

The Arctic sea ice forecast horizon: how do we get there?

Jonny Day

Thanks to:

Steffen Tietsche, Mat Collins, Helge Goessling, Virginie Guemas, Sarah Keeley, Daniela Matei, Rym Msadek, Hiroaki Tatebe, M. Sigmond and **Ed Hawkins**

Sea ice variability

Can we predict the inter-annual variability?

Arctic Marine Access

An operational forecast system

Correlation skill for extent from retrospective forecasts

Including trend

Without trend

Sigmund et al. 2013, GRL

An operational forecast system

Correlation skill for extent from retrospective forecasts

Questions:

- 1) Are these features due to observation and/or model inadequacies?
- 2) Or, have we reached the limit of predictability?

Without trend

Sigmund et al. 2013, GRL

APPOSITE approach

AIMS:

- Quantify the limits of predictability of the Arctic environment on inter-annual timescales
- Determine the physical processes and mechanisms that determine Arctic predictability (in simulations)
- Provide recommendations on developments for operational prediction systems

Hierarchy for predictability studies

- Predictor-predictand relationships
 - e.g. Kapsch et al (2013,2014), Chevallier and Sales-Melia 2012.
- Perfect model predictability experiments
 - e.g. Griffies and Bryan (1997)
- Observing system experiments
 - see Day et al. (2014)
- Hindcast skill analysis
 - All seasonal forecast centres

(see Hawkins et al., 2015)

Methodology

'Perfect model' framework:

- Examine how well a GCM can predict itself (Griffies and Bryan, 1997; Collins, 2002).
- Predicting the real world with the same GCM is a harder problem
- The estimated 'perfect' skill is therefore an upper limit for the skill of that GCM to

Methodology

Ensemble design:

- 7 GCMs (HadGEM1, EC-EARTH2, MPI-ESM, GFDL-CM3, ECHAM6-FESOM, CanCM4 & MIROC5)
- Experiments started on 1st July in at least 8 different years from reference control simulation
- Range of initial conditions chosen to sample different states of the Arctic, e.g. neutral, high, low sea-ice
- Between 8 and 16 ensemble members, generated by making tiny perturbations to atmospheric initial conditions
- Run for 3 years

GCMs: mean state & variability

Day et al., (submitted; GMDD);updated from Tietsche et al., (2014; GRL)

Potential predictability estimates

Day et al., (submitted; GMDD);updated from Tietsche et al., (2014; GRL)

RMSE for September (3 month lead)

The Arctic observing System

- There is a large gap in the density of atmosphere and ocean observations in the polar regions.
- Satellite derived sea ice thickness products are becoming available but:
 - Altimeters have problems with thin ice (CryoSAT-2).
 - Radiometers can't distinguish between thick ice (>0.5m)(SMOS)
 - Gap in observations May-Oct.
- Which component is the largest source of predictability?

Data denial experiments

How much memory/predictability comes from the sea ice thickness?

- Using HadGEM1
- Rerun perfect model simulations started in January and July.
- Except, replace initial sea ice thickness conditions with model climatology, everything else left

Will sea ice thickness observations improve skill?

- Large seasonal difference in the impact of thickness initialisation.
- Jan start: very little impact.
- July start: Almost complete removal of skill.

Sea Ice fields (January start)

Sea Ice fields (July start)

Atmosphere (January start)

Increase in Jan MSLP error

Summary

The APPOSITE project is examined the predictability of the Arctic climate system:

- Potential for skillful predictions of sea-ice extent is 1-2 years for summer (longer in winter) and longer than 3 years for volume
- Model biases and lack of complete observations reduce the skill when predicting real world
 - Sea ice thickness particularly important for forecasts of summer sea ice extent.
 - Ocean state more important for winter ice edge.
- Unique dataset openly available at BADC

Discussion points

- Sea ice thickness initialisation is crucial for summer sea ice prediction.
- Assimilation of Cryosat-2/IceSAT should be a high priority in this area.
- Impact of winter sea ice thickness anomalies on atmospheric circulation is likely to be particularly sensitive to boundary layer parameterisation.
- Year of Polar Prediction (2017-2019) is an opportunity to develop capability in these areas.

Thank You!

Impact of Barents-Kara sea on

Prospects for longer term prediction

