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time-varying observed SSTs. We did this mainly to reduce

sampling uncertainty, given the evidence from previous

studies (e.g., Compo and Sardeshmukh 2009) that the
direct effect of the radiative forcings in such runs (as

opposed to their indirect effect through the SSTs) is minor

on the variables considered here.
As climate change indicators over our land masses of

interest (in the region 20! to 75!N, 170!W to 40!E), we
chose precipitation and near-surface (2-m) air temperature,

not only for their intrinsic importance but also for their

impact on simple measures of drought such as the Palmer
Drought Severity Index (PDSI; Palmer 1965). We restric-

ted our focus to the changes over land, both because of the

better availability of observations over land, and to perform
fair comparisons of the coupled simulations with the

uncoupled simulations in which the observed boundary

conditions (i.e. the SSTs) were prescribed over the oceans,

but not over land.

3 Observed and simulated regional climate trends

The observed 50-year trends of annual-mean surface air
temperature and precipitation over the Atlantic Rim land

masses are shown in Fig. 1. The temperature trends were

derived from an unweighted average of observations
compiled at the University of East Anglia Climate

Research Unit (UEA-CRU; Mitchell and Jones 2005), the

National Aeronautics and Space Administration’s Goddard
Institute for Space Studies (NASA-GISS; Hansen et al.

Table 3 Description of the uncoupled atmospheric GCM simulations with prescribed tropical SSTs

Model N Horizontal discretization and resolution References

NCAR-CCM3 11 s T42, L18 Hurrell et al. (2004)

NCAR-CAM3 5 s T85, L26 Deser and Phillips (2009)

NCAR-CAM3 5 s T42, L26 Deser and Phillips (2009)

All simulations were performed by prescribing the time history of observed SSTs in the tropical belt 30!S–30!N, and the observed long-term
mean SST annual cycle outside the tropics. Columns show the name of the model, the number N of simulations, the horizontal discretization (s
spectral) and resolution (longitude 9 latitude, number of vertical levels), and the reference publication for the ensemble

Fig. 1 Trends of annual-mean surface air temperature (left) and
precipitation (right) over 1951–1999 derived from a observations, b
multi-model ensemble-mean coupled climate model simulations, and
c multi-model ensemble-mean uncoupled atmospheric model simu-
lations with prescribed observed time varying SSTs. Annual averages

are over July to June. All simulation and observational data were
interpolated to a common *2.8! 9 2.8! latitude–longitude grid and
then truncated to total spherical wave number 12 to emphasize
subcontinental-scale features (Sardeshmukh and Hoskins 1984)
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ted our focus to the changes over land, both because of the

better availability of observations over land, and to perform
fair comparisons of the coupled simulations with the

uncoupled simulations in which the observed boundary

conditions (i.e. the SSTs) were prescribed over the oceans,

but not over land.
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2001), and the National Oceanic and Atmospheric

Administration (NOAA; Smith and Reynolds 2005). The
precipitation trends were derived from an unweighted

average of observations compiled at UEA-CRU (Mitchell

and Jones 2005), the Global Precipitation Climatology

Centre (GPCC; Rudolf et al. 2005), and NOAA (Chen et al.
2002). These observational temperature and precipitation

trend maps may be compared directly with similar maps in

Fig. 2 a Taylor diagram
comparisons of simulated and
observed trends over 1951–1999
of surface air temperature (left)
and precipitation (right) over
land areas in the region 20! to
75!N, 170!W to 40!E. Each dot
depicts the pattern correlation r
(along the angular coordinate)
and r.m.s. magnitude ratio A
(along the radial coordinate) of
a simulated trend field and the
observed trend field. Red dots
coupled simulations (CPL);
Blue squares uncoupled
simulations with prescribed
global SST changes (GLB);
Yellow squares uncoupled GLB
simulations with additional
prescribed radiative forcing
changes; Green squares
uncoupled simulations with SST
changes prescribed only in the
tropics (TRP). For reference, the
temperature and precipitation
trend fields obtained from the
individual observational
datasets (black triangles) are
also compared with the average
of these observational datasets.
b Vector Comparison Matrices
(VCMs) of the trend vectors
from the 76 CPL, 66 GLB, and
21 TRP simulations. The lower
left triangle depicts the pattern
correlations rij and the upper
right elements depict the r.m.s.
magnitude ratio Aj

!
Ai of each

pair i, j among the 163
simulated trend vectors.
c VCMs of the simulated
ensemble-mean and observed
trend vectors
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sampling uncertainty, given the evidence from previous

studies (e.g., Compo and Sardeshmukh 2009) that the
direct effect of the radiative forcings in such runs (as

opposed to their indirect effect through the SSTs) is minor
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As climate change indicators over our land masses of

interest (in the region 20! to 75!N, 170!W to 40!E), we
chose precipitation and near-surface (2-m) air temperature,

not only for their intrinsic importance but also for their

impact on simple measures of drought such as the Palmer
Drought Severity Index (PDSI; Palmer 1965). We restric-

ted our focus to the changes over land, both because of the

better availability of observations over land, and to perform
fair comparisons of the coupled simulations with the

uncoupled simulations in which the observed boundary

conditions (i.e. the SSTs) were prescribed over the oceans,

but not over land.

3 Observed and simulated regional climate trends
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temperature and precipitation over the Atlantic Rim land

masses are shown in Fig. 1. The temperature trends were

derived from an unweighted average of observations
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time-varying observed SSTs. We did this mainly to reduce

sampling uncertainty, given the evidence from previous

studies (e.g., Compo and Sardeshmukh 2009) that the
direct effect of the radiative forcings in such runs (as

opposed to their indirect effect through the SSTs) is minor

on the variables considered here.
As climate change indicators over our land masses of

interest (in the region 20! to 75!N, 170!W to 40!E), we
chose precipitation and near-surface (2-m) air temperature,

not only for their intrinsic importance but also for their

impact on simple measures of drought such as the Palmer
Drought Severity Index (PDSI; Palmer 1965). We restric-

ted our focus to the changes over land, both because of the

better availability of observations over land, and to perform
fair comparisons of the coupled simulations with the

uncoupled simulations in which the observed boundary

conditions (i.e. the SSTs) were prescribed over the oceans,

but not over land.

3 Observed and simulated regional climate trends

The observed 50-year trends of annual-mean surface air
temperature and precipitation over the Atlantic Rim land

masses are shown in Fig. 1. The temperature trends were

derived from an unweighted average of observations
compiled at the University of East Anglia Climate

Research Unit (UEA-CRU; Mitchell and Jones 2005), the

National Aeronautics and Space Administration’s Goddard
Institute for Space Studies (NASA-GISS; Hansen et al.

Table 3 Description of the uncoupled atmospheric GCM simulations with prescribed tropical SSTs

Model N Horizontal discretization and resolution References

NCAR-CCM3 11 s T42, L18 Hurrell et al. (2004)

NCAR-CAM3 5 s T85, L26 Deser and Phillips (2009)

NCAR-CAM3 5 s T42, L26 Deser and Phillips (2009)

All simulations were performed by prescribing the time history of observed SSTs in the tropical belt 30!S–30!N, and the observed long-term
mean SST annual cycle outside the tropics. Columns show the name of the model, the number N of simulations, the horizontal discretization (s
spectral) and resolution (longitude 9 latitude, number of vertical levels), and the reference publication for the ensemble

Fig. 1 Trends of annual-mean surface air temperature (left) and
precipitation (right) over 1951–1999 derived from a observations, b
multi-model ensemble-mean coupled climate model simulations, and
c multi-model ensemble-mean uncoupled atmospheric model simu-
lations with prescribed observed time varying SSTs. Annual averages

are over July to June. All simulation and observational data were
interpolated to a common *2.8! 9 2.8! latitude–longitude grid and
then truncated to total spherical wave number 12 to emphasize
subcontinental-scale features (Sardeshmukh and Hoskins 1984)
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sampling uncertainty, given the evidence from previous
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impact on simple measures of drought such as the Palmer
Drought Severity Index (PDSI; Palmer 1965). We restric-
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better availability of observations over land, and to perform
fair comparisons of the coupled simulations with the

uncoupled simulations in which the observed boundary

conditions (i.e. the SSTs) were prescribed over the oceans,

but not over land.

3 Observed and simulated regional climate trends

The observed 50-year trends of annual-mean surface air
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masses are shown in Fig. 1. The temperature trends were

derived from an unweighted average of observations
compiled at the University of East Anglia Climate
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mean SST annual cycle outside the tropics. Columns show the name of the model, the number N of simulations, the horizontal discretization (s
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Fig. 1 Trends of annual-mean surface air temperature (left) and
precipitation (right) over 1951–1999 derived from a observations, b
multi-model ensemble-mean coupled climate model simulations, and
c multi-model ensemble-mean uncoupled atmospheric model simu-
lations with prescribed observed time varying SSTs. Annual averages

are over July to June. All simulation and observational data were
interpolated to a common *2.8! 9 2.8! latitude–longitude grid and
then truncated to total spherical wave number 12 to emphasize
subcontinental-scale features (Sardeshmukh and Hoskins 1984)
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LST	  Trends	  (1951-‐1999)	  

OBS	  

AMIP	  

The	  Ocean	  Controls	  Con#nental	  Climate	  

•  Simula#ons	  that	  use	  	  
observed	  global	  or	  tropical	  
SSTs	  as	  boundary	  condi#ons	  
can	  capture	  con#nental	  
hydroclimate	  trends.	  

•  But	  coupled	  models	  struggle	  
with	  tropical	  SST	  trends.	  

•  This	  leads	  to	  poor	  coupled	  
model	  simula#on	  of	  
con#nental	  trends.	  

2001), and the National Oceanic and Atmospheric

Administration (NOAA; Smith and Reynolds 2005). The
precipitation trends were derived from an unweighted

average of observations compiled at UEA-CRU (Mitchell

and Jones 2005), the Global Precipitation Climatology

Centre (GPCC; Rudolf et al. 2005), and NOAA (Chen et al.
2002). These observational temperature and precipitation

trend maps may be compared directly with similar maps in

Fig. 2 a Taylor diagram
comparisons of simulated and
observed trends over 1951–1999
of surface air temperature (left)
and precipitation (right) over
land areas in the region 20! to
75!N, 170!W to 40!E. Each dot
depicts the pattern correlation r
(along the angular coordinate)
and r.m.s. magnitude ratio A
(along the radial coordinate) of
a simulated trend field and the
observed trend field. Red dots
coupled simulations (CPL);
Blue squares uncoupled
simulations with prescribed
global SST changes (GLB);
Yellow squares uncoupled GLB
simulations with additional
prescribed radiative forcing
changes; Green squares
uncoupled simulations with SST
changes prescribed only in the
tropics (TRP). For reference, the
temperature and precipitation
trend fields obtained from the
individual observational
datasets (black triangles) are
also compared with the average
of these observational datasets.
b Vector Comparison Matrices
(VCMs) of the trend vectors
from the 76 CPL, 66 GLB, and
21 TRP simulations. The lower
left triangle depicts the pattern
correlations rij and the upper
right elements depict the r.m.s.
magnitude ratio Aj

!
Ai of each

pair i, j among the 163
simulated trend vectors.
c VCMs of the simulated
ensemble-mean and observed
trend vectors
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Using	  the	  #me	  history	  of	  observed	  SSTs	  in	  
atmospheric	  GCMs	  give	  us	  insight	  into	  
con#nental	  hydroclima#c	  trends.	  
	  
What	  other	  insight	  can	  we	  get	  from	  observed	  
SSTs?	  



Hurrell	  SST	  

1950-‐1980	   1980-‐2010	  

•  SST	  decadal	  variability	  includes	  forced	  and	  internal	  
parts.	  

•  Can	  we	  es#mate	  the	  long-‐term	  variability	  associated	  
with	  global	  warming,	  SGW,	  from	  obs?	  

•  Can	  we	  use	  SGW	  for	  a4ribu#on	  and	  near-‐term	  
predic#on?	  (Hoerling	  et	  al.	  2011,	  Bichet	  et	  al.	  2015)	  

Separa#ng	  Short-‐	  and	  Long-‐Term	  Variability	  



•  Observed	  SST	  decomposed	  into	  long	  term	  (GW)	  and	  residual:	  
S(x,t) = SGW + Sresidual	  

•  SGW 	  modelled	  as	  #me-‐independent	  pa4ern	  h(x)	  scaled	  by	  #me-‐
dependent	  gain	  g(t):	  	  

SGW  ≈ h(x) g(t) 
•  g(t)	  is	  low-‐pass	  filtered	  global	  mean	  SST	  from	  obs	  (Bichet	  et	  al.	  

2015)	  or	  from	  CMIP5	  (Bichet	  et	  al.	  in	  prep)	  
–  Linear,	  cubic	  and	  Thompson	  et	  al.	  methods	  tested	  …	  Cubic	  used.	  

•  h(x):	  regression	  of	  Hurrell	  SST/SICE	  on	  g(t)	  

g(t) from	  HadCRU	  
and	  CMIP5 

1900	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  1950	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  2000	  

Thompson	  et	  al.	  2009	  

Cubic	  from	  obs	  
Cubic	  from	  CMIP5	  

Linear	  

1900	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  1950	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  2000	  

Residual	  includes	  internal	  variability	  and	  
short-‐term	  forcings 



Tes#ng	  our	  es#mate	  of	  SGW	  with	  large	  
ensembles	  

•  Shown	  is	  spa#al	  correla#on	  of	  h(x)	  of	  individual	  
large-‐	  ensemble	  members	  with	  remaining	  
members’	  ensemble	  mean	  h(x).	  

•  Using	  recent	  improvements,	  our	  es#mate	  now	  
captures	  over	  70%	  of	  spa#al	  variance	  of	  SGW.	  

Bichet	  et	  al.	  2015	  



•  Shown	  is	  spa#al	  correla#on	  of	  h(x)	  of	  individual	  
large-‐	  ensemble	  members	  with	  remaining	  
members’	  ensemble	  mean	  h(x).	  

•  Using	  recent	  improvements,	  our	  es#mate	  now	  
captures	  over	  70%	  of	  spa#al	  variance	  of	  SGW.	  
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Tes#ng	  our	  es#mate	  of	  SGW	  with	  large	  
ensembles	  



AMIP	  SST	  Trends	  1980-‐2010	   GW	  SST	  Trends	  1980-‐2010	  

Global	  Warming	  Pa4ern	  of	  SST	  

•  SGW 	  paKern	  is	  from	  obs	  (20th	  century	  Hurrell	  SST).	  	  SGW  scale	  is	  
from	  models	  [CMIP5	  g(t)].	  

•  SGW	  	  features	  broader	  warming,	  	  rela#vely	  warm	  SH,	  coastal	  hot	  
spots,	  no	  PDO	  trend	  (reduced	  east	  Pacific	  cooling),	  rela#vely	  weak	  
AMO	  trend	  (reduced	  North	  Atlan#c	  warming).	  

ºC/dec	  
The	  pa8ern	  of	  SGW	  is	  also	  from	  Hurrell	  SST	  Hurrell	  SST	  trends	  



SGW	  	  for	  sea	  ice	  



Using	  SGW	  in	  Prac#ce:	  AGCM	  Experiments	  

•  CAM5,	  20	  ,	  1980-‐2010,	  historical	  forcing,	  N= 10.	  
•  AMIP:	  Observed	  SST	  and	  sea	  ice	  
•  GW:	  Our	  es#mate	  of	  GW	  SST	  and	  sea	  ice	  (SGW). 
« We	  now	  survey	  regions	  and	  variables	  where	  

1.  AMIP	  resembles	  observa#ons	  and	  
2.  Where	  trends	  are	  consistent	  across	  ensemble	  

(signal-‐to-‐noise	  >	  1).	  
•  Gray	  shading	  indicates	  signal-‐to-‐noise<1.	  
•  Trends	  aren’t	  typically	  locally	  significant	  for	  this	  short	  

period.	  



1980-‐2010	  JFM	  Temperature	  

•  AMIP	  simula#on	  captures	  basic	  obs	  pa4ern.	  
•  GW	  signal	  shijs	  peak	  warming	  to	  central	  Eurasia	  
•  Western	  North	  American	  cooling	  a4ributable	  to	  PDO-‐
related	  East	  Pacific	  cooling.	  

CRU	   AMIP	   GW	  

Bichet	  et	  al.	  in	  prep	  

PDO	  =	  Pacific	  Decadal	  Oscilla#on	  



1980-‐2010	  JFM	  Precipita#on	  

•  AMIP	  captures	  
some	  of	  CRU.	  

•  Internal	  
variability,	  
short-‐term	  
forcing	  drive	  
much	  of	  recent	  
precip	  trend.	  



1980-‐2010	  JFM	  Snow	  Cover	  Frac#on	  
•  Large	  observa#onal	  

uncertainty.	  
•  North	  American	  and	  

Scandinavian	  trends	  
reflect	  GW.	  

•  Eurasian	  trend	  
modulated	  by	  internal	  
variability.	  



1980-‐2010	  JAS	  African	  Precip	  

•  AMIP	  captures	  
observed	  trends.	  

•  Increase	  in	  precip	  in	  
central	  Africa	  
a4ributable	  to	  AMV+,	  
whether	  forced	  or	  
internal.	  

•  GW	  signal	  in	  West	  
Africa	  is	  a	  drying	  that	  
opposes	  some	  of	  the	  
AMV	  effect.	  



Summary	  
•  We	  test	  and	  extend	  Hoerling	  et	  al.’s	  method	  to	  
es#mate	  the	  global	  warming	  part	  of	  SST	  
variability	  in	  observa#ons.	  

•  We	  use	  the	  resul#ng	  SGW in	  AGCMs to	  a4ribute	  
regional	  responses	  in	  various	  regimes	  (high	  
la#tude	  temperature,	  snowcover,	  tropical	  precip,	  
etc.)	  

•  Much	  of	  the	  North	  American	  winter	  hydroclimate	  
signal	  appears	  to	  be	  linked	  to	  PDO	  -‐	  internal	  
variability.	  

•  Recent	  weong	  trends	  in	  sub-‐Sahel	  Africa	  run	  
counter	  to	  long-‐term	  GW	  signal.	  



Why	  not	  use	  coupled	  models	  to	  
es#mate	  SGW?	  

•  CMIP5	  mul#model	  mean	  SGW	  is	  large	  in	  the	  tropics	  and	  
the	  North	  Atlan#c.	  

•  It’s	  quite	  dis#nc#ve	  from	  the	  pa4ern	  we	  get	  from	  obs.	  

Hurrell	  SST	  SGW	   CMIP5	  MMM	  SGW	  

	  (arbitrary	  colour	  scale)	  



Key	  Points	  
•  We	  can	  reliably	  es#mate	  the	  observed	  pa4ern	  of	  long-‐
term	  (>70	  y)	  SST	  response	  to	  global	  warming.	  

•  This	  pa4ern	  allows	  us	  to	  a4ribute	  GW	  related	  
component	  of	  past	  hydroclima#c	  trends.	  

•  We	  are	  also	  able	  to	  use	  the	  same	  method	  for	  regional	  
climate	  projec#ons	  of	  the	  forced	  component	  (Bichet,	  5	  
p.m.	  Thursday)	  

•  This	  pa4ern	  of	  observed	  long-‐term	  SST	  trends	  is	  
different	  from	  those	  simulated	  in	  coupled	  ocean	  
atmosphere	  models	  

•  There	  is	  a	  lot	  of	  insight	  to	  be	  gained	  on	  forced	  DCV	  
from	  exisEng	  SST	  observaEons!	  



Extra	  Slides	  



Impact	  on	  h(x)	  of	  using	  gTh(t)	  

h(x)	  using	  gL(t)	  

Observed,	  Prescribed	  SST	  for	  Simula#ons	  

Observed	  and	  Predicted	  Land	  Temperatures	  

Bichet	  et	  al.	  2015	  

Ini#al	  Tests	  of	  the	  Method	  

•  Spa#al	  pa4erns	  obtained	  from	  different	  methods	  are	  similar.	  

•  The	  gain	  factor	  affects	  the	  #ming	  of	  the	  hydroclimate	  response	  to	  
the	  SST	  forcing.	  



1980-‐2010	  JFM	  Precipita#on	  

•  Increased	  precip	  in	  northern	  South	  America	  
a4ributable	  to	  PDO-‐related	  variability.	  

AMIP	   FORCED	  CRU	  

Bichet	  et	  al.	  
in	  prep	  



Large	  Ensemble	  Evalua#on	  of	  Method	  

•  Internal	  variability	  interferes	  with	  our	  ability	  to	  
confidently	  es#mate	  SGW from	  observa#ons.	  

h(x),	  CCSM4	  LENS	  
1960-‐2005	  

Bichet	  et	  al.	  2015	  

h(x),	  CESM1	  LENS	  
1960-‐2005	  



Preliminary	  Results	  on	  Near	  Term	  
Climate	  Projec#ons	  

•  We	  have	  extended	  the	  GW	  integra#ons	  to	  
2010-‐2040	  and	  expect	  the	  forced	  trends	  to	  be	  
quite	  similar	  to	  the	  past	  GW	  trends,	  by	  
construc#on.	  

•  The	  trends	  we	  obtain	  form	  an	  interes#ng	  
point	  of	  comparison	  to	  CMIP5	  trends. 	  	  



  

Decadal prediction (2010-2040) using pattern scaled Sea Surface 
Temperature and Sea-ice concentration

A. Bichet1, P.J. Kushner2, L. Mudryk2, L. Terray3, and J. Fyfe4 
1. Laboratoire de Geophysique, Glaciologie et Environnement, Grenoble, France 

2. Department of Physics, University of Toronto, Toronto, Canada
3. CERFACS/CNRS, URA1875, Toulouse, France

4. Canadian Centre for Climate Modelling and Analysis, Environment Canada, Victoria, Canada

- AOGCMs… (Shin qnd Sardeshmuck 2011)… AGCM ok.
- Here, we derive the anth comp from observed SST and
sea ice using pattern scaling.. + use it to force AGCM

1. Obtain SST_Forced:

SST_Obs(x,t) = SST_Forced(x,t) + SST_Int (x,t)
SST_Forced(x,t) = g(t) . p(x)
                           = Regress SST_Obs(x,t) onto g(t)

2. Perform AGCM experiments:
FORCED: 10-member ensemble with CAM5 forced with 
SST_Forced and RCP85 over 2010-2040, 2 degree

 Discussion and conclusions
-  CESM1 and CMIP5m show relatively similar spacial patterns (SST, TS and PP)
- FORCED show different pattern: 
     - SSTs: no warming in Pacific Ocean, Indian Ocean N/S, stronger N/S 
        Gradient in Atlantic Ocean 
     - Sea ice: 
     - TS: Warming...
     - PP: Drying in eastern US, Gulf of Guinea, and Southern Asia
     => Can we relate them to SST patterns?

- Discuss linearity of TS and PP response to SST_Forced
- Discuss regions with strong response to SST and sea-ice vs. atm var
- Discuss model dependency
- Discuss what additional info we gain from CMIP5

- 

Results: 2. High latitude snow 
trends in spring (2010-2040)

Motivation                                         Results: 1. Global annual mean trends (2010-2040)         
                                                              

Method

                                       a) SST                              b) Air surface temperature                       c) Precipitation
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Figure 1: Annual mean, global mean SST anomalies (ref=1900-2040 mean) + g(t)
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Data
Observations:
- SST_Obs: Observed SSTs and sea-ice concentration,
 1 degree (Hurrell et al. 2008)

Model dat a (2 AOGCM ensembles, 2010-2040 RCP85):
- CMIP5m: CMIP5 multimodel mean (26 models)
- CESM1: 40-member large ensemble mean

FORCED

CESM1

CMIP5m

Snow Cover Extend

SST trends: FORCED show…

TS trends: ...

Precipitation trends: ...
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- AOGCMs… (Shin qnd Sardeshmuck 2011)… AGCM ok.
- Here, we derive the anth comp from observed SST and
sea ice using pattern scaling.. + use it to force AGCM

1. Obtain SST_Forced:
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SST_Forced(x,t) = g(t) . p(x)
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2. Perform AGCM experiments:
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SST_Forced and RCP85 over 2010-2040, 2 degree

 Discussion and conclusions
-  CESM1 and CMIP5m show relatively similar spacial patterns (SST, TS and PP)
- FORCED show different pattern: 
     - SSTs: no warming in Pacific Ocean, Indian Ocean N/S, stronger N/S 
        Gradient in Atlantic Ocean 
     - Sea ice: 
     - TS: Warming...
     - PP: Drying in eastern US, Gulf of Guinea, and Southern Asia
     => Can we relate them to SST patterns?

- Discuss linearity of TS and PP response to SST_Forced
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- Discuss model dependency
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GW	  v.	  CMIP5:	  
•  More	  North	  

American	  
drying	  

•  Less	  South	  
American	  
drying	  

•  West	  African	  
drying	  

•  Indian	  
subcon#nent	  
drying	  



Conclusion/Discussion	  
•  The	  framework	  could	  help	  quan#fy	  how	  internal	  
variability	  of	  SSTs	  in	  PDO	  and	  AMO	  interferes	  with	  the	  
hydroclimate	  response	  to	  global	  warming.	  

•  We	  can	  also	  tweak	  the	  Mming	  of	  regional	  responses	  
based	  on	  different	  g(t).	  

•  We	  are	  exploring	  this	  method	  for	  purposes	  of	  decadal	  
predic#on.	  

« Extensions	  of	  framework:	  moving	  beyond	  prescribed	  
SSTs,	  dis#nguishing	  different	  radia#ve	  forcings	  (ANT	  vs.	  
historical),	  applying	  to	  other	  models	  (CanESM,	  etc.).	  


