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* Prescribing SSTs for climate attribution and prediction.

 Method description.
* Applications to past regional climate.
* Key points.
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e But coupled models struggle
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with tropical SST trends. 4
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model simulation of :
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Using the time history of observed SSTs in
atmospheric GCMs give us insight into
continental hydroclimatic trends.

What other insight can we get from observed
SSTs?



Separating Short- and Long-Term Variability
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e SST decadal variability includes forced and inojcernal
parts.

* Can we estimate the long-term variability associated
with global warming, S,,, from obs?

* Can we use S, for attribution and near-term
prediction? (Hoerling et al. 2011, Bichet et al. 2015)



 Observed SST decomposed into long term (GW) and residual:

— Residual includes internal variability and
S(X, t) SGW T Sresidual short-term forcings

* Si modelled as time-independent pattern /(x) scaled by time-
dependent gain g(7):
Sow = h(x) g(?)

* g(?)is low-pass filtered global mean SST from obs (Bichet et al.
2015) or from CMIP5 (Bichet et al. in prep)

— Linear, cubic and Thompson et al. methods tested ... Cubic used.
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* h(x): regression of Hurrell SST/SICE on g(¢)




Testing our estimate of S, with large

ensembles
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* Shown is spatial correlation of /(x) of individual
large- ensemble members with remaining
members’ ensemble mean A(x).

* Using recent improvements, our estimate now
captures over 70% of spatial variance of S
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* Shown is spatial correlation of /(x) of individual
large- ensemble members with remaining
members’ ensemble mean A(x).

* Using recent improvements, our estimate now
captures over 70% of spatial variance of S



Global Warming Pattern of SST

AMIP SST Trends 1980-2010

E >

Hurrell SST trends

GW SST Trends 1980-2010

@‘“ .

\% %'
U
e t_fﬂ“”" P—'ﬂi _qf >

The pattern of S, is also from Hurrell SST

* Sy pattern is from obs (20™ century Hurrell SST). S, scale is

from models [CMIP5 g(t)].
* S features broader warming, relatively warm SH, coastal hot
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spots no PDO trend (reduced east Pacific cooling), relatlvely weak
AMO trend (reduced North Atlantic warming).



Scy forseaice

a) AMIP: Hurrell SICE 1980-2010
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Using S,y IN Practice: AGCM Experiments

 CAMS5, 209, 1980-2010, historical forcing, N= 10.
e AMIP: Observed SST and sea ice
* GW: Our estimate of GW SST and sea ice (S;).

* We now survey regions and variables where
1. AMIP resembles observations and

2. Where trends are consistent across ensemble
(signal-to-noise > 1).
e Gray shading indicates signal-to-noise<1.

 Trends aren’t typically locally significant for this short
period.



1980-2010 JFM Temperature

CRU AMIP
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 AMIP simulation captures basic obs pattern.
 GW signal shifts peak warming to central Eurasia

 Western North American cooling attributable to PDO-
related East Pacific cooling.

PDO = Pacific Decadal Oscillation



1980-2010 JFM Precipitation

b) AMIP

* AMIP captures
some of CRU.

* Internal
variability,
short-term
forcing drive
much of recent
precip trend.
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1980-2010 JFM Snow Cover Fraction

a) GlobSnow b) MERRA
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North American and
Scandinavian trends
reflect GW.

Eurasian trend
modulated by internal

- variability.
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1980-2010 JAS African Precip

* AMIP captures
observed trends.

Increase in precip in
central Africa
attributable to AMV+,
whether forced or
internal.

GW signal in West
Africa is a drying that

opposes some of the
AMV effect.
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Summary

We test and extend Hoerling et al.”s method to
estimate the global warming part of SST
variability in observations.

We use the resulting S, in AGCMs to attribute
regional responses in various regimes (high
latitude temperature, snowcover, tropical precip,
etc.)

Much of the North American winter hydroclimate
signal appears to be linked to PDO - internal
variability.

Recent wetting trends in sub-Sahel Africa run
counter to long-term GW signal.



Why not use coupled models to
estimate 5., ?

Hurrell SST Sg, CMIP5 MMM S,

A g

M =

. (arbitrary colour scale)

* CMIP5 multimodel mean S, is large in the tropics and
the North Atlantic.

* |t's quite distinctive from the pattern we get from obs.



Key Points

We can reliably estimate the observed pattern of long-
term (>70vy) SST response to global warming.

This pattern allows us to attribute GW related
component of past hydroclimatic trends.

We are also able to use the same method for regional
climate projections of the forced component (Bichet, 5
p.m. Thursday)

This pattern of observed long-term SST trends is
different from those simulated in coupled ocean
atmosphere models

There is a lot of insight to be gained on forced DCV
from existing SST observations!
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Initial Tests of the Method

h(x) using g, (7)
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e Spatial patterns obtained from different methods are similar.
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* The gain factor affects the timing of the hydroclimate response to
the SST forcing.



1980-2010 JFM Precipitation
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* Increased precip in northern South America
attributable to PDO-related variability.



Large Ensemble Evaluation of Method
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* Internal variability interferes with our ability to
confidently estimate S, from observations.



Preliminary Results on Near Term
Climate Projections

* We have extended the GW integrations to
2010-2040 and expect the forced trends to be
quite similar to the past GW trends, by
construction.

* The trends we obtain form an interesting
point of comparison to CMIP5 trends.
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* More North
American
drying

* Less South
American
drying

* West African
drying

* |Indian
subcontinent
drying




Conclusion/Discussion

 The framework could help quantify how internal
variability of SSTs in PDO and AMO interferes with the
hydroclimate response to global warming.

 We can also tweak the timing of regional responses
based on different g(?).

 We are exploring this method for purposes of decadal
prediction.

* Extensions of framework: moving beyond prescribed
SSTs, distinguishing different radiative forcings (ANT vs.
historical), applying to other models (CanESM, etc.).



