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Introduction

@ The Pacific Decadal Oscillation (PDO) seems to be partly (i) stochastically driven,
(i) a passive ocean response to the atmosphere and (iii) a coupled mode of the
ocean-atmosphere system where ocean dynamics plays a critical role (Latif and
Barnett, 1996; Barnett et al., 1999).
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@ What is the origin of ENSO Decadal Variability (EDV)? from the Pacific
midlatitudes (Barnett et al., 1999b, Yeh and Kirtman, 2005)? is there a role for
tropical noise and mean state in low frequency ENSO modulation? a
teleconnection from the Atlantic (Kucharski et al., 2015)?

@ Incidentally, what could be (yet another) cause of the recent slowdown in the rate

of surface warming (the so-called warming hiatus)?
@
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The observed PDO
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At decadal time scales, about a third of the
PDO signal might be remotely-driven, with
the remaining variance explained by
oceanic zonal advection anomalies and
variability of the Aleutian low (Schneider
and Cornuelle, 2005).
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PDO & ENSO indeces
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PDO & Global Mean Surface Temperature
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The recent warming hiatus

@ Accounting for the recent cooling
in the eastern equatorial Pacific
reconciled climate simulations
and observations (Kosaka and
Xie, 2013).

@ England et al. (2014) showed
that a pronounced strengthening
in Pacific trade winds over the
past two decades is sufficient to
account for the cooling of the
tropical Pacific and the slowdown B T R
in surface warming. oo

Equatorial mean trend

(England et al., 2014)
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SST anomalies [2000-2009] - [1990-1999]
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Teleconnections are also possible drivers

The Atlantic forcing decadal
Pacific variability

(a) 1970-1989 minus 1931-1950 observed
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Hypothesis: tunnels and bridges

Tropical<=-extratropical interactions

EQ @@
Thermochine circulation ~ decades

N. Atlantic THC

~ decades-centuries

Liu, Z., and M. Alexander (2007), Rev. Geophys

Southern Ocean THC ~ millennia

@ Tropical forcing patterns can force extratropical flow responses
@ Can the atmosphere feed back on the ocean, leading to a (CTP
time-delayed response of the tropical oceans?
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The role of STCs
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The Models

Ocean model: MOM

@ 2°resolution (~1° at Equator), 30 levels, z* coordinate
© NO SST RESTORING

© Forced with the Coordinated Ocean-ice Reference Experiment
(CORE) Normal Year Forcing (NYF) described in Griffies et al.
(2009) for 600 years.

© CORE dataset include T, [U,V], Q, SLP, LW and SW, Precip and
Runoff. They all derive from a combination of NCEP reanalysis
and satellite data.

Atmospheric Model: SPEEDY

@ the ICTPAGCM SPEEDY (Molteni, 2003)
© Spectral dynamical core, hydrostatic, o-coordinate.
© Horizontal resolution is T30, with 8 levels in the vertical. TP,




The anomalous forcing

@ We ran a 10-member SST-forced SPEEDY ensemble with
interannually varying SST, derived from the HadISST dataset.
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The anomalous forcing

@ We ran a 10-member SST-forced SPEEDY ensemble with
interannually varying SST, derived from the HadISST dataset.

© The forcing was applied only to the Pacific region; elsewhere,
climatological, monthly varying SSTs are used.

© From the ensemble mean, for all CORE forcing fields, we
calculated the difference between decades 2000/2009 and
1990/1999.

© The anomalies were then added to each climatological CORE
forcing field.
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The anomalous forcing

a) 10 m Temperature

- - 1 5
0.6 3
0.4 1
0.3 0.6
0.2 0.4
0.1 0.2
-01 -0.3
-02 -0.4
-03 -0.6
-0.4 -1
-0.6 =3
-1 = -5
B0E 120E 180 120w B0W
3
2
1
=05
—0.3
0.2
0.2
-0.3
-0.5
-1
R -2
o T -3
1
@ Asymmetric response (CTP

@ wins stress and wind stress curl anomalies have the opposite sign from the
climatological mean.
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but where is the anomaly coming from?

Most of the anomalies in extratropical winds are generated from
tropical forcing, and only a minor fraction comes from local air-sea

interactions
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CTL and SPEEDY experiments

@ The Control (CTL) experiment is 600 years long.

@ A perturbation experiment (SPEEDY-ALL), 25 years long, was
started at year 350 of the CTL run.

© SPEEDY-TPW: as SPEEDY-ALL, but only temp, SLP and wind
anomalies.

© SPEEDY-W: as SPEEDY-ALL, but only wind anomalies.
@ Results seem robust and stable after the first 10-15 years.
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Atmospheric response
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Atmospheric response
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(a) Atmospheric meridional energy
fluxes for the decade 1990-1999.
MSE: Total transport, or moist
static energy, DSE: dry static
energy, and LE: latent energy.

(b) Anomalies in poleward fluxes,
computed as the ensemble mean
difference between the 2000-2009
decade and the 1990-1999
decade. Units are PW (1 PW =
10 W).




Ocean response

A PDO:-like pattern is generated when the anomalous forcing is added

G =
""JD\Z\\4\\\s\g\‘\(’\‘\2\‘\4\‘\5\‘\5\2\0\2\2\2\4 SSTEOF_‘I (CTP
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Ocean response

Change in Pacific OHT for SPEEDY-W
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Sensitivity to location of the forcing

( )SPEEDY—NOTROP

Wlnd stress (vectors Nm~—2) and wmd stress curI (shading; x10~7
Nm—3) anomalies computed by the ocean model in the
(a) SPEEDY-NOTROP and (b) SPEEDY-TROP experiments.
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Ocean response: TROP
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Ocean response: NOTROP
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Heat Content anomalies

Evolution of heat content anomalies
relative to the Control
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An idealized model for the ENSO-STG-STC interactions

Let T be the SST anomaly in central equatorial Pacific, G and C the
indices of the anomalies in the intensity of the Pacific sub-tropical
gyre and cells [based on the ENSO delayed oscillator of Suarez and

Schopf (1988)]:
%:T—aT(I—5)—V1(T—To)3—EG (1a)
%ZET—RG-F’YI’Q (1b)
dc
3_—R(C—G) (1c)

where Ty = —3C, v = 0.25 and x = 0.025 (because atmospheric
response is 10xfaster than the G-C interactions). @
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T anomaly s.dev. ratio = 0.23
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, G anomaly s.dev. ratio = 0.20 variables T (ENSO SST) , G

(subtropical gyre) and C
(subtropical cells) in the
idealized model.

@ Decadal variability appears in

T and C, which are

C anomaly  s.dev. ratio = 0.46 anticorrelated by construction.

TR =
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If there is no direct interaction between T and G, i.e. E =0 & r; = const.

%:T—aT(r—(S)—rl(T—To)3—EG( (2a)
%ZH-HG—F’}/Q (2b)
dc

9€__sc-9) @)
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T anomaly s.dev. ratio = 0.07
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G anomaly  s.dev. ratio = 0.12 @ Much reduced variability in C
and G and regular variations
inT.

@ In this model, the Gyre forcing
by chaotically-modulated
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Coupled tropical-extratropical feedbacks and
the generation of low-frequency ENSO variability

(Farneti et al., 2014b) and based on theories and simulations by McCreary (:CTP>
and Lu (1994); Kleeman et al. (1999); Klinger et al. (2002)
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Evolution of the Pacific STC & SST for the period

1948-2007 in forced ocean models
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@ Model results agree well with @ Subtropically-forced STC variability is
observed estimates of STC transport, identified as a major player in the
convergence, and equatorial SSTa generation of equatorial Pacific

(ZM06, Zhang and McPhaden, 2006). decadal SSTa.

(Farneti et al., 2014a) @
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Do CMIP5 models reproduce the observed STC variability? NO
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Conclusions

@ The atmospheric response to tropical forcing has feedbacks on
the subtropical ocean, which is in turn forcing an equatorial
time-delayed response, generating decadal SST anomalies.
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Conclusions

@ The atmospheric response to tropical forcing has feedbacks on
the subtropical ocean, which is in turn forcing an equatorial
time-delayed response, generating decadal SST anomalies.

© The system outlines a possible coupled mechanism for ENSO
decadal variability, involving both the ‘atmospheric bridge’ and
the ‘oceanic tunnel".

© Subtropically-forced STC variability is identified as a key player in
the generation of equatorial Pacific decadal SST anomalies,
pacing tropical Pacific natural climate variability on decadal time
scales.

© The natural mode of variability could have implications for the
evolution of equatorial Pacific SSTs in the coming decades under

the concomitant effects of climate change.
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GFDL-CM3 pre-industrial simulation
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