

Climate Change Adaptation

Kaveh Madani
Centre for Environmental Policy
k.madani@imperial.ac.uk

Coupled Human-Natural Systems

Coupled Human-Natural Systems

Uncertain

Water Management?

- Water
- Food
- Energy
- Ecosystem
- Land
- Economy
- Society
- Politics

• ...

Studying Impacts vs. Adaptation

When Should We Adapt?

How Should We Adapt?

Ignoring Trade-offs?

Global Warming (Symptom)

Greenhouse gas emissions

Fossil Fuels (Source)

Reducing carbon dioxide by any means!

Imperial College London

Trade-offs

Energy Sources	Carbon footprint (g CO ₂ /kWh)	Water footprint (m³/GJ)	Land footprint (m²/GWh)	Cost (cent/kWh)
Ethanol from corn	81-85	78	10667-12500	2-4
Ethanol from sugar cane	19	99	9520	2-4
Biomass: wood-chip	25	42	14433-21800	4-10
Biomass: miscanthus	93	37	14433-21800	4-10
Solar thermal	8.5-11.3	0.037-0.780	340-680	4-10
Solar photovoltaic	12.5-104	0.042	704-1760	10.90-23.4
Wind: onshore	6.9-14.5	0.001	2168-2640	4.16-5.72
Wind: offshore	9.1-22	0.001	2168-2640	3.64-8.71
Wave and tidal	14-119	0.001	45-120	5-15
Hydropower	2-48	22	538-3068	3.25-12.35
Coal	834-1026	0.15-0.58	83-567	3.77-5.85
Oil	657-866	4.29-8.60	1490	8-10
Natural gas	398-499	0.1	623	5.46-11.96
Nuclear	9-70	0.42-0.76	63-93	4.55-5.46
Geothermal	15.1-55	0.005	33-463	1-8

Aggregate Performance

Some Common MCDM Methods

MCDM Method	Basis of Selection
Dominance (Fishburne, 1964)	Pair-wise comparison of alternatives to identify the non-dominated option
Maximin (Wald, 1945)	Maximizing the minimum satisfaction of all criteria
Lexicographic (Tversky, 1969)	The most desirable alternative for the most important criterion
TOPSIS (Hwang and Yoon, 1981)	Minimum distance from the ideal point
SAW (Churchman and Ackoff, 1945)	Highest weighted performance

Imperial College London

Example

MCDM Method	Basis of Selection
Dominance (Fishburne, 1964)	Pair-wise comparison of alternatives to identify the non-dominated option

Consultant	Cr_1	Cr_2	Cr ₃	Cr ₄	Cr ₅	
Consultant 1	0.1	4	5	4	0.10	
Consultant 2	0.15	2	2	4	0.05	
Consultant 3	0.15	1	2	3	-0.05	

Who Manages Water?

Multiple-Participants Multiple-Objective

Conflicts

Prisoner's Dilemma

Prisoner's Dilemma

- Lack of trust
- Self-optimizer vs. system-optimizer
- Free-riding and noncooperation is a dominant strategy

Cooperative resolution is not likely!

Climate Change Negotiations

Chicken

		Driver 2 S DS			
1.13	Swerve (S)	Tie, Tie	Lose, Win		
Driver 1	Don't Swerve (DS)	Win,Lose	Crash,Crash		

Chicken

- Little incentive for cooperation
- Free ride and doing the opposite
- One winner and one loser
- Sending strong signals
- Risk tolerance

Water Management Approaches over Time

Water Management Models over Time

Performance Evaluation

How Do You Make Decisions?

Decision	Outcome:	-\$1,000	-\$500	\$0	\$500	\$1,000	\$2,000
Α	Probability:	0.05	0.3	0.3	0.2	0.1	0.05
В	Probability:	0	0.4	0.3	0.2	0.1	0
С	Probability:	0.1	0.1	0.2	0.3	0.3	0

- Optimistic
- Pessimistic
- Expected value
- •

How Do You Make Decisions?

Decision	Outcome:	-\$1,000	-\$500	\$0	\$500	\$1,000	\$2,000
A	Probability:	0.05	0.3	0.3	0.2	0.1	0.05
В	Probability:	0	0.4	0.3	0.2	0.1	0
С	Probability:	0.1	0.1	0.2	0.3	0.3	0

- Optimistic
- Pessimistic
- Expected value

•

Robust Decision Making

Robust vs. Adaptable

Reservoir Operations

Rule Curve

Reliability

How often does your system fail?

Vulnerability

How significant are the likely consequences of failure?

Resiliency

How quickly can your system to a satisfactory state after a failure?

Trade-offs Again

How do you deal with the trade-offs between reliability, resiliency and vulnerability?

HEESA

Hydro-Environmental & Energy Systems Analysis

Providing Interdisciplinary & Sustainable solutions

k.madani@imperial.ac.uk