Interference Between Forced and Unforced Climate Variability: Implications for the North Atlantic and the Arctic

Neil F. Tandon & Paul J. Kushner University of Toronto

November 17, 2015

AMOC-NASST Relationship

(AMOC = Atlantic meridional overturning circulation NASST = North Atlantic sea surface temperature)

Models are highly inconsistent!

Historical simulations (1850-2005) from CMIP5, Linearly detrended

Figure 10. Lead-lag correlation between the AMO and the AMOC indices in CMIP5 historical simulations. The unit of value in x axis is year. Positive (negative) years in x axis mean the AMOC leads (lags) the AMO. The dash lines are the 80% confidence level.

Zhang and Wang, *JGR* (2013) cf. Medhaug and Furevik (2011)

Models are highly inconsistent!

Historical simulations (1850-2005) from CMIP5, Linearly detrended

Figure 10. Lead-lag correlation between the AMO and the AMOC indices in CMIP5 historical simulations. The unit of value in x axis is year. Positive (negative) years in x axis mean the AMOC leads (lags) the AMO. The dash lines are the 80% confidence level.

Zhang and Wang, *JGR* (2013) cf. Medhaug and Furevik (2011)

4

Key question #1: Why do models seem so inconsistent in how they represent the AMOC-NASST relationship?

Our answer: Forced variations are interfering with unforced variations.

Key question #2: Does such interference occur in the Arctic?

Our answer: Apparently yes, but the effect is more regional, e.g. East Atlantic Pattern's relationship to Arctic sea ice.

Role of External Forcing

CESM1 Large Ensemble

(Described in Kay et al., *BAMS*, 2014)

29 realizations 1920-2005

ensemble mean
CMIP5 mean
ERSSTv3

Possible role of aerosols?

Implications for NASST persistence

Tandon and Kushner, J. Clim. (2015)

CESM1 Large Ensemble

individual realizations
 correlation between
 ensemble means

Implication for decadal predictability: Don't expect the AMOC to tell you what will happen to NASST!

Similar behaviour in other models.

Implications for the Arctic?

1000-year control run of GFDL CM2.1

d. Corr. Map: SAT on AMOC index e. Corr. Map: Sea-ice Conc. on AMOC index

Mahajan, Zhang, Delworth, J. Clim. (2011)

Key point: Fairly weak AMOC influence on Arctic sea ice.

(positive phase = cyclone over Labrador Sea)

Unforced "Subpolar Gyre" effect:

<u>positive EAP</u> \rightarrow stronger SPG \rightarrow warmer Labrador Sea/colder Arctic \rightarrow ice loss in Labrador Sea/ice gain in Arctic

Forced "Arctic melt" effect:

forced warming \rightarrow ice loss in Arctic \rightarrow equatorward shift of Atlantic eddy-driven jet \rightarrow positive EAP

EAP-SIC Correlation

(CanESM2, Feb-Mar-Apr averages)

(SIC = sea ice concentration thick contour = 95% statistically significant)

Summary

- External forcing can interfere with internally generated covariations of the AMOC and NASST.
- There is also evidence of forced-unforced interference in the relationship between the East Atlantic Pattern and Arctic sea ice.
- Thus, one needs to be careful if attempting to predict changes in SST and sea ice based on circulation changes in the atmosphere and ocean.
- Large initial-condition ensembles are extremely helpful for separating forced and unforced effects. (Linear detrending is **not** the way to go!)

N. F. Tandon and P. J. Kushner, 2015: Does external forcing interfere with the AMOC's influence on North Atlantic sea surface temperature? *J. Climate*, 28, 6309-6323, doi:10.1175/JCLI-D-14-00664.1.

Extra slides

Evidence from Other Models

Historical simulations (1860-2005) detrended annual mean

Pre-industrial controls (146-year chunks) detrended annual mean

Tandon and Kushner, J. Clim. (2015)

Role of the Subpolar Gyre

SPG index correlation with barotropic streamfunction

A. Born

Role of the Subpolar Gyre

Regional Effects

AMOC-NASST simultaneous correlation (Annual mean)

Historical simulations

Pre-industrial controls

Effect of External Forcing

Implications for Predictability

CESM1 Large Ensemble

Interference of Forced Variations?

AMOC & Extratropical NASST

Role of Atmospheric Circulation

Figure 2. (top) Winter and (bottom) summer sea ice concentration (color shading; % per decade) and sea level pressure (contours; hPa per decade) trends during (a) and (d) 1979–1993, (b) and (e) 1993–2007, and (c) and (f) 1979–2007. The contour interval for sea level pressure is 1 hPa per decade, with negative values dashed, and the zero and positive values solid. Note that 2006 is the last year of data in summer.

Role of the Subpolar Gyre

