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Summary Slide

The PDO is not a physical mode but rather is the sum
of several physical processes

» North Pacific SST integrates effects of extratropical weather
noise and particularly of ENSO (“reddened ENSQO”)

= Re-emergence brings back anomalies in succeeding winters (no
summer/fall PDO)

» KOE variations provide more persistent SST anomalies and
perhaps much of the predictable atmospheric response

Need to differentiate PDO-forced signal from PDO-
correlated signal (for impacts and reconstructions)

CGCMS capture some aspects of PDO but with balance
of processes more independent of Tropics than observed

We need to be careful when we reduce North Pacific
decadal variability to any single index



PDO Time Series
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Associated with climate,
ecosystem and hydrologic
fluctuations

Develop a process understanding -
key to prediction and applications

PDO

Leading pattern of monthly
SST variability in the North
Pacific (> 20°N), monthly

global mean SST removed

Defined from North Pacific
SSTs but global in Nature



PDO resulting from
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anomalies that resemble
the PDO




The atmosphere forces the PDO both locally,

NDJ NPI correlated with FMA SST NPI vs. PDO cross correlation
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The atmosphere forces the PDO both locally,
and remotely through ENSO teleconnections

(“atmospheric bridge”)

NDJ NPI correlated with FMA SST

NPI leads

NPI vs. PDO cross correlation

PDO leads
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Midlatitude Ocean Processes |

West
Pacific SST  sea surface Height (33°-35°N)
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BUlldlng the PDO Dynamical Modes
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Example: was 1976/77 a coherent North Pacific regime shift?

b) 1957 1976/1977 1996

1977-1996 minus 1957-1976




Decadal hindcast
skill is low (blue) in
PDO region:
ENSO is noise for
decadal forecasts

Skill of LIM and CMIP5
CGCM decadal hindcasts,
1960-2000 (Newman
2013)
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Climate Model Simulations and
Paleoclimate Reconstructions of the PDO

* Most CMIP5 models:

» Have a recognizable PDO pattern but not within sampling
uncertainty

= Qverestimate variability in the KOE region

» Underestimate the connection to the leading EOF (ENSO) in the
tropical Pacific

= Qverestimate the connection to the second EOF (ENSO) in the
tropical Pacific

» The observed PDO spectra can be simulated by the LIM

» Paleo reconstructions of the PDO differ widely prior to
the recent period on which they were trained



PDO representation in CGCMs

Taylor diagram compares
PDO determined from

HadISST, 1901-2014, to

* CMIP3: cyan

+ CMIP5: red

+ CESM-LE: yellow

» Black dots: 50-yr Monte
Carlo subsampling

+ Triangles: other data sets

Key results:

* Models reproduce a PDO
EOF but none do it well

+ Little change from CMIP3 to
CMIP5
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ENSO-PDO relationship in CMIP5
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PDO spectra: no
obvious peak but has
spectral slope, for
both observations and
LIM

PDO paleo
reconstructions
seemingly too weak,
poor agreement



PDO wavelet spectra from
4000 years of LIM 128
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How does 1976/77 PDO transition compare to
other transitions 1943/44 and 1998/19997

: | [1977/1996 —
1957/1976]
[1944/1963 —

1924/1943] * (-1)

< [1999/2013 -
S 1984/1998]* (-1)

-0.5 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5




Standardized Deviations (Normalized)
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Summary View
MECHANICS OF THE PACIFIC DECADAL OSCILLATION

" TYPES OF CONNECTIONS
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Implications of this view for PDO “best practices”

 Differentiate PDO-predicted signal from PDO-correlated signal

« Take care when representing multivariate climate system with a
single index (paleoreconstruction issues? are regime shifts an

artifact?)
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