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Interests

Bayesian methods, hierarchical models and time series
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Thomas Bayes 1701 - 1763

English mathematician and
presbyterian minister.

Born in Londres y died in
Tunbridge Wells Kent.

Special case,

P(H|E) =
P(E |H)P(H)

P(E)
.

Image from the book, ”History
of Life Insurance” (1936).
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Bayes and the Binomial distribution

X number of times an event has occurred over n trial.
θ probability of occurrence in one trial.

If a and b are degrees of probability, Bayes required:

Pr(a < θ < b|X = x)

Under independent occurrences (postulate),

P(X = x |θ) =
�

n
x

�
θx(1 − θ)n−x ; x = 0, 1, 2, . . . , n
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Bayes’ billiard table: Prior distribution θ ∼ U(0, 1)

p(θ) = 1; 0 < θ < 1.

If we observe X = x ,

p(θ|X = p) =
P(X = p|θ)p(θ)

P(X = p)
.

Or,

p(θ|X = x) ∝ P(X = x |θ)p(θ) ∝ θx(1 − θ)n−x

Beta density,

p(θ|α,β) = Γ(α+ β)

Γ(α)Γ(β)
θα−1(1 − θ)β−1

with α = x + 1, β = n − x + 1.
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θ ∼ Beta(α,β), as a prior p(θ).
alpha = 1 beta = 1

!
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The posterior distribution,

p(θ|X = x) ∝ P(X = x |θ)p(θ)
∝ θα+x−1(1 − θ)β+n−x−1
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Posterior distributions for various x and n

α = β = 1 (uniform prior)

x= 1 n= 2

!
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For n=10, what is P(0.3 < θ < 0.6|X = 3) ?
Answer in R, http://cran.r-project.org/

> x=3;n=10
> alpha=beta=c(1,0.5,4)
> alpha=alpha+x
> beta=beta+n-x
> pbeta(0.6,alpha,beta)-pbeta(0.3,alpha,beta)
[1] 0.5402809 0.4918837 0.7404026
# Intervals at 95 \% probability
> qbeta(0.025,alpha,beta)
[1] 0.10926344 0.09269459 0.18443696
> qbeta(0.975,alpha,beta)
[1] 0.6097426 0.6058183 0.6167163
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Monte Carlo Simulation

> x=3;n=10
> alpha=beta=1; alpha=alpha+x; beta=beta+n-x
> theta=rbeta(1000,alpha,beta)
> sum(0.3 < theta & theta < 0.6 )/1000
[1] 0.523  

!
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Building a Beta prior 1

Suppose θ ≈ 0.6 (most favorable value)
Quantile 95% is close to 0.8,

P(θ < 0.8) = 0.95

Is there a Beta(α,β) matching prior ?
Mode: α−1

α+β−2 = 0.6

> theta0 <- 0.6; btilde <- 1:100
> a <- (1+theta0*(btilde-2)) / (1-theta0)
> qbeta(0.95,a,btilde)
[1] 0.950 0.887 0.847 0.819 0.800
> a[5]; btilde[5]
7 5

1Christensen R. et al (2010) . Bayesian Ideas and Data Analysis:
An Introduction for Scientists and Statisticians CRC Press
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Bayesian inference

Interest in the parameter vector (or scalar) θ.
Prior knowledge expressed as p(θ).
X = (X1, . . . ,Xn) with joint distribution f (X |θ).
Compute p(θ|X ), the posterior distribution.
Bayes theorem

p(θ|X ) =
f (X |θ)p(θ)�

Θ f (X |θ)p(θ)dθ
.

Exact form only for conjugate models.
Needs stochastic simulation Markov Chain Monte Carlo
(MCMC).
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More comments 2

Bayesian ideas not too developed in the 50’s.
Low intensity in the 70’s in U.S.
W. Feller:

Neyman-Pearson theory capable of solving ”all” applied
problem. (Normal, Poisson, Binomial, etc.)
Best approach to solve engineering problems ( type I and II
errors).

2A. Gelman and C. Robert (2014) Not Only Defended But Also Applied:
The Perceived Absurdity of Bayesian Inference The American Statistician Vol.
1 pp 1-5
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Comments

” We know all use Bayesian inference when its clearly
appropriate”

Random mechanisms: coin toss, dice, gene mixture,
roulettes, etc.
Bayesian adds an extra step and thinks that θ is random,
like, θ ∼ U(0, 1).
Similar to fitting a regression to some data.
The turning point...MCMC.
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Gibbs Sampling 3

Suppose the distribution θ = (θ1, θ2, . . . , θk ) is determined
by {pi(θi |θj �=i); i = 1, 2, . . . , k} (full conditionals).

Given a starting value, (θ(0)1 , θ(0)2 , . . . , θ(0)k ),

Sample θ(1)1 ∼ p1(θ1|θ(0)2 , . . . , θ(0)k ),
Sample θ(1)2 ∼ p2(θ2|θ(1)1 , . . . , θ(0)k ),
...
Sample θ(1)k ∼ pk (θk |θ(1)1 , . . . , θ(1)k−1).

Under general conditions,

(θ(0)1 , θ(0)2 , . . . , θ(0)k ) → (θ1, θ2, . . . , θk ) ∼ p(θ)

3Sampling-Based Approaches to Calculating Marginal Densities. A. E.
Gelfand and A.F. M. Smith, JASA. Vol. 85, No. 410 (1990), pp. 398-409.
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Metropolis-Hastings 4

At iteration t ,
Sample z ∼ q(z,θ(t−1)).
Accept the candidate point z, with probability

α(θ(t−1), z) = min
�

1,
π(z)q(z,θ(t−1))

π(θ(t−1))q(z,θ(t−1))

�

in which case, θ(t) = z. Otherwise θ(t) = θ(t−1).
Monitor on acceptance rates or trace plots to assess
convergence.

4Monte Carlo Sampling Methods Using Markov Chains and Their
Applications. W.K. Hastings, Biometrika, Vol. 57, No. 1. (1970), pp. 97-109
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Openbugs

Generic software to implement Bayesian models.
Available from www.openbugs.net
BUGS stands for Bayesian Inference under Gibbs
Sampling.
Based on acyclical graphs:

Limited for high-scale applications.
JAGS interfaces with R.
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Climate Models

Defined via differential equations (numerical model).
General Circulation Models (GCM’s)

cover the Earth. Grids boxes on scale of 100’s kms.
Regional climate models (RCM’s)

resolve processes at smaller scale.
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Original question

Approximate

posterior(m) =
exp[−0.5 ∗ E(m)]× prior(m)�

exp[−0.5 ∗ E(m)]× prior(m) dm

E(m) is a metric of model skill (cost function).
m are some climate parameters .
E(m) considers observations (dobs) and model runs g(m).
Stochastic sampling based on optimization.
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Surrogate climate model 5

Response: surface air temperature anomalies.
Obliquity (Φ�): Earth’s axial tilt.
Eccentricity (e): How elliptical is the Earth’s orbit around
the Sun.
Longitud of Perihelion: (λ) Point of closest approach to
Sun.

5Computational methods for parameter estimation in climate models. A.
Villagran et al. Bayesian Anal. Vol. 3, No. 4 (2008), pp. 823-850.
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Other aspects

Cost function: Measure of the deviation between the
observed data and the model.

E(m) =
I=40�

i=1

J=48�

j=1

B−1
ij (dobs,ij − gij(m))2

dobs are ”observations” and g(m) is ”climate model output”.
m = (Φ�, e,λ).
Bij is the variance of the observations at each grid point.

Posterior distribution: p(m|dobs),

p(m|dobs) ∝ exp (−0.5 ∗ E(m)) p(m)
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Posterior probability distributions for m = (Φ�, e,λ)
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Multiple Very Fast Simulated Annealing (MVFSA)

Approach for Bayesian inversion used in Geosciences.
Depends on a cooling schedule and Metropolis rule.
Ingber (1989),

m(k+1)
i = m(k)

i + yi(mmax
i − mmin

i )

yi from some proposal distribution.
Sen and Stoffa (1996), suggest multiple repetitions.
”fast, requires few iterations”.
Compare to Adaptive Metropolis (AM) and Delayed
rejection (DRAM).
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How Charles thinks about MVFSA
wpe18.gif (GIF Image, 710 ! 523 pixels) http://www.ig.utexas.edu/people/staff/charles/images/wpe18.gif

1 of 1 9/13/13 8:32 PM
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Adaptive Metropolis
Proposed by Haario et. al. (2001)

Suppose thus that at time t − 1 we have sampled the states
m(0), ...,m(t−1).

Update the covariance matrix Ct of the proposal
distribution based on sampled states.
Sample z ∼ Nd(m(t−1),Ct) .
Accept the candidate point z with probability:

α(m(t−1), z) = min
�

1,
π(z)

π(m(t−1))

�

in which case we set m(t) = z, and otherwise
m(t) = m(t−1).
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Delayed Rejection Adaptive Metropolis
DRAM (Haario et al., 2006)

At current position m(t−1). A new candidate z1 is generated from a proposal
q1(m(t−1), ·) and accepted with probability

α1(m(t−1), z1) = min
�

1, π(z1)q1(z1,m(t−1))
π(m(t−1))q1(m(t−1), z1)

�
.

Upon rejection, instead of retaining m(t) = m(t−1).

Propose a second state move z2 from q2(m(t−1), z1, ·).
z2 is accepted with probability α2(m(t−1), z1, z2).

Comments:

Different strategies to implement it.

It is a way of combining different proposals.
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Comparison of sampling methods
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Comparison of p(m|dobs)
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Calibration of Parameters for a Community
Atmosphere Model 6

NCAR Community Atmosphere Model (CAM) version 3.1.
Model runs of climate model simulation with physical
observations.
Inputs or parameters related to clouds and ice.
2-m air temperature ’field T’ or TREFHT.
Other outputs: shortwave cloud forcing, precipitation over
ocean, vertically averaged relative humidity. latent heat
flux over ocean.
7 spatial fields on a grid of 128 × 64.

6C.S. Jackson et al Error Reduction and Convergence in Climate
Prediction. Journal of Climate. Vol. 21 (2008), 24, pp. 6698-6709.
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Model runs and observations for field ”TREFHT”
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6 parameters from CAM 3.1
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Samples for 6 climate parameters
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≈ 1500 experiments (or runs).
(*) denotes default values.
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Statistical Emulation with Principal Component
Analysis

Emulation with Gaussian Process: g(·) ∼ N(µ(·),C(·, ·))
Use runs to estimate an orthogonal basis.
Look PCA variability across seasons.
Model output and observations are summarized with small
number of scores.
Follows the approach of Higdon et al. (2012).

ypc = gpc + �clim + �discrep

gpc ∼ N(µg ,Σg); �clim ∼ N(0,σ2
climI); �discrep ∼ N(0,Σδ)
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Global warming experiments

Coupled CAM 3.1 to a ”slab” ocean.
165 experiments (runs) were completed.
Control and 2 × CO2.

Climate sensitivity: ”change in global mean temperature after
doubling CO2”.
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Relating Sensitivity to Climate Fields 7

Regression problem with n = 165 and p = 129 × 22 × 7.
Perform a principal component regression (PCR)

Y = Xβ + �n = Wα+ �n

W denotes a n × k matrix, with the first k PCs as columns.
Mapping of α’s back to β’s.
Studying Bayesian solution under two priors for α:

αi ∼ N(0, (g × i−2)/φi) and αi ∼ N(0, g/φi); i = 1, 2, . . . , k .
φi ∼ Gamma(δ, δ) and g ∼ Unif (0, a).

7M.H. Hattab et al. (2015) A regression between bias and climate
sensitivity within a perturbed physics ensemble of CAM3.1 (work in progress)
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Posterior for αi under two priors
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TREFHT β
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Computer Lab session

Example 1: Binomial-Beta prior. Files: binomial.R.
JAGS/Openbugs model: model-bin.txt.
Example 2: Regression model with time trend. Files:
regression-example.R. JAGS/Openbugs model:
model-regression.txt, model-regression2.txt.
Example 3: Calibration of Mg/Ca model. Files:
calibration-script.R. Dataset: calibration.txt.
JAGS/Openbugs model: model-khider3.txt, predictive1.txt.
This version and a Matlab version will be at
https://github.com/khider/

Thank you.
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Bayesian Calibration of Globigerinoides ruber Mg/Ca 8

Estimate probability distributions of Mg/Ca sensitivity to
SST, sea level salinity (SSS) and deep water ∆CO2−

3 .
Data set of 186 core top-samples with ”global coverage”.

π(unknowns|data) ”probability of unknowns given data”
(posterior).
f (data|unknowns) ”likelihood of the data given the
unknowns”.
π(unknowns) ”prior probability of unknowns”.

8D. Khider et al. in review for G3 (2015).
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Calibration equation for Mg/Ca

A piecewise regression:

Φ = (α0,α1,α2,α3,α4, τ
2). By Bayes theorem,
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Prior distribution on coefficients

Based on ”culturing experiments” and expert knowledge
(Khider).
Apriori independent:
π(Φ) = p(α0)p(α1)p(α2)p(α3)p(α4)p(τ2)
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Posterior and prior distribution for Φ.

Required a large number of MCMC iterations.
Implementation in rjags and matjags.
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Predicitive framework

Goal: provide predictions of (say) T .
Just another application of Bayes theorem and MCMC!

Requires prior on T .
Notice conditioning on Φ.
Post-processing of posterior samples of Φ.
Done also for ∆CO−2

3 an S.
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Prediction results for T .
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Prediction results for ∆CO−2
3
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Prediction results for S.
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