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Interests

@ Bayesian methods, hierarchical models and time series
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@ MCMC simulation.
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e —
Thomas Bayes 1701 - 1763

@ English mathematician and
presbyterian minister.

@ Bornin Londres y died in
Tunbridge Wells Kent.

@ Special case,

P(E|H)P(H)

PIHIE) = =gy

@ Image from the book, "History
of Life Insurance” (1936).
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Bayes and the Binomial distribution

@ X number of times an event has occurred over n trial.
@ 0 probability of occurrence in one trial.

@ If aand b are degrees of probability, Bayes required:

Pr(a< 0 < b|X = x)

@ Under independent occurrences (postulate),

P(X = x|0) = <)’Z)9X(1 )" X x=0,1,2,....n
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@ Bayes’ billiard table: Prior distribution 6 ~ U(0, 1)
p(A)=1,0<6<1.

o If we observe X = x,

(01X = p) = PR
@ Or,

POIX = x) o P(X = x|0)p(6) ox 6¥(1 — 0)"
@ Beta density,

MNa+B)
M(a)r(8)
e wtha=x+1,8=n—x+1. ﬁ

p(0]e, B) = o1 —0)"
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@ 0 ~ Beta(a, 3), as a prior p(0).

alpha = 0.5 beta = 0.5 alpha =4 beta=4
‘ ‘ . ’/\\

@ The posterior distribution,

p(O|X = x) o P(X = x|0)p(0)
o 9a+x—1(1 o 9)ﬂ+n—x—1 ﬂ
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Posterior distributions for various x and n

@ o = 3 =1 (uniform prior)

x=1n=2 x=3n=10 x= 23 n=100
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@ Forn=10, whatis P(0.3 <0 < 0.6|X =3) ?
@ Answer in R, http://cran.r-project.org/

> x=3;n=10

> alpha=beta=c(1,0.5,4)

> alpha=alpha+x

> beta=beta+n—-x

> pbeta (0.6, alpha,beta)-pbeta(0.3,alpha,beta)
[1] 0.5402809 0.4918837 0.7404026

# Intervals at 95 \% probability

> gbeta (0.025,alpha,beta)

[1] 0.10926344 0.09269459 0.18443696
> gbeta(0.975,alpha,beta)

[1] 0.6097426 0.6058183 0.6167163
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Monte Carlo Simulation

> x=3;n=10

> alpha=beta=1l; alpha=alpha+x; beta=beta+n-x
> theta=rbeta (1000, alpha,beta)

> sum(0.3 < theta & theta < 0.6 )/1000

[1] 0.523
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Building a Beta prior

@ Suppose 6 ~ 0.6 (most favorable value)
@ Quantile 95% is close to 0.8,

P(6 < 0.8) = 0.95

@ |s there a Beta(«,3) matching prior ?
® Mode: ;%515 = 0.6

> thetal0 <- 0.6; btilde <- 1:100

> a <— (l+thetaOx* (btilde-2)) / (l-thetal)
> gbeta(0.95,a,btilde)

[1] 0.950 0.887 0.847 0.819 0.800

> a[5]; btilde[5]

7 5

"Christensen R. et al (2010) . Bayesian Ideas and Data Analysis: @5
An Introduction for Scientists and Statisticians CRC Press
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Bayesian inference

@ Interest in the parameter vector (or scalar) 6.
@ Prior knowledge expressed as p(0).

@ X = (Xi,...,Xp) with joint distribution f(X|0).
@ Compute p(0|X), the posterior distribution.

@ Bayes theorem

f(X|6)p(6)
Jo [(X|0)p(6)d6

@ Exact form only for conjugate models.

p(61X) =

@ Needs stochastic simulation Markov Chain Monte Carlo

(MCMC). o
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More comments 2

@ Bayesian ideas not too developed in the 50’s.
@ Low intensity in the 70’s in U.S.

o W. Feller:

o Neyman-Pearson theory capable of solving "all” applied
problem. (Normal, Poisson, Binomial, etc.)

e Best approach to solve engineering problems ( type | and Il
errors).

2A. Gelman and C. Robert (2014) Not Only Defended But Also Applied:
The Perceived Absurdity of Bayesian Inference The American Statistician Vol. &
1pp1-5
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Comments

” We know all use Bayesian inference when its clearly
appropriate”
@ Random mechanisms: coin toss, dice, gene mixture,
roulettes, etc.
@ Bayesian adds an extra step and thinks that 6 is random,
like, 6 ~ U(0, 1).
@ Similar to fitting a regression to some data.
@ The turning point...MCMC.
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-
Gibbs Sampling 3

@ Suppose the distribution 8 = (0,02, ..., 0k) is determined
by {pi(0i|0j+i); i = 1,2,..., k} (full conditionals).
@ Given a starting value, (050), 020), e ,9,((0)),

e Sample 051) ~ p1(61 |9§0), cee 9,(<0)),
o Sample 05" ~ pa(62/61", ... ,0{")),

e Sample 9,((1) ~ pk(9k|6$1), . 79,(21).
@ Under general conditions,

(05,68, 0) = (61,05, ..., 6k) ~ p(6)

3Sampling-Based Approaches to Calculating Marginal Densities. A. E. Q
Gelfand and A.F. M. Smith, JASA. Vol. 85, No. 410 (1990), pp. 398-409.
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THE JOURNAL OF CHEMICAL PHYSICS VOLUME 21. NUMBER 6 JUNE, 1953

Equation of State Calculations by Fast Computing Machines

BLUTH, AND AUGUSTA H. TELLER,
ew Mexico

Nicroras METrOPOLIS, ARIANNA W. RosENBLUTH, MarsnaLL N. Ro
Los Alamos Scienlific Laboratory, Los Alamos, )

AND
®,* Department of Physics, University of Chicago, Chicago, Illinois
(Received March 6, 1953)

Epwarp TELLE

A general method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANTAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.

Idea of Markov Chains for estimating
density of states comes from physics.

Experiments determine individual
interactions, computers simulate how
a system of particles behave.

= .
Metropolis et al. 1953
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-
Metropolis-Hastings 4
At iteration t,

@ Sample z ~ g(z,0(=").
@ Accept the candidate point z, with probability

n(2)q(z,6""") )

(01 z) = min(1,
( W(Q(H))q(z’ g(H))

in which case, 80 = z. Otherwise () = g(t=1).

@ Monitor on acceptance rates or trace plots to assess
convergence.

“Monte Carlo Sampling Methods Using Markov Chains and Their
Applications. W.K. Hastings, Biometrika, Vol. 57, No. 1. (1970), pp. 97-109
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-
Openbugs

@ Generic software to implement Bayesian models.

@ Available from www.openbugs.net

@ BUGS stands for Bayesian Inference under Gibbs
Sampling.

@ Based on acyclical graphs:

RLUIGS

@ Limited for high-scale applications. ﬁ
@ JAGS interfaces with R. A
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Climate Models

@ Defined via differential equations (numerical model).
@ General Circulation Models (GCM’s)

e cover the Earth. Grids boxes on scale of 100’s kms.
@ Regional climate models (RCM’s)

e resolve processes at smaller scale.
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Original question

@ Approximate

. _exp[—0.5x* E(m)] x prior(m)
posterior(m) = [ exp[—0.5 x E(m)] x prior(m) dm
@ E(m) is a metric of model skill (cost function).
@ m are some climate parameters .
@ E(m) considers observations (d,ps) and model runs g(m).
@ Stochastic sampling based on optimization.
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Surrogate climate model °

@ Response: surface air temperature anomalies.

@ Obliquity (¢'): Earth’s axial tilt.

@ Eccentricity (e): How elliptical is the Earth’s orbit around
the Sun.

@ Longitud of Perihelion: () Point of closest approach to
Sun.

SComputational methods for parameter estimation in climate models. A. ﬁ
Villagran et al. Bayesian Anal. Vol. 3, No. 4 (2008), pp- 823-850.
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-
Other aspects

@ Cost function: Measure of the deviation between the
observed data and the model.

/=40 J=48
= Z Z dobsu gij(m))2

@ dyps are "observations” and g(m) is "climate model output”.
o m=(d' e ).
e B; is the variance of the observations at each grid point.

@ Posterior distribution: p(m|dgs),

p(m|dops) o exp (—0.5 x E(m)) p(m) o
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Posterior probability distributions for m = (¢’ e, \)
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-
Multiple Very Fast Simulated Annealing (MVFSA)

@ Approach for Bayesian inversion used in Geosciences.
@ Depends on a cooling schedule and Metropolis rule.
@ Ingber (1989),
k+1 k i

ml( +1) _ ml( )_|_yi(m;'nax — miin)
@ y; from some proposal distribution.
@ Sen and Stoffa (1996), suggest multiple repetitions.
@ “fast, requires few iterations”.

@ Compare to Adaptive Metropolis (AM) and Delayed
rejection (DRAM).
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]
How Charles thinks about MVFSA

wpel8.gif (GIF Image, 710 x 523 pixels) htp://www.ig.utexas edu/people/staff i pel8.gif

Start at m* and a given temperature T
Evaluate E(m)
T

|
Optimization method

Draw a number 0 <r(T) <1 from a Cauchy
distribution which is temperature. T. dependent

Metropolis

Draw a number 0 <
from a white distribution

Compute new model components
me= m% r(my- m™)

Evaluate E(m™™)
=]« fis AE=E(m™) - E(m’) < 070>

Accept m™with a
probability exp(-AE/T)

TS th
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number of perturbations
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Adaptive Metropolis

Proposed by Haario et. al. (2001)

Suppose thus that at time t — 1 we have sampled the states
m© . ... mit=1),

@ Update the covariance matrix C; of the proposal
distribution based on sampled states.

@ Sample z ~ Ny(m(t=1) C;) .

@ Accept the candidate point z with probability:

a(mt=1 z) = min<1 , 7r(f77T7Efz—)1))>

in which case we set m(Y) = z, and otherwise

m(® = m(t=1), a
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Delayed Rejection Adaptive Metropolis

DRAM (Haario et al., 2006)

At current position m~"). A new candidate z is generated from a proposal
a1 (m~".) and accepted with probability

(t—1)
=1 SN — mi m(z1)qi(z1, M)
ai(m ’21)_mln<1’w(m(f*1))q1(m(f*1),z1) .

@ Upon rejection, instead of retaining m¥ = m(*=").
@ Propose a second state move z from go(m‘'=", z;, ).

@ z is accepted with probability co(m=", z, z5).

Comments:
@ Different strategies to implement it.
@ Itis a way of combining different proposals. Q
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Comparison of sampling methods
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Comparison of p(m|dops)
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Calibration of Parameters for a Community
Atmosphere Model ©

@ NCAR Community Atmosphere Model (CAM) version 3.1.

@ Model runs of climate model simulation with physical
observations.

@ Inputs or parameters related to clouds and ice.
@ 2-m air temperature ‘field T or TREFHT.

@ Other outputs: shortwave cloud forcing, precipitation over
ocean, vertically averaged relative humidity. latent heat
flux over ocean.

@ 7 spatial fields on a grid of 128 x 64.

8C.S. Jackson et al Error Reduction and Convergence in Climate Q
Prediction. Journal of Climate. Vol. 21 (2008), 24, pp. 6698-6709.
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Model runs and observations for field "TREFHT”
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-
6 parameters from CAM 3.1

Parameter Definition Value Ranges

RHMINL [%/100]  Low cloud critical relative humidity 080} 2 8% Boos
RHMINH [%/100]  High cloud critical relative humidity 060} 25 3 x 61 Jog
ALFA [fraction] Initial cloud downdraft mass flux 0os 64 21 3 ] 050
TAU [hours] Consumption rate of CAPE 0523 3 0 2 4 lgg

ke [(kgm?s™"%]  Environmental air entrainment rate  3.0e-6 j2—2—*D | 100e6
¢ [m] Precipitation efficiency 30e3 } £ 5 63247 Jg0e3
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Samples for 6 climate parameters

@ =~ 1500 experiments (or runs).
@ (*) denotes default values. ﬁ
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Statistical Emulation with Principal Component
Analysis

Emulation with Gaussian Process: g(-) ~ N(u(-), C(-,))
Use runs to estimate an orthogonal basis.
Look PCA variability across seasons.

Model output and observations are summarized with small
number of scores.

@ Follows the approach of Higdon et al. (2012).

Ypec = Gpc + €clim + Ediscrep

9pc ~ N(pg, Xg); eciim ~ N(O, Jgliml); ediscrep ~ N(0, Xs) ﬁ
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Global warming experiments

@ Coupled CAM 3.1 to a "slab” ocean.

@ 165 experiments (runs) were completed.

@ Controland 2 x CO2.

@ Climate sensitivity: "change in global mean temperature after
doubling CO2".
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Relating Sensitivity to Climate Fields ’

@ Regression problem with n =165 and p = 129 x 22 x 7.
@ Perform a principal component regression (PCR)

Y=X5+en=Wa+e¢j

@ W denotes a n x k matrix, with the first kK PCs as columns.
@ Mapping of a’s back to j’s.
@ Studying Bayesian solution under two priors for «:

@ «j N(O’(g X i72)/¢i) and Qj ~ N(O,g/(,b,), i= 1723 e 'ak'
e ¢; ~ Gamma(é,d) and g ~ Unif(0, a).

"M.H. Hattab et al. (2015) A regression between bias and climate Q
sensitivity within a perturbed physics ensemble of CAM3.1 (work in progress)
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Posterior for a; under two priors

1 7 14 22 30 38 46 54 62 70 78 86 94 103 113 123 133 143 153 163
o

(@) M,

1 7 14 22 30 38 46 54 62 70 78 86 94 103 113 123 133 143 153 163 *.

a
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Standardized Regression Coefficients
TREFHT SWCF PRECT LWCF

lat

lat

0 20000 40000 60000

Index




TREFHT g

ion Coeffici TREFHT
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Computer Lab session

@ Example 1: Binomial-Beta prior. Files: binomial.R.
JAGS/Openbugs model: model-bin.txt.

@ Example 2: Regression model with time trend. Files:
regression-example.R. JAGS/Openbugs model:
model-regression.txt, model-regression2.txt.

@ Example 3: Calibration of Mg/Ca model. Files:
calibration-script.R. Dataset: calibration.xt.
JAGS/Openbugs model: model-khider3.txt, predictive1.txt.
This version and a Matlab version will be at
https://github.com/khider/

Thank you. ﬁ
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Bayesian Calibration of Globigerinoides ruber Mg/Ca &

@ Estimate probability distributions of Mg/Ca sensitivity to
SST, sea level salinity (SSS) and deep water ACO§‘.

@ Data set of 186 core top-samples with "global coverage”.
t(unknows | data) = f(data | unknows)- xr(unknowns )

@ 7(unknowns|data) "probability of unknowns given data”
(posterior).

@ f(datalunknowns) "likelihood of the data given the
unknowns”.

@ rw(unknowns) “prior probability of unknowns”. ﬁ
8D. Khider et al. in review for G® (2015).
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Calibration equation for Mg/Ca

@ A piecewise regression:
ifACOY 21 mol kg, Mg/ Ca, =(exp(a’1T(i.] oS, +a0)+cx32l] /(1+a4(j‘m)+ql.]
if ACOSI'[,.J <21 ymol [kg, Mg|Cay, =(exp(cxli'(i_] +0,5,+ afo) + cstCof'm ) / (1 +a,Cy ) +e,
]
g ~N(07)

@ & = (ag, aq,ap, a3, a4, 72). By Bayes theorem,

7(®|Mg/Ca.T,5,AC0} €)= f(Mg/CdlT,S,AC08,C,0) 7(D)
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Prior distribution on coefficients

@ Based on “culturing experiments” and expert knowledge
(Khider).
@ Apriori independent:
m(®) = p(ao)p(a1)p(az)p(as)p(aa)p(r?)
o, ~ N(—2.8,0.5)
o, ~ N(0.08,0.01)
o, ~ N(0.06,0.01)
o, ~N(0.054,0.019)
o, ~U(0,0.4)

1/7> ~ Ga(1.0.0.1) o
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Posterior and prior distribution for ®.
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@ Required a large number of MCMC iterations.
@ Implementation in rjags and matjags.
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Predicitive framework

@ Goal: provide predictions of (say) T.
@ Just another application of Bayes theorem and MCMC!

it(T\Mg/CmS,ACOf‘,C,(D < f\Mg/Co T1S1ACOE]C,(D)4I(T)

@ Requires prioron T.

@ Notice conditioning on ®.

@ Post-processing of posterior samples of ®.
@ Done also for ACO;? an S.
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Prediction results for T.
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Prediction
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Prediction results for S.

Predicted Salinity (psu)

Predicted Salinity (psu)
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