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The IPCC-ARS report states (WG1, Ch. 8):

“Volcanic eruptions [...] are the dominant natural cause of externally forced climate
change on the annual and multi-decadal time scales [...]”

“The volcanic RF [radiative forcing] has a very irregular temporal pattern and for
certain years has a strongly negative RF”

“Although the effects of volcanic eruptions on climate are largest in the 2 years
following a large stratospheric injection [...] there is new work indicating extended
volcanic impacts via long-term memory in the ocean heat content and sea level [...]”
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Simulated evolution of a volcanic aerosol cloud (MAECHAM-HAM)

First month after a Toba (100x Pinatubo) eruption:

S total

[1e-5 kg/kg]
and

[1e-6 kg/kg]

U. Niemeier, C. Timmreck, M. Boettinger (MPI-M and DKRZ)
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Figure 3 from Sigl et al., 2013 | Global volcanic aerosol forcing and Northern Hemisphere temperature
variations for the past 2,500 years
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Reconstructed long-term climate response to strong volcanic eruptions
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Figure 2 from Miller et al., 2012 | Onset of Little Ice Figure 5 from Winter et al., 2015 | Persistent drying
Age triggered by volcanism and sustained by phases over Mesoamerica and volcanic forcing.
sea-ice/locean feedbacks. Global stratospheric sulfate Volcanic radiative forcing (a), different estimates of

cumulative TOA radiative flux anomalies (b-d), annual time

aerosol loadings (B), 30-year running mean varve thickness in . - e
gs (B) v 9 series of speleothem GU-Xi-1 d'80, proxy for precipitation

Iceland sediment core HVT03-2 (D), Arctic Ocean sea ice E
recorded in a sediment core on the North Icelandic shelf (E). (E).



Delayed winter warming

a) DJF SAT, average pattern
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Figure 2 from Zanchettin et al., 2013 | Reconstructed surface (2 m) air temperature (SAT) and 500 hPa
geopotential height (Z500) anomalies at the peak of delayed winter warming (9th—13th post-eruption winters).



Simulated decadal climate response to tropical volcanic eruptions
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“[...] volcanoes play a particularly important part in the phasing of the multidecadal variability
through their direct influence on tropical sea-surface temperatures, on the leading mode of
northern-hemisphere atmosphere circulation and on the Atlantic thermohaline

circulation.” [Ottera et al., 2010, Nat Geosci]



Simulated decadal climate response to tropical volcanic eruptions
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Figure 12 from Ding et al., 2014 | AMOC response to the Krakatau eruption
simulated by different models to volcanic forcing. . Ensemble mean zonal integrated
Atlantic meridional overturning transport stream function estimated from the difference between the 2

year average (years 7-8) following the eruption minus the average during the 6 years prior to the
eruption



Dependency of forced response on background conditions

AMOC (Sv)
5 T

> N

© *

= A A

o 1 * 4 DA@

&

: #f *a] ©

g * 4o 20

= o) *

by o o

8 -1

a A +

— = = n -
15 16 17 18 19

pre-eruption state

Figure 15 from Zanchettin et al., 2012 | Role of
initial conditions. Scatterplot of average pre-eruption
values versus post-eruption anomalies (10-14 years after
eruption) of Atlantic Meridional Overturnin Circulation
index for 45 eruptions in the 5-member ECHAM5/MPIOM
ensemble of weak-TSI last millennium simulations.
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Figure 15 from Zanchettin et al., 2012 | Role of
initial conditions. Scatterplot of average pre-eruption
values versus post-eruption anomalies (10-14 years after
eruption) of Atlantic Meridional Overturnin Circulation
index for 45 eruptions in the 5-member ECHAM5/MPIOM
ensemble of weak-TSI last millennium simulations.

Tambora experiments (ECHAMS/MPIOM),
Zanchettin et al., 2013
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Adapted from Figures 4 and 5 from Zanchettin et al., 2013 |

1809 eruption

Evolution of selected climatic variables around the 1815
Tambora eruption in different climate simulation experiments.
Top: TOA net radiative flux anomaly; bottom: global surface air tem-perature
anomaly. Green dashed lines are the internal variability range
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Adapted from Figures 8 and 9 from Zanchettin et al., 2013 | Evolution of selected oceanic variables

around the 1815 Tambora eruption in different climate simulation experiments. Green dashed lines
are the internal variability range



Implications for the interpretation of reconstructed climate evolutions

a) aerosol optical depth (rec.) b) TOA clear-sky net radiative flux, PMIP3
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Figure 1 from Zanchettin et al., 2015 | Uncertainty in radiative forcing and climate response for the
early-19th-century eruptions. Different models and forcing inputs (¢) and internal climate variability (d) similarly
contribute to simulation-ensemble spread.



Implications for decadal climate predictability

“[...] moderate volcanic eruptions may reset a 20-year intrinsic variability mode in the North Atlantic”
[Swingedouw et al., 2015]
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Figure 1 from Swingedouw et al., 2015 | Simulated
AMOC changes and radiative forcing. (a) AMOC
maximum at 48°N: black: IPSL-CM5-LR historical, red: Bi-
Dec multi-model CMIP5 ensemble; blue: rest of CMIP5
ensemble. (b) external forcing (IPSL-CM5-LR)



Implications for decadal climate predictability
“[...] moderate volcanic eruptions may reset a 20-year intrinsic variability mode in the North Atlantic”
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Figure 1 from Swingedouw et al., 2015 | Simulated
AMOC changes and radiative forcing. (a) AMOC
maximum at 48°N: black: IPSL-CM5-LR historical, red: Bi-
Dec multi-model CMIP5 ensemble; blue: rest of CMIP5
ensemble. (b) external forcing (IPSL-CM5-LR)

a [Swingedouw et al., 2015]
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Figure 8 from Swingedouw et al., 2015 | Destructive
interference by Pinatubo. (a) Simulated AMOC evolution
under full forcing (black) and removing the 1991 Pinatubo
(green). (b) Different estimates of AMOC evolution showing
the rapid AMOC increase in the 90s



An ongoing attempt to constrain uncertainties: VolMIP (volmip.org)

Co-chairs: Davide Zanchettin, Claudia Timmreck, Myriam Khodri

VoIMIP is a CMIP-endorsed activity which defines a common protocol focused on multi-model
assessment of climate models‘ performance under strong volcanic forcing conditions.

Experiments focused on decadal response

Name Description Ens. Size x years

Idealized equatorial eruption corresponding to an initial
emission of 60 Tg of SO,,.

VolLongS60EQ 9x20

This eruption has a magnitude roughly corresponding
to the 1815 Tambora eruption, the largest historical
tropical eruption

Idealized high-latitude (60°N) eruption emitting 100 Tg

of SO, over five months. The eruption’s strength and
VoILongS1 00HL length roughly correspond to that of the 1783-84 Laki 9x20

eruption.

Early 19th century cluster of strong tropical volcanic

eruptions, including the 1809 event of unknown
VOlLOI‘IgC1 9thC location, and the 1815 Tambora and 1835 Cosiglina 3x50

eruptions.

VolShort20EQini/ 1991 Pinatubo forcing as used in the CMIPG6 historical 10 (5)x5
simulations, but as decadal prediction runs.

DCPP C3.4 Joint experiment with DCPP.




Concluding remarks

Multiple lines of evidence from climate reconstructions, simulations and observations
point to decadal climatic impacts of volcanic eruptions.

However, uncertainties and gaps of knowledge are large, as we have just started to
slot in the many different pieces of the puzzle.

scopus search statistics
350 T T T

volcanic, decadal, climate
volcanic, climate

300

250

200

150

number of articles

100 -

50 -

— — ]

0 — - '
1985 1990 1995 2000 2005 2010 2015
year

S




Discrepancy between simulated and reconstructed regional features

a) NCAR Reanalysis, 1950-2005
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Adapted from Figures from Zanchettin et al., 2015 | Discrepancy between simulated and
reconstructed Pacific North American index (PNA) during the early 19t century. PNA pattern in NCAR
Reanalyses (top) and comparison between reconstructed (Trouet and Taylor, 2010, black) and simulated (PMIP3
ensemble) index (bottom). The red line marks the discrepancy.



Implications for decadal climate predictability
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Claudia Timmreck, personal communication | Impact of volcanic forcing on seasonal skills of the
MiKlip prototype system for decadal climate predictions. Mapped are differences between skills at 2-5 lag
years from hindcasts without volcanic forcing and from the reference (full forcing) system. Red shading corresponds to
improved skills if volcanoes are removed.



