re for Climate and Society variance by 20% changes the probability of below to 0.15 and of above to 0.53. EARTH INSTITUTE | COLUMBIA UNIVERSITY

Linear Regression Models

• Given a set of GCM hindcasts or other predictors x(t) and a set of observations y(t), we can build a regression model to relate them.

y(t) = ax(t) + b + error residual

- In this equation, x(t) is the "predictor" and y(t) is the "predictand"
- b is the mean bias
- term
- Model Output Statistics)
- Generalized linear models can be used for nonlinear relationships

• The coefficients a and b are estimated by minimizing the sum of squares of the residual error

Regression models trained on GCM hindcasts vs historical data are called "MOS Correction" (for

- Multiple linear regression is often used to get smaller error residual.
- This leads to the main pitfall. Fact: the error residual can be reduced to zero by including enough *random* predictors. How many?
 - If too many predictors are included, this is called overfitting.
 - Rule of thumb: need 5–10 samples per predictor
- Raises the question of how to choose x(t)'s?
 - the model error (or skill) needs to be estimated using *independent data*

Choice of predictor(s)

y(t) = ax(t) + b + error residual

• Note that in this equation, x(t) does not have to be the same physical quantity as y(t).

Golden rule: (1) predictors need to be chosen from physical considerations, and (2)

Choice of Predictand $y_{\dagger} = ax_{\dagger} + b + error$

- The predictand could be station-scale precip, yielding a statistical downscaling
- crop production data
- \blacksquare we can thus "tailor" the forecasts to specific users using regression models

It could even be a more-relevant variable like reservoir inflow, or

Varieties of linear regression

- simple regression: a single predictor and a single predictand: y = ax + b
- multiple regression: two or more predictors, and a single predictand $y = a_0 + a_1x_1 + a_2x_2 + ... + a_nx_n$ (case of n predictors)

-- e.g., Principal Components Regression (PCR)

• multivariate (pattern) regression: two or more predictors, two or more predictands y = Ax+b (matrix A, vectors y,x,b)

-- e.g., Canonical Correlation Analysis (CCA)

IRI Tool for MOS correction & downscaling seasonal forecasts

motivated by experience at Climate Outlook Fora (COFs) in Africa

Principal Components Regression

PROJEC	T:	Evolopatoru	(V) vorio	blog			
		Training	data file:	Dies: —		\neg	
X input f	ile:	HULM-OUG	_OND500	2prcj	browse	1	Y input fil
Number First yea First yea Minimun Maximu	File Pi Pi AC Cher Dat	imate Predict Tools Custom roject: rogress: ctions: cking for a read suc inning ana	- ability Too ise Help missing cessful	100%	- Results V	/indow	
	Cal Opt:	culatíng c imizing cr	limatel oss-v	X EOFs	and the	chal	de
	Tra	ining peri	od: 1	EOF:	29 🛟		
	Con: Idei Don	Number structing ntifying c e!	of Mo 1 2 3 4 model atego		0.90 0.75 4N 0.60 0.45 0.30		X Spatial L
	•				0.15 2N 0.00 -0.15 -0.30 -0.45 0 -0.60 -0.75 -0.90		

B. Lyon (IRI) Tailoring seasonal forecasts to reservoir inflow A. Lucero (PAGASA)

Sea Surface Temperatures

Global Climate Model

Pressure 850 mb Lead Time 0.5 months

Historical Angat Inflow Observations

Statistical Model

Basic requirements for regression model fitting yt = axt + b + error

A long historical streamflow)

 A <u>matching</u> historical time series of x (e.g. September Nino3.4 SST)

A long historical time series of y (OND)

Charles Charles			
	Sept	OND	
1	Nino3.4	Inflow	
- 2	×	У	
	(C)	(10 ⁸ m ³)	
1981	26.5285	11.2799	
1982	28.2017	5.009	
1983	26.1886	5.7266	
1984	26.4288	6.0093	
1985	26.0805	8.5389	
1986	27.352	12.021	
1987	28.4074	7.8353	
1988	25.7203	11.4695	
1989	26.4601	4.4186	
1990	26.9618	8.4525	
1991	27.4065	3.6189	
1992	26.6667	8.6925	
1993	27.1416	11.1192	
1994	27.2457	6.2394	
1995	26.1964	14.5434	
1996	26.4368	9.7648	
1997	28.8881	2.2057	
1998	25.6589	14.8412	
1999	25.7636	11.5271	
2000	26.3237	11.5968	
2001	26.7461	8.394	
2002	27.7331	4.9591	
2003	27.1061	4.4899	
2004	27.5801	8.2306	
2005	26.7958	10.4253	
2006	27.3255	7.8595	

y:

X:

Cross-validated Hindcasts of OND Inflow

Hindcast = forecast made for previous years

Cross-validation =

the year to be forecast is excluded from the data used to train the model used for that year, to mimic the eal-time forecast situation, and prevent statistical "overfitting"

Leave-one-out cross-validation

Leave-one-out cross-validation

1951	Predict 1951	Training period					
1952	Training period	Predict 1952	Predict Training 1952 Period				
1953	Trai pei	ning riod	Predict 1953	Training period			
1954		Training period			Training Period		
1955		Trai per	ning riod		Predict 1955	Training period	

... then correlate 1951–2000.

Error residuals of OND-inflow hindcasts

These residuals should be approx. normally distributed for the regression assumptions to be valid.

How do we get the forecast PDF using regression models?

 Assume a normal distribution (transformation can be applied), with the mean given by the regression model

Estimate the spread from the errors of past forecasts

yhat – result of regression model; y = obs data. The forecast distribution y_f is assumed to be normal with mean yhat and variance from the squared errors of the cross-validated hindcasts.

How do we make probabilistic forecasts from this? Assume a normal distribution with mean given by regression prediction y(t)

Probabilistic forecast of 2009 OND-inflow

2009 Forecast distribution mean = 689

2009 Forecast distribution standard deviation = 287

Climatological distribution mean & st devn: 843, 333

Predictability of Philippines Rice Production from GCM hindcasts and published rice production data

ACC Skill of (a) Regional & (b) Provincial Production

Statistical Hindcasts of Monsoon Onset Date

 Canonical correlation analysis of CMAP onset dates vs. July monthly SST field

$$\mathbf{y}(t) = \mathbf{A}.\mathbf{x}(t) + \mathbf{C}$$

 $t: 1979, 1980, \ldots, 2009.$

 Cross-validated anomaly correlation skill

$$r(\hat{y}(t), y(t))$$

after Moron, Robertson & Boer (2009)

Leading Mode (CCA)

(a) July SST anomalies

20N -

10N -

10S -

90E

Sources of

Seasonal predictability of daily r

Seasonal Total

Anomaly Correlation "Skill" regression with observed tropical Indo-Pacific SST te Jun-Sep 1901-2004

Rain Day Frequency Mean Intensity X

daily rainfall data

ASMC/IRI Seasonal-Intraseasonal Climate Prediction and its Applications Workshop 21st May-30th May 2007, Singapore

GCM Downscaled Precip. Anomaly Correlation Skill (from 2007 Singapore Workshop ASEAN participants)

Season Rainfall Total

Number of Dry Days

for Climate and Society Earth Institute | Columbia University

- The ultimate goal of regression analysis is to model the conditional distribution of the response variable given a set of explanatory variables - this is called **Distributional Regression**
- Quantile regression is a reduced form in which the predictand is a quantile of the forecast PDF. Logistic regression is well suited to predicting a probability rather than a measurable physical quantity

$$\ln\left[\frac{p}{1-p}\right] = f(\mathbf{x}) \qquad p$$

Quantile regression

 $= \Pr \{V \leq q\}$

p is the probability of not exceeding quantile q This equation is linear on the logistic, or log-odds scale

GFS Day 6–10 Accumulated Precip Forecast for Minneapolis 28 Nov - 2 Dec 2001

x is GFS ensemble mean precip at nearest grid point, square rooted

p is probability of not exceeding various quantiles (cumulative probability)

training-data window of ±45 days around the forecast date

Individual regressions

$$\ln\left[\frac{p}{1-p}\right] = f(t)$$

Extended logistic regression

- Extended logistic regression alleviates this:

$$\ln\left[\frac{p(q)}{1-p(q)}\right] = f(\mathbf{x}) + g$$

Logistic regression lines obtained separately for each quantile can cross

g(q)

this specifies parallel functions of the predictors x, whose intercepts b0 * (q) increase monotonically with the threshold quantile, q

GFS Day 6–10 Precip Forecast for Minneapolis 28 Nov – 2 Dec 2001

Wilks (2009)

An S2S example

CFSv2 re-forecasts calibrated with extended logistic regression (Wilks 2009)

done separately for each gridpoint 4-member ensemble averages, every day

Main points

- of predictand.
- **Regression models** are the workhorse of forecast tailoring and calibration, with predictor
- Usually a Gaussian or transformed Gaussian distribution is assumed.
- variables. The spread needs to be estimated separately.
- and seems well suited to calibrating sub-seasonal forecasts.

• Seasonal forecasts are sometimes **tailored**, expressing the forecast in terms of a **predictand of** interest (e.g. rainfall frequency, monsoon onset date, drought probability, river flow, crop yield.).

• This can also be a form of forecast calibration or statistical downscaling, according to the choice

(explanatory) variables taken from GCM ensemble-mean forecasts or antecedent climate conditions.

• Most regression approaches are limited to the **conditional mean** as a function of the predictor

• Quantile regression using extended logistic regression has been used in weather forecasting

