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Satellite observations reveal a substantial decline trend in September Arctic sea ice extent
since 1979, which has often been attributed in large part to the increase in greenhouse gases
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Atlantic Meridional Overturning Circulation (AMOC)
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What is the role of low frequency AMOC variability
in the observed Arctic sea ice decline since 19797

[ime-series: AMO index and Arctic Surface Air Temperature (SAT)
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Impact of AMOC on Winter Arctic Sea Ice Variability
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GFDL CM2.1 1000-year control simulation
Winter Arctic sea ice in the Atlantic side declines with an intensified AMOC
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Similar spatial patterns suggest a possible role of the AMOC in the observed sea ice decline

* The anti-correlation between AMO and winter Arctic sea ice is also found in other CMIP3 models
(Day et al. 2012) and paleo records (Miles et al. 2014)



Tropical Fingerprint of AMOC Variations
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western boundary current and
subsurface warming in the TNA
Observed Tropical North Atlantic (TNA) SST is anti-correlated with TNA subsurface ocean temperature

Ocean temperature anomaly due to the weakening of AMOC from GFDL CM2.1 water hosing experiment

The anti-correlated variations is shown to be a fingerprint of AMOC variations, suggesting the AMOC was weakened
during the 70’s and strengthened since then

The AMOC induced anti-correlated TNA surface and subsurface temperature variations are also found in CMIP5 mode
(Wang and Zhang, 2013) and paleo records (Schmidt et al. 2012, PNAS)

xtra-tropical AMOC Fingerprint — Leading Mode of Upper Ocean Heat Cont
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similar southward AMOC propagation also exists in isopycnal coordinate model GFDL CM2G (Wang et al., 2015), and
ligh-resolution models GFDL CM2.5 (Zhang et al., 2011) and UK HiIGEM (M. Thomas, personal communication, 2015)



Schematic Diagram for the Mechanism of the Evolution of the AMOC Fingerprint
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slow propagation of the AMOC anomaly is crucial for the evolution and the enhanced decadal predictability of the AMO

erprint, consistent with recent decadal prediction studies that successfully predicted the warm shift in the North Atlantic
ng the mid 1990s by initializing a stronger AMOC at northern high latitudes (Robson et al., 2012; Yeager et al., 2012; Ya
2013; Msadek et al., 2014)
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Mechanisms for Low Frequency Variability of Summer Arctic Sea Ice Exte
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038 Regression of SIC on Atlantic Heat Transport

Impact of Atlantic heat transport on Arctic Sea Ice Mass at All Seasons
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Schematic of Main Gateways of Atlantic and Pacific Inflow Entering the Arctic
and Arctic Ocean Circulation
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HTgeo : Eastward Heat Transport across BSO; HT..: Northward Heat Transport across FSE
TEMPg,, : averaged Atlantic Water temperature at 200m along BSO
AMOC index : maximum of Atlantic meridional overturning streamfunction at 45°N in density space



Linkage with March Barents Sea SIE Variability

Annual Mean Inverted HTATLand HT 5o and March Barents Sea SIE Anomalies
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Observed March Barents Sea SIE and Sept'ember Arctic SIE Anhomalies

IN(Barents Sea SIE, Arctic SIE) = 0.69
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'he observed increase in HTgg is also found as a prime driver for the observed sea ice decline in Barents



Response of Atmosphere Heat Transport
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The Bjerknes compensation (Bjerknes, 1964) has been found at decadal time scale (Shaffrey & Sutton, 2!
Jungclaus & Koenigk, 2010; Farneti and Vallis, 2013)

At multidecadal/centennial time scale, the coherences among HT .y, , Arctic SHF, and inverted HT ., are r
higher than those at decadal time scale

Changes in HTyp),, are forced by anti-correlated changes in HT ,;, thus provide a negative feedback to
September Arctic SIE variations
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Summary and Discussions

"he AMOC variability and the associated Atlantic heat transport into the Arc
1ave played a significant role in the low frequency variability of summer Arctic Sl

summer Arctic SIE variations are significantly correlated with winter SIE variatio
n Barents Sea in both modeled results and observations, indicating the importe
ole of the Atlantic heat transport into the Arctic

AMOC fingerprints indicate a strengthening of AMOC since mid 70’s, consiste
with the observed decline of Arctic sea ice

\t low frequency, changes in atmosphere heat transport into the Arctic are forc
)y anti-correlated changes in the Atlantic heat transport into the Arctic, th
yrovide a negative feedback to changes in summer Arctic SIE

-nhanced Pacific heat transport into the Arctic and Positive Arctic Dipole also
sontribute to summer Arctic sea ice decline
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Very recent study identified a 7-year pause (2007-2013) in summer Arctic sec
ice decline (Swart et al. 2015). If the AMOC continues to weaken in the neal
future, there might be a longer hiatus in the September Arctic SIE decline



