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Atlantic multi-decadal variability: More marine
proxy data needed to understand its true nature

Principle component analysis of five coral records from the tropical Atlantic

Instrumental AMV in blue : ]
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Some insights on the AMV from
instrumental data and climate models

1. Atmospheric forcing of ocean variability
How consistent is the slab ocean — AGCM interpretation of AMV?

2. Ocean forcing of atmospheric variability?

3. Implications for climate prediction




Atlantic multi-decadal variability warm phase
and negative winter NAO

Composite analysis of 10yr running mean AMV-index, 1870-2009
SST (JFM °C) SLP (JFM, Pa)
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The Stochastic null hypothesis

e NEMO OGCM - 0.5x0.5 deg. globally, 46 vertical levels
* Synthetic white noise NAO time series
* NAO-patterns of anomalous fluxes
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Oceanic response to stochastic NAO not AR-1

Power Spectrum of AMOC 30°N
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Reconstructed fluxes prove Bjerknes’ conjecture: on decadal
timescales ocean drives mid-latitude SST and turbulent heat fluxes

Annual mean indices:
Atlantic multi-decadal variations SST and turbulent heat flux
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2. Ocean forcing of atmospheric variability?

Old question being revisited by new work:

* Higher horizontal resolution, sharp SST fronts, high-
frequency SST data (e.g., Minobe et al. 2008,
Nakamura et al. 2004, Taguchi et al. 2012, Zhou et al.
2015)

* Role of stratosphere-troposphere interaction in the
atmospheric response to large-scale SST changes.




Stratospheric resolving model captures response
to warm AMV conditions (1951-1960)

(A) Obs. SST anomaly (1951-1960) (B) NCEP 1000 hPa GPH

Observed o g NCEP/NCAR
70N 3<,' .
SST o] Geopot. height
. ONm 0
anomalies anomalies
(C) High-top response, 1000 hPa GPH (D) Low-top response, 1000 hPa GPH
High-top Low-top
simulated simulated
response response
(MAECHAMS5) (MAECHAMS5)

Omrani et al. 2014




ECHAM6/MPIOM stratosphere Resolving model
reproduces warm phase — negative NAO relation

Winter (JFM) composite analysis of unfiltered AMV-index -
SST 500 hPa GPH
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Warm phase — Atmospheric pattern largely

driven by North Atlantic SST
500 hPa GPH (JFM)
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Warm phase — Stratospheric polar vortex weakening
largely driven by North Atlantic SST
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Schematic of the atmospheric response to
extra-tropical North Atlantic SST
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3. Implications for climate prediction




Conceptual view of the prediction problem

The differing representations of predictable dynamics
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Sources of error and prediction skill

* Climate predictability arises from interaction
of slowly varying components of the climate
system with the atmosphere

* Misrepresentation of these interactions:
— Errors in the mean state and variability
— Strong forecast drift that degrades forecast skill
— Renders models poor tools in estimating
predictability

* Coupled data assimilation provides a pathway
__ forward




Ability of an EnKF data assimilation to constrain
system with limited data

Subpolar Gyre Strength from SST anomaly assimilation
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Summary

. The slab ocean — AGCM interpretation of AMV
not consistent with current understanding

Observations and model indicate warm AMV
drives negative NAO

— stratosphere playing a key role
— Cold AMV response is less well simulated

— Supported by several studies (Omrani et al.
2014,2015; Peings and Magnusdotir 2014,2015;
Gastineau et al. 2014; Frankignoul et al. 2015)
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