

The challenge of modeling liquidbearing clouds in the Arctic and implications for DCV

Amy Solomon

Cooperative Institute for Research in Environmental Sciences, University of Colorado NOAA Earth System Research Laboratory, Boulder, Colorado

Arctic Amplification (AA)

- ◆ AA has been recognized since 1896 (Arrhenius 1896)
- ◆ Largest AA in winter Not due to Sea Ice-Albedo Feedback
- Large spread in climate models of AA (Holland and Bitz 2003)
- ◆ ~50% of observed trend can be due to natural variability (Kay et al. 2015)

Outline

- Causes of Arctic Amplification
 - Seasonal Redistribution of Heat
 - Role of Surface Inversions
- Role of Liquid-Bearing Clouds
- Greenland Example to Illustrate the Impacts of Liquid-Bearing Clouds Beyond Cloud Radiative Forcing
- Challenge for CLIVAR?

Seasonal Redistribution of Heat

Arctic Mean From 13 CMIP3 A1B-20C3M Simulations

(Boé et al. 2009, J. Climate)

Seasonal Redistribution of Heat

From 13 CMIP3 A1B-20C3M Simulations

Role of Surface Inversions

Sensitivity of AA to Inversion Strength (CO2 Doubling Expts)

Climate Model Response to a Doubling of CO2 (GFDL CM2.0)

(All Figures In Units of K) (Lu and Cai 2009, GRL)

Climate Model Response to a Doubling of CO2

Summertime
Reflection of
SW Radiation
by Liquidbearing Clouds
Compensate
for Warming
due to the Sea
Ice-Albedo
Feedback

(All Figures In Units of K) (Lu and Cai 2009, GRL)

Climate Model Response to a Doubling of CO2

Wintertime
Downward LW
Radiation by
Liquid-bearing
Clouds
Responsible for
~40% of HighLatitude
Warming

(All Figures In Units of K) (Lu and Cai 2009, GRL)

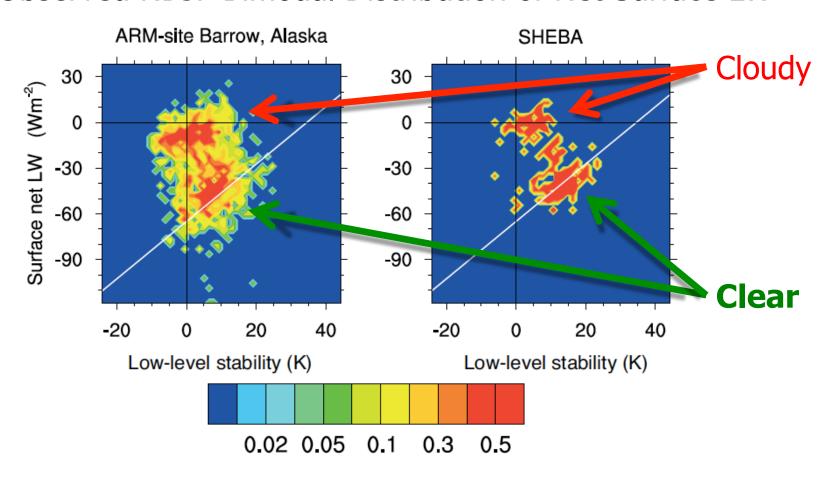
Role of Ocean Fluxes

Climate Model Response to a Doubling of CO2

Loss of
Wintertime
Ocean Heat
Storage
Compensated
by Increased
Turbulent
Fluxes

(All Figures In Units of K) (Lu and Cai 2009, GRL)

Role of Clear-Sky Fluxes


Climate Model Response to a Doubling of CO2

Largest
Wintertime
Tendencies
due to
Changes in
Atmospheric
Moisture and
Temperature

(All Figures In Units of K) (Lu and Cai 2009, GRL)

Observed NDJF Bimodal Distribution of Net Surface LW

(Pithan et al. 2014, Climate Dynamics)

Liquid-Bearing Cloud Biases in Climate

Models

11 NDJF CMIP5 1990-1999 Historical Runs Ocean North of 64°N

(Pithan et al. 2014, Climate Dynamics)

Going Beyond Radiative Forcing — Greenland Example

Melting of the Greenland Ice Sheet: July 2012

Melting due to thin mixed-phase stratocumulus

(Bennartz et al. 2013, Nature)

Going Beyond Radiative Forcing

Surface Energy Budget Terms at Summit, Greenland 10-13 July 2012

Going Beyond Radiative Forcing

Stratocumulus over The Ice Sheet

Going Beyond Radiative Forcing

Radiation Doesn't See Cloud Ice and Liquid

Going Beyond Radiative Forcing: Impact on Cloud Liquid Water

Going Beyond Radiative Forcing: Impact on Atm Structure and Surface

Fluxes

(Solomon et al. 2015)

Going Beyond Radiative Forcing: Impact on Ice Temperatures

Summary

- Focus of this talk has been on local processes but there are just as many issues related to extrapolarpolar interactions
- Issues partly related to sparsity of observations
- In order to improve our understanding of AA we need to focus on the integrated impact of fast processes
- Need a focused idealized model study to sort out these issues

Extra Slides

Oct-Jan 1989-2009 trends Using ERA-Interim

