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Pacific Decadal Variability (PDV)
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Summary View
MECHANICS OF THE PACIFIC DECADAL OSCILLATION
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Pacific Decadal Variability (PDV)

Low-frequency modulation of both regions is likely governed
by the interplay of both local and remote processes

We aim to understand; how much low-frequency variability
in the extratropics can be attributed to tropical forcing
alone?

As well as whether North Pacific low frequency variability
feeds back on low frequency tropical variability

However, short observational record provides only a limited
understanding of the interplay between these physical
processes



Systematic Modeling Approach

= Coupled Global Climate Models (CGCMs) are now capable of
multi-centennial integrations, at reasonable computational
expense, provide an invaluable tool to study decadal variability

= Here we employ a CGCM to understand how these natural
processes may modulate the PDO over decadal timescales

= We employ a systematic approach of partially coupling and
regional forcing to constrain physical processes; and thus
determine their relative contribution




Coupled Global Climate Model Setup

Institut Pierre Simon Laplace (IPSL) coupled global climate model
= Currently using IPSL-CM6 BETA-VLR
= |PSL-CM5A-LR physics with improved computational performance

All simulations are forced with the piControl forcing scenario in which
there is no external forcing (ie. greenhouse gases, aerosols, volcanoes)

Allow model to spin-up for 50-years (0-50yr)
Focus on 250-year period between that extends between (50-300yr)

At present the model climatology comes from the period (200-1200yr)
(this requires modification)



Regression between SST and North Pacific Ocean EOF1

Empirical orthogonal function (EOF) of monthly SST anomalies over region
[20°N-60°N,120°E-120°W]

HADISST 26.6% Full-Coupled 2339
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IPSL-CM6 BETA-VLR satisfactorily reproduces the observed IPO pattern despite
= aslightly too strong extra-tropical variability
= maximum PDO cooling shifted to the west



Regression between SLP and tropical Pacific Ocean EOF1
NCEP SLP and HADISST 1950-2010  IPSL-CM6-BETA-VLR (50-300yr)
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Regression between SST and tropical Pacific Ocean EOF1

EOF 1 domain [20°S-20°N,120°E-80°W]
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ENSO peaks in MAM...
but is still strong during DJF



What is the influence of the tropical Pacific Ocean?

= Nudge toward the model’s climatological SST in the tropical Pacific
Ocean

= Constrain SST variability over the tropical Pacific
= Determine the relative influence of ENSO on PDO
= Nudging implemented through heat flux term
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Simulated Tropical Pacific Ocean [2°S-2°N]

Climatological monthly standard deviation
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Regression between SST and EOF1 of North Pacific Ocean
monthly SST anomalies
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= SST variability reduced by approximately 40% over the North Pacific
" |nter-hemispheric pattern disappears



Simulated Tropical Pacific Ocean [2°S-2°N]

Climatological monthly mean
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Present Conclusions

The IPSL-CM6 VLR-BETA model reproduces IPO variability reasonably
well, despite a seasonal shift in the to North Pacific teleconnections

Sensitivity experiments are setup to explore the interactions between
tropical and extratropical Pacific Decadal Variability using a perfect
model framework

ENSO contributes to about 40% of the SST variability in the PDO western
pole, but seems to influence the eastern pole less

Constraining tropical variability also induces a slight change in the
tropical Pacific mean state in the model

The potential influence of midlatitude variability on ENSO decadal
fluctuations will have to be explored in a future set of experiments.



Currently...

Force with the model’s climatological fluxes over the
extratropical North Pacific Ocean
— Constrain atmospheric stochastic variability over the North Pacific Ocean

— Determine if climatological forcing alone is efficient to produce realistic
subsurface properties (ie. mixed layer depth)

— Again some surface restoring to model climatology may be required to
prevent model drift

— Apply teleconnection pattern

North Pacific region forced climatological
heat, freshwater and momentum fluxes
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Extras

Not to be included in presentation



Extra: ENSO Seasonality
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Jourdain et al. (2015)
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Meridional Transect along Dateline

Climatological monthly mean Climatological monthly standard deviation
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Pacific Ocean Meridional-Stream Function
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