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time-varying observed SSTs. We did this mainly to reduce

sampling uncertainty, given the evidence from previous

studies (e.g., Compo and Sardeshmukh 2009) that the
direct effect of the radiative forcings in such runs (as

opposed to their indirect effect through the SSTs) is minor

on the variables considered here.
As climate change indicators over our land masses of

interest (in the region 20! to 75!N, 170!W to 40!E), we
chose precipitation and near-surface (2-m) air temperature,

not only for their intrinsic importance but also for their

impact on simple measures of drought such as the Palmer
Drought Severity Index (PDSI; Palmer 1965). We restric-

ted our focus to the changes over land, both because of the

better availability of observations over land, and to perform
fair comparisons of the coupled simulations with the

uncoupled simulations in which the observed boundary

conditions (i.e. the SSTs) were prescribed over the oceans,

but not over land.

3 Observed and simulated regional climate trends

The observed 50-year trends of annual-mean surface air
temperature and precipitation over the Atlantic Rim land

masses are shown in Fig. 1. The temperature trends were

derived from an unweighted average of observations
compiled at the University of East Anglia Climate

Research Unit (UEA-CRU; Mitchell and Jones 2005), the

National Aeronautics and Space Administration’s Goddard
Institute for Space Studies (NASA-GISS; Hansen et al.

Table 3 Description of the uncoupled atmospheric GCM simulations with prescribed tropical SSTs

Model N Horizontal discretization and resolution References

NCAR-CCM3 11 s T42, L18 Hurrell et al. (2004)

NCAR-CAM3 5 s T85, L26 Deser and Phillips (2009)

NCAR-CAM3 5 s T42, L26 Deser and Phillips (2009)

All simulations were performed by prescribing the time history of observed SSTs in the tropical belt 30!S–30!N, and the observed long-term
mean SST annual cycle outside the tropics. Columns show the name of the model, the number N of simulations, the horizontal discretization (s
spectral) and resolution (longitude 9 latitude, number of vertical levels), and the reference publication for the ensemble

Fig. 1 Trends of annual-mean surface air temperature (left) and
precipitation (right) over 1951–1999 derived from a observations, b
multi-model ensemble-mean coupled climate model simulations, and
c multi-model ensemble-mean uncoupled atmospheric model simu-
lations with prescribed observed time varying SSTs. Annual averages

are over July to June. All simulation and observational data were
interpolated to a common *2.8! 9 2.8! latitude–longitude grid and
then truncated to total spherical wave number 12 to emphasize
subcontinental-scale features (Sardeshmukh and Hoskins 1984)
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2001), and the National Oceanic and Atmospheric

Administration (NOAA; Smith and Reynolds 2005). The
precipitation trends were derived from an unweighted

average of observations compiled at UEA-CRU (Mitchell

and Jones 2005), the Global Precipitation Climatology

Centre (GPCC; Rudolf et al. 2005), and NOAA (Chen et al.
2002). These observational temperature and precipitation

trend maps may be compared directly with similar maps in

Fig. 2 a Taylor diagram
comparisons of simulated and
observed trends over 1951–1999
of surface air temperature (left)
and precipitation (right) over
land areas in the region 20! to
75!N, 170!W to 40!E. Each dot
depicts the pattern correlation r
(along the angular coordinate)
and r.m.s. magnitude ratio A
(along the radial coordinate) of
a simulated trend field and the
observed trend field. Red dots
coupled simulations (CPL);
Blue squares uncoupled
simulations with prescribed
global SST changes (GLB);
Yellow squares uncoupled GLB
simulations with additional
prescribed radiative forcing
changes; Green squares
uncoupled simulations with SST
changes prescribed only in the
tropics (TRP). For reference, the
temperature and precipitation
trend fields obtained from the
individual observational
datasets (black triangles) are
also compared with the average
of these observational datasets.
b Vector Comparison Matrices
(VCMs) of the trend vectors
from the 76 CPL, 66 GLB, and
21 TRP simulations. The lower
left triangle depicts the pattern
correlations rij and the upper
right elements depict the r.m.s.
magnitude ratio Aj

!
Ai of each

pair i, j among the 163
simulated trend vectors.
c VCMs of the simulated
ensemble-mean and observed
trend vectors
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Ai of each

pair i, j among the 163
simulated trend vectors.
c VCMs of the simulated
ensemble-mean and observed
trend vectors
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time-varying observed SSTs. We did this mainly to reduce

sampling uncertainty, given the evidence from previous

studies (e.g., Compo and Sardeshmukh 2009) that the
direct effect of the radiative forcings in such runs (as

opposed to their indirect effect through the SSTs) is minor

on the variables considered here.
As climate change indicators over our land masses of

interest (in the region 20! to 75!N, 170!W to 40!E), we
chose precipitation and near-surface (2-m) air temperature,

not only for their intrinsic importance but also for their

impact on simple measures of drought such as the Palmer
Drought Severity Index (PDSI; Palmer 1965). We restric-

ted our focus to the changes over land, both because of the

better availability of observations over land, and to perform
fair comparisons of the coupled simulations with the

uncoupled simulations in which the observed boundary

conditions (i.e. the SSTs) were prescribed over the oceans,

but not over land.

3 Observed and simulated regional climate trends

The observed 50-year trends of annual-mean surface air
temperature and precipitation over the Atlantic Rim land

masses are shown in Fig. 1. The temperature trends were

derived from an unweighted average of observations
compiled at the University of East Anglia Climate

Research Unit (UEA-CRU; Mitchell and Jones 2005), the

National Aeronautics and Space Administration’s Goddard
Institute for Space Studies (NASA-GISS; Hansen et al.

Table 3 Description of the uncoupled atmospheric GCM simulations with prescribed tropical SSTs

Model N Horizontal discretization and resolution References

NCAR-CCM3 11 s T42, L18 Hurrell et al. (2004)

NCAR-CAM3 5 s T85, L26 Deser and Phillips (2009)

NCAR-CAM3 5 s T42, L26 Deser and Phillips (2009)

All simulations were performed by prescribing the time history of observed SSTs in the tropical belt 30!S–30!N, and the observed long-term
mean SST annual cycle outside the tropics. Columns show the name of the model, the number N of simulations, the horizontal discretization (s
spectral) and resolution (longitude 9 latitude, number of vertical levels), and the reference publication for the ensemble

Fig. 1 Trends of annual-mean surface air temperature (left) and
precipitation (right) over 1951–1999 derived from a observations, b
multi-model ensemble-mean coupled climate model simulations, and
c multi-model ensemble-mean uncoupled atmospheric model simu-
lations with prescribed observed time varying SSTs. Annual averages

are over July to June. All simulation and observational data were
interpolated to a common *2.8! 9 2.8! latitude–longitude grid and
then truncated to total spherical wave number 12 to emphasize
subcontinental-scale features (Sardeshmukh and Hoskins 1984)
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not only for their intrinsic importance but also for their

impact on simple measures of drought such as the Palmer
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ted our focus to the changes over land, both because of the

better availability of observations over land, and to perform
fair comparisons of the coupled simulations with the

uncoupled simulations in which the observed boundary

conditions (i.e. the SSTs) were prescribed over the oceans,

but not over land.

3 Observed and simulated regional climate trends

The observed 50-year trends of annual-mean surface air
temperature and precipitation over the Atlantic Rim land

masses are shown in Fig. 1. The temperature trends were

derived from an unweighted average of observations
compiled at the University of East Anglia Climate

Research Unit (UEA-CRU; Mitchell and Jones 2005), the

National Aeronautics and Space Administration’s Goddard
Institute for Space Studies (NASA-GISS; Hansen et al.

Table 3 Description of the uncoupled atmospheric GCM simulations with prescribed tropical SSTs

Model N Horizontal discretization and resolution References

NCAR-CCM3 11 s T42, L18 Hurrell et al. (2004)

NCAR-CAM3 5 s T85, L26 Deser and Phillips (2009)

NCAR-CAM3 5 s T42, L26 Deser and Phillips (2009)

All simulations were performed by prescribing the time history of observed SSTs in the tropical belt 30!S–30!N, and the observed long-term
mean SST annual cycle outside the tropics. Columns show the name of the model, the number N of simulations, the horizontal discretization (s
spectral) and resolution (longitude 9 latitude, number of vertical levels), and the reference publication for the ensemble

Fig. 1 Trends of annual-mean surface air temperature (left) and
precipitation (right) over 1951–1999 derived from a observations, b
multi-model ensemble-mean coupled climate model simulations, and
c multi-model ensemble-mean uncoupled atmospheric model simu-
lations with prescribed observed time varying SSTs. Annual averages

are over July to June. All simulation and observational data were
interpolated to a common *2.8! 9 2.8! latitude–longitude grid and
then truncated to total spherical wave number 12 to emphasize
subcontinental-scale features (Sardeshmukh and Hoskins 1984)
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LST	
  Trends	
  (1951-­‐1999)	
  

OBS	
  

AMIP	
  

The	
  Ocean	
  Controls	
  Con#nental	
  Climate	
  

•  Simula#ons	
  that	
  use	
  	
  
observed	
  global	
  or	
  tropical	
  
SSTs	
  as	
  boundary	
  condi#ons	
  
can	
  capture	
  con#nental	
  
hydroclimate	
  trends.	
  

•  But	
  coupled	
  models	
  struggle	
  
with	
  tropical	
  SST	
  trends.	
  

•  This	
  leads	
  to	
  poor	
  coupled	
  
model	
  simula#on	
  of	
  
con#nental	
  trends.	
  

2001), and the National Oceanic and Atmospheric

Administration (NOAA; Smith and Reynolds 2005). The
precipitation trends were derived from an unweighted

average of observations compiled at UEA-CRU (Mitchell

and Jones 2005), the Global Precipitation Climatology

Centre (GPCC; Rudolf et al. 2005), and NOAA (Chen et al.
2002). These observational temperature and precipitation

trend maps may be compared directly with similar maps in

Fig. 2 a Taylor diagram
comparisons of simulated and
observed trends over 1951–1999
of surface air temperature (left)
and precipitation (right) over
land areas in the region 20! to
75!N, 170!W to 40!E. Each dot
depicts the pattern correlation r
(along the angular coordinate)
and r.m.s. magnitude ratio A
(along the radial coordinate) of
a simulated trend field and the
observed trend field. Red dots
coupled simulations (CPL);
Blue squares uncoupled
simulations with prescribed
global SST changes (GLB);
Yellow squares uncoupled GLB
simulations with additional
prescribed radiative forcing
changes; Green squares
uncoupled simulations with SST
changes prescribed only in the
tropics (TRP). For reference, the
temperature and precipitation
trend fields obtained from the
individual observational
datasets (black triangles) are
also compared with the average
of these observational datasets.
b Vector Comparison Matrices
(VCMs) of the trend vectors
from the 76 CPL, 66 GLB, and
21 TRP simulations. The lower
left triangle depicts the pattern
correlations rij and the upper
right elements depict the r.m.s.
magnitude ratio Aj

!
Ai of each

pair i, j among the 163
simulated trend vectors.
c VCMs of the simulated
ensemble-mean and observed
trend vectors

S.-I. Shin, P. D. Sardeshmukh: Influence of Tropical Ocean warming on remote climate trends 1581

123

Global	
  Land	
  Surface	
  Temperature	
  

OBS	
  

Global	
  SST	
  
(AMIP)	
  

Tropical	
  SST	
  

Coupled	
  



Using	
  the	
  #me	
  history	
  of	
  observed	
  SSTs	
  in	
  
atmospheric	
  GCMs	
  give	
  us	
  insight	
  into	
  
con#nental	
  hydroclima#c	
  trends.	
  
	
  
What	
  other	
  insight	
  can	
  we	
  get	
  from	
  observed	
  
SSTs?	
  



Hurrell	
  SST	
  

1950-­‐1980	
   1980-­‐2010	
  

•  SST	
  decadal	
  variability	
  includes	
  forced	
  and	
  internal	
  
parts.	
  

•  Can	
  we	
  es#mate	
  the	
  long-­‐term	
  variability	
  associated	
  
with	
  global	
  warming,	
  SGW,	
  from	
  obs?	
  

•  Can	
  we	
  use	
  SGW	
  for	
  a4ribu#on	
  and	
  near-­‐term	
  
predic#on?	
  (Hoerling	
  et	
  al.	
  2011,	
  Bichet	
  et	
  al.	
  2015)	
  

Separa#ng	
  Short-­‐	
  and	
  Long-­‐Term	
  Variability	
  



•  Observed	
  SST	
  decomposed	
  into	
  long	
  term	
  (GW)	
  and	
  residual:	
  
S(x,t) = SGW + Sresidual	
  

•  SGW 	
  modelled	
  as	
  #me-­‐independent	
  pa4ern	
  h(x)	
  scaled	
  by	
  #me-­‐
dependent	
  gain	
  g(t):	
  	
  

SGW  ≈ h(x) g(t) 
•  g(t)	
  is	
  low-­‐pass	
  filtered	
  global	
  mean	
  SST	
  from	
  obs	
  (Bichet	
  et	
  al.	
  

2015)	
  or	
  from	
  CMIP5	
  (Bichet	
  et	
  al.	
  in	
  prep)	
  
–  Linear,	
  cubic	
  and	
  Thompson	
  et	
  al.	
  methods	
  tested	
  …	
  Cubic	
  used.	
  

•  h(x):	
  regression	
  of	
  Hurrell	
  SST/SICE	
  on	
  g(t)	
  

g(t) from	
  HadCRU	
  
and	
  CMIP5 
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Residual	
  includes	
  internal	
  variability	
  and	
  
short-­‐term	
  forcings 



Tes#ng	
  our	
  es#mate	
  of	
  SGW	
  with	
  large	
  
ensembles	
  

•  Shown	
  is	
  spa#al	
  correla#on	
  of	
  h(x)	
  of	
  individual	
  
large-­‐	
  ensemble	
  members	
  with	
  remaining	
  
members’	
  ensemble	
  mean	
  h(x).	
  

•  Using	
  recent	
  improvements,	
  our	
  es#mate	
  now	
  
captures	
  over	
  70%	
  of	
  spa#al	
  variance	
  of	
  SGW.	
  

Bichet	
  et	
  al.	
  2015	
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  remaining	
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  now	
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  over	
  70%	
  of	
  spa#al	
  variance	
  of	
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Tes#ng	
  our	
  es#mate	
  of	
  SGW	
  with	
  large	
  
ensembles	
  



AMIP	
  SST	
  Trends	
  1980-­‐2010	
   GW	
  SST	
  Trends	
  1980-­‐2010	
  

Global	
  Warming	
  Pa4ern	
  of	
  SST	
  

•  SGW 	
  paKern	
  is	
  from	
  obs	
  (20th	
  century	
  Hurrell	
  SST).	
  	
  SGW  scale	
  is	
  
from	
  models	
  [CMIP5	
  g(t)].	
  

•  SGW	
  	
  features	
  broader	
  warming,	
  	
  rela#vely	
  warm	
  SH,	
  coastal	
  hot	
  
spots,	
  no	
  PDO	
  trend	
  (reduced	
  east	
  Pacific	
  cooling),	
  rela#vely	
  weak	
  
AMO	
  trend	
  (reduced	
  North	
  Atlan#c	
  warming).	
  

ºC/dec	
  
The	
  pa8ern	
  of	
  SGW	
  is	
  also	
  from	
  Hurrell	
  SST	
  Hurrell	
  SST	
  trends	
  



SGW	
  	
  for	
  sea	
  ice	
  



Using	
  SGW	
  in	
  Prac#ce:	
  AGCM	
  Experiments	
  

•  CAM5,	
  20	
  ,	
  1980-­‐2010,	
  historical	
  forcing,	
  N= 10.	
  
•  AMIP:	
  Observed	
  SST	
  and	
  sea	
  ice	
  
•  GW:	
  Our	
  es#mate	
  of	
  GW	
  SST	
  and	
  sea	
  ice	
  (SGW). 
« We	
  now	
  survey	
  regions	
  and	
  variables	
  where	
  

1.  AMIP	
  resembles	
  observa#ons	
  and	
  
2.  Where	
  trends	
  are	
  consistent	
  across	
  ensemble	
  

(signal-­‐to-­‐noise	
  >	
  1).	
  
•  Gray	
  shading	
  indicates	
  signal-­‐to-­‐noise<1.	
  
•  Trends	
  aren’t	
  typically	
  locally	
  significant	
  for	
  this	
  short	
  

period.	
  



1980-­‐2010	
  JFM	
  Temperature	
  

•  AMIP	
  simula#on	
  captures	
  basic	
  obs	
  pa4ern.	
  
•  GW	
  signal	
  shijs	
  peak	
  warming	
  to	
  central	
  Eurasia	
  
•  Western	
  North	
  American	
  cooling	
  a4ributable	
  to	
  PDO-­‐
related	
  East	
  Pacific	
  cooling.	
  

CRU	
   AMIP	
   GW	
  

Bichet	
  et	
  al.	
  in	
  prep	
  

PDO	
  =	
  Pacific	
  Decadal	
  Oscilla#on	
  



1980-­‐2010	
  JFM	
  Precipita#on	
  

•  AMIP	
  captures	
  
some	
  of	
  CRU.	
  

•  Internal	
  
variability,	
  
short-­‐term	
  
forcing	
  drive	
  
much	
  of	
  recent	
  
precip	
  trend.	
  



1980-­‐2010	
  JFM	
  Snow	
  Cover	
  Frac#on	
  
•  Large	
  observa#onal	
  

uncertainty.	
  
•  North	
  American	
  and	
  

Scandinavian	
  trends	
  
reflect	
  GW.	
  

•  Eurasian	
  trend	
  
modulated	
  by	
  internal	
  
variability.	
  



1980-­‐2010	
  JAS	
  African	
  Precip	
  

•  AMIP	
  captures	
  
observed	
  trends.	
  

•  Increase	
  in	
  precip	
  in	
  
central	
  Africa	
  
a4ributable	
  to	
  AMV+,	
  
whether	
  forced	
  or	
  
internal.	
  

•  GW	
  signal	
  in	
  West	
  
Africa	
  is	
  a	
  drying	
  that	
  
opposes	
  some	
  of	
  the	
  
AMV	
  effect.	
  



Summary	
  
•  We	
  test	
  and	
  extend	
  Hoerling	
  et	
  al.’s	
  method	
  to	
  
es#mate	
  the	
  global	
  warming	
  part	
  of	
  SST	
  
variability	
  in	
  observa#ons.	
  

•  We	
  use	
  the	
  resul#ng	
  SGW in	
  AGCMs to	
  a4ribute	
  
regional	
  responses	
  in	
  various	
  regimes	
  (high	
  
la#tude	
  temperature,	
  snowcover,	
  tropical	
  precip,	
  
etc.)	
  

•  Much	
  of	
  the	
  North	
  American	
  winter	
  hydroclimate	
  
signal	
  appears	
  to	
  be	
  linked	
  to	
  PDO	
  -­‐	
  internal	
  
variability.	
  

•  Recent	
  weong	
  trends	
  in	
  sub-­‐Sahel	
  Africa	
  run	
  
counter	
  to	
  long-­‐term	
  GW	
  signal.	
  



Why	
  not	
  use	
  coupled	
  models	
  to	
  
es#mate	
  SGW?	
  

•  CMIP5	
  mul#model	
  mean	
  SGW	
  is	
  large	
  in	
  the	
  tropics	
  and	
  
the	
  North	
  Atlan#c.	
  

•  It’s	
  quite	
  dis#nc#ve	
  from	
  the	
  pa4ern	
  we	
  get	
  from	
  obs.	
  

Hurrell	
  SST	
  SGW	
   CMIP5	
  MMM	
  SGW	
  

	
  (arbitrary	
  colour	
  scale)	
  



Key	
  Points	
  
•  We	
  can	
  reliably	
  es#mate	
  the	
  observed	
  pa4ern	
  of	
  long-­‐
term	
  (>70	
  y)	
  SST	
  response	
  to	
  global	
  warming.	
  

•  This	
  pa4ern	
  allows	
  us	
  to	
  a4ribute	
  GW	
  related	
  
component	
  of	
  past	
  hydroclima#c	
  trends.	
  

•  We	
  are	
  also	
  able	
  to	
  use	
  the	
  same	
  method	
  for	
  regional	
  
climate	
  projec#ons	
  of	
  the	
  forced	
  component	
  (Bichet,	
  5	
  
p.m.	
  Thursday)	
  

•  This	
  pa4ern	
  of	
  observed	
  long-­‐term	
  SST	
  trends	
  is	
  
different	
  from	
  those	
  simulated	
  in	
  coupled	
  ocean	
  
atmosphere	
  models	
  

•  There	
  is	
  a	
  lot	
  of	
  insight	
  to	
  be	
  gained	
  on	
  forced	
  DCV	
  
from	
  exisEng	
  SST	
  observaEons!	
  



Extra	
  Slides	
  



Impact	
  on	
  h(x)	
  of	
  using	
  gTh(t)	
  

h(x)	
  using	
  gL(t)	
  

Observed,	
  Prescribed	
  SST	
  for	
  Simula#ons	
  

Observed	
  and	
  Predicted	
  Land	
  Temperatures	
  

Bichet	
  et	
  al.	
  2015	
  

Ini#al	
  Tests	
  of	
  the	
  Method	
  

•  Spa#al	
  pa4erns	
  obtained	
  from	
  different	
  methods	
  are	
  similar.	
  

•  The	
  gain	
  factor	
  affects	
  the	
  #ming	
  of	
  the	
  hydroclimate	
  response	
  to	
  
the	
  SST	
  forcing.	
  



1980-­‐2010	
  JFM	
  Precipita#on	
  

•  Increased	
  precip	
  in	
  northern	
  South	
  America	
  
a4ributable	
  to	
  PDO-­‐related	
  variability.	
  

AMIP	
   FORCED	
  CRU	
  

Bichet	
  et	
  al.	
  
in	
  prep	
  



Large	
  Ensemble	
  Evalua#on	
  of	
  Method	
  

•  Internal	
  variability	
  interferes	
  with	
  our	
  ability	
  to	
  
confidently	
  es#mate	
  SGW from	
  observa#ons.	
  

h(x),	
  CCSM4	
  LENS	
  
1960-­‐2005	
  

Bichet	
  et	
  al.	
  2015	
  

h(x),	
  CESM1	
  LENS	
  
1960-­‐2005	
  



Preliminary	
  Results	
  on	
  Near	
  Term	
  
Climate	
  Projec#ons	
  

•  We	
  have	
  extended	
  the	
  GW	
  integra#ons	
  to	
  
2010-­‐2040	
  and	
  expect	
  the	
  forced	
  trends	
  to	
  be	
  
quite	
  similar	
  to	
  the	
  past	
  GW	
  trends,	
  by	
  
construc#on.	
  

•  The	
  trends	
  we	
  obtain	
  form	
  an	
  interes#ng	
  
point	
  of	
  comparison	
  to	
  CMIP5	
  trends. 	
  	
  



  

Decadal prediction (2010-2040) using pattern scaled Sea Surface 
Temperature and Sea-ice concentration

A. Bichet1, P.J. Kushner2, L. Mudryk2, L. Terray3, and J. Fyfe4 
1. Laboratoire de Geophysique, Glaciologie et Environnement, Grenoble, France 

2. Department of Physics, University of Toronto, Toronto, Canada
3. CERFACS/CNRS, URA1875, Toulouse, France

4. Canadian Centre for Climate Modelling and Analysis, Environment Canada, Victoria, Canada

- AOGCMs… (Shin qnd Sardeshmuck 2011)… AGCM ok.
- Here, we derive the anth comp from observed SST and
sea ice using pattern scaling.. + use it to force AGCM

1. Obtain SST_Forced:

SST_Obs(x,t) = SST_Forced(x,t) + SST_Int (x,t)
SST_Forced(x,t) = g(t) . p(x)
                           = Regress SST_Obs(x,t) onto g(t)

2. Perform AGCM experiments:
FORCED: 10-member ensemble with CAM5 forced with 
SST_Forced and RCP85 over 2010-2040, 2 degree

 Discussion and conclusions
-  CESM1 and CMIP5m show relatively similar spacial patterns (SST, TS and PP)
- FORCED show different pattern: 
     - SSTs: no warming in Pacific Ocean, Indian Ocean N/S, stronger N/S 
        Gradient in Atlantic Ocean 
     - Sea ice: 
     - TS: Warming...
     - PP: Drying in eastern US, Gulf of Guinea, and Southern Asia
     => Can we relate them to SST patterns?

- Discuss linearity of TS and PP response to SST_Forced
- Discuss regions with strong response to SST and sea-ice vs. atm var
- Discuss model dependency
- Discuss what additional info we gain from CMIP5

- 

Results: 2. High latitude snow 
trends in spring (2010-2040)

Motivation                                         Results: 1. Global annual mean trends (2010-2040)         
                                                              

Method

                                       a) SST                              b) Air surface temperature                       c) Precipitation
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- SST_Obs: Observed SSTs and sea-ice concentration,
 1 degree (Hurrell et al. 2008)
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- AOGCMs… (Shin qnd Sardeshmuck 2011)… AGCM ok.
- Here, we derive the anth comp from observed SST and
sea ice using pattern scaling.. + use it to force AGCM

1. Obtain SST_Forced:

SST_Obs(x,t) = SST_Forced(x,t) + SST_Int (x,t)
SST_Forced(x,t) = g(t) . p(x)
                           = Regress SST_Obs(x,t) onto g(t)

2. Perform AGCM experiments:
FORCED: 10-member ensemble with CAM5 forced with 
SST_Forced and RCP85 over 2010-2040, 2 degree

 Discussion and conclusions
-  CESM1 and CMIP5m show relatively similar spacial patterns (SST, TS and PP)
- FORCED show different pattern: 
     - SSTs: no warming in Pacific Ocean, Indian Ocean N/S, stronger N/S 
        Gradient in Atlantic Ocean 
     - Sea ice: 
     - TS: Warming...
     - PP: Drying in eastern US, Gulf of Guinea, and Southern Asia
     => Can we relate them to SST patterns?

- Discuss linearity of TS and PP response to SST_Forced
- Discuss regions with strong response to SST and sea-ice vs. atm var
- Discuss model dependency
- Discuss what additional info we gain from CMIP5

- 
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GW	
  v.	
  CMIP5:	
  
•  More	
  North	
  

American	
  
drying	
  

•  Less	
  South	
  
American	
  
drying	
  

•  West	
  African	
  
drying	
  

•  Indian	
  
subcon#nent	
  
drying	
  



Conclusion/Discussion	
  
•  The	
  framework	
  could	
  help	
  quan#fy	
  how	
  internal	
  
variability	
  of	
  SSTs	
  in	
  PDO	
  and	
  AMO	
  interferes	
  with	
  the	
  
hydroclimate	
  response	
  to	
  global	
  warming.	
  

•  We	
  can	
  also	
  tweak	
  the	
  Mming	
  of	
  regional	
  responses	
  
based	
  on	
  different	
  g(t).	
  

•  We	
  are	
  exploring	
  this	
  method	
  for	
  purposes	
  of	
  decadal	
  
predic#on.	
  

« Extensions	
  of	
  framework:	
  moving	
  beyond	
  prescribed	
  
SSTs,	
  dis#nguishing	
  different	
  radia#ve	
  forcings	
  (ANT	
  vs.	
  
historical),	
  applying	
  to	
  other	
  models	
  (CanESM,	
  etc.).	
  


